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ABSTRACT

Nonrigid registration of medical images by maximisation of their mutual information, in combination with a de-
formation field parameterised by cubic B-splines, has been shown to be robust and accurate in many applications.
However, the high computation time is a big disadvantage. This work focusses on the optimisation procedure.
Many implementations follow a gradient-descent like approach. The time needed for computing the derivative of
the mutual information with respect to the B-spline parameters is the bottleneck in this process. We investigate
the influence of several gradient approximation techniques on the number of iterations needed and the computa-
tion time per iteration. Three methods are studied: a simple finite difference strategy, the so-called simultaneous
perturbation method, and a more analytic computation of the gradient based on a continuous, and differentiable
representation of the joint histogram. In addition, the effect of decreasing the number of image samples, used
for computing the gradient in each iteration, is investigated. Two types of experiments are performed. Firstly,
the registration of an image to itself, after application of a known, randomly generated deformation, is consid-
ered. Secondly, experiments are performed with 3D ultrasound brain scans, and 3D CT follow-up scans of the
chest. The experiments show that the method using an analytic gradient computation outperforms the other
two. Furthermore, the computation time per iteration can be extremely decreased, without affecting the rate
of convergence and final accuracy, by using very few samples of the image (randomly chosen every iteration)
to compute the derivative. With this approach, large data sets (2563) can be registered within 5 minutes on a
moderate PC.

Keywords: nonrigid registration, mutual information, optimisation, computation time, stochastic gradient
descent

1. INTRODUCTION

This work focusses on nonrigid registration of medical images by maximisation of their mutual information,
using a B-spline parameterisation of the deformation field. It has been demonstrated that this is a feasible
approach.1, 2 However, the large computation time is a big disadvantage of this method. Comprehensive studies,
such as lung cancer screenings, with many high resolution 3D images, ask for faster registration algorithms. Some
applications, such as brain shift estimation based on intraoperatively acquired ultrasound (US) data of brain
tumours,3, 4 require almost real-time registration.

Registration is usually stated as a minimisation problem:

µ̂ = arg min
µ

(−MI(µ)) , (1)

where MI(µ) denotes the mutual information similarity measure as a function of the parameters, the B-spline
coefficients µ. The usually high dimension of the parameter vector µ makes this a difficult optimisation problem.
To find the optimal set of parameters µ̂, many existing implementations use a variant of the following iterative
strategy:

µk+1 = µk + akdk, (2)

with dk the search direction at iteration k, and ak a scalar gain. Common choices for the search direction are
the steepest descent, the quasi-Newton, or a conjugate gradient direction. These methods have in common that
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all need (an estimate of) the derivative of the mutual information with respect to the parameters µ. The gain
ak can simply be set to a constant, defined by a decaying function of k, or determined by a 1D line search,
which tries to minimise −MI(µk+1) along the direction dk. As opposed to the field of rigid registration,5 little
research has been done on the optimisation procedure in nonrigid image registration problems.

In this paper the search direction is the object of study. We limit our attention to the steepest descent
method:

µk+1 = µk − akg(µk), (3)

where g(µk) is the derivative of the mutual information with respect to the parameters µ, at iteration k. Instead
of the exact derivative g, usually an approximation gk is used. It has been proven6, 7 that, within certain
constraints, this still leads to the optimum. It is important though, that the approximation is not biased; the
error must be random with expectation equal to zero. In this context, the term “stochastic gradient descent”
is often used. Using an approximation instead of the exact derivative can decrease the computation time per
iteration, but may worsen the speed of convergence.

Three techniques for computing the gradient gk are compared: the well-known Finite Difference (FD) tech-
nique,7 the so-called Simultaneous Perturbation (SP) method,8 and the approach described by Mattes et al.1

(MA), which is an extension of the work by Thévenaz and Unser.9 The first two methods, FD and SP, rely only
on direct measurements of the mutual information. Spall8 shows that SP in theory is superior to FD in many
optimisation problems. In the last approach (MA) an analytic expression for the gradient is derived, explicitly
taking into account the finite support of the B-spline basis functions that model the deformation field.

Furthermore, special attention is paid to the effect of using only a small, randomly selected set of image
samples in each iteration, instead of the full image. This is an easy way to decrease the computation time per
iteration, but, obviously, will deteriorate the accuracy of the gradient approximation. Using fewer samples to
compute the derivative of the mutual information has been proposed before,1 but the influence on the speed of
convergence in nonrigid registration has not been investigated systematically. Note, that rather than subsampling
the images on a fixed grid, we mean selecting new samples randomly every iteration. This ensures that no bias
is introduced.

In the next section additional information about the registration framework is given, the gradient estimation
methods are explained in more detail, and the evaluation procedures are described. Section 3 describes the
results of the experiments, and conclusions are given in Section 4.

2. METHODS

This section starts with a description of the nonrigid registration framework in which the tests are performed. In
Section 2.2 the three gradient estimation methods are explained in detail. Section 2.3 focusses on the possibility of
using a randomly selected set of voxels for the gradient approximations. The evaluation procedures are described
in Section 2.4.

2.1. Nonrigid registration framework

In this section the various components of the nonrigid registration framework are described. The design of our
algorithm is largely based on the papers of Rueckert et al.2 and Mattes et al.1

As mentioned in the introduction, the registration method we focus on uses cubic B-splines to parameterise the
deformation field, and mutual information as a similarity measure. Several implementations for the computation
of mutual information can be found in the literature.9–12 The approach described by Thévenaz and Unser9 is used
here. The joint histogram is constructed using B-spline Parzen windows, which makes it possible to formulate
the mutual information as a continuous, differentiable function of the parameters describing the deformation
field. In all experiments described in this paper, the joint histogram size was set to 32 × 32.

In order to find the correct solution to the minimisation problem (1), multiresolution strategies are often
necessary. For an extensive overview on this subject we refer to Lester and Arridge.13 Regarding the image
data, we have chosen to utilise a Gaussian image pyramid in this study. The deformation model complexity
is forced to follow the image resolution: when the image resolution is doubled, the control point resolution is



doubled as well. The number of resolution levels and the final B-spline control point spacing depend on the
specific problem.

In each resolution a minimisation is performed, using the gradient descent method, as defined in Equation
(3). The selection of an appropriate termination criterion for this iterative process is not straightforward, and
depends on the application. In this study the minimisation is stopped after a fixed number of iterations. The
gain factors ak are defined by a function of k, specified in Section 3.1.

2.2. Gradient estimation methods

Three methods are investigated to compute the derivative gk of the mutual information: the finite difference
method (FD), a technique called simultaneous perturbation (SP), and the method described by Mattes et al.,1

henceforth referred to as “MA”.

- FD: This method, originally proposed by Kiefer and Wolfowitz,7 is used in many applications. It is easy to
implement, because only direct function measurements are used. For each element of the gradient vector,
two measurements of the mutual information are needed:

∂MI
∂ [µ]i

(µk) ≈ [
gFD

k

]
i
=

MI (µk + ∆ei) − MI (µk − ∆ei))
2∆

∀i, (4)

where [·]i represents the ith element of the vector between the brackets, ∆ a small scalar, and ei the unit
vector consisting of only zeros, except for the ith element, which equals one. From this expression it is
clear, that many evaluations of the mutual information are needed, when a high-dimensional parameter
vector is used, i.e., when the deformation field is parameterised by a dense B-spline control point grid.

- SP: The simultaneous perturbation method, first described by Spall,8 has the advantage that only two
evaluations of the mutual information are needed to construct the complete gradient vector gk:

∂MI
∂ [µ]i

(µk) ≈ [
gSP

k

]
i
=

MI (µk + ck∆k) − MI (µk − ck∆k)
2ck [∆k]i

∀i, (5)

with ∆k the “random perturbation vector” of which each element is randomly assigned ±1 in each iteration.
The scalar ck is defined as a function of k and the constant scalars c and γ:

ck = c/(k + 1)γ . (6)

This is a very coarse approximation to the true derivative g, but Spall8 presents a proof of convergence
pending certain assumptions. One of the assumptions is that the gain ak in the kth iteration is computed
as ak = a/(k + 1)α. In a later paper14 Spall advises to use the following expression:

ak =
a

(A + k + 1)α
, (7)

with a, A, and α constants. In the same paper he suggests the settings α = 0.602 and γ = 0.101.

- MA: This is an analytic approach that follows naturally from the definition of the mutual information as
a continuous and differentiable function. In the paper by Thévenaz and Unser9 an analytic expression for
gk is derived, valid for any differentiable parameterisation of the deformation field. Mattes et al.1 have
implemented this for the case of a deformation model based on cubic B-splines.

According to the theoretic analysis of Spall,8 the convergence properties of FD and SP are identical, if the
function to be optimised satisfies certain constraints. In combination with the much shorter computation time
per iteration, this could make it a very competitive approach. However, the constraints imposed on the objective
function may not be satisfied in practice. In this work it is tested if SP is applicable to the problem of B-spline
based registration with mutual information as a similarity measure.



2.3. Approximation using fewer samples

Besides comparing the three methods explained in the previous section, special attention is paid to the effect of
using only a small, randomly selected set of image samples for computation of the gradient.

The computation time for a single gradient evaluation is related to the amount of image samples N used and
the number of B-spline coefficients M :

tFD ∼ 2M(pN + q), (8)
tSP ∼ 2(pN + q), (9)
tMA ∼ rN + sM, (10)

where p, q, r, s are constants. From these estimates it is immediately clear that, instead of using all voxels, using
only a small, randomly selected subset of image samples every iteration will decrease the computation time. Of
course it will also deteriorate the accuracy of the gradient approximation, which may cause a loss of convergence
speed, or, even worse, diverge from the correct solution. The optimal number of samples may, amongst others,
depend on the size of the image and the number of parameters of the deformation field model

Note that is very important to select new samples in each iteration, to prevent a systematic error in the
gradient approximation.

2.4. Evaluation procedures

To compare the effects of the gradient approximation methods that were described in the previous sections, two
evaluation procedures are used.

In the first evaluation procedure an image I is registered to a deformed version of itself. The applied
deformation field, ṽ, is preferably composed of different basis function than the B-splines used in the registration.
To avoid interpolation errors, the deformed version of I is not actually generated. Instead, we formulate the
registration problem as:

µ̂ = arg min
µ

(−MI(I, I ′µ)
)
, (11)

where I ′µ is the deformed image given the deformation parameters µ:

I ′µ(x) = I (x + ṽ(x) + v(x,µ)) . (12)

From this expression it is clear that the total deformation is composed of two parts: the known, initial deformation
field ṽ(x), and the deformation field parameterised by the B-spline coefficients, v(x,µ). Since the image I is
registered to itself, the desired solution is a deformation field that is zero everywhere:

ṽ(x) + v(x,µ) = 0 ∀x. (13)

The ground truth is known, so an error measure, the average displacement error e, can be defined:

e(µ) =

∑

xiεI

‖ṽ(xi) + v(xi,µ)‖

|I| , (14)

where xi is the position of voxel i in the image volume I, and |I| the total number of voxels in I. The convergence
rate is visualised by plotting this error measure as a function of the number of iterations k.

The second evaluation procedure is meant for situations where the ground truth is not known, as is common in
clinical applications. One way to assess the registration results in this case is to segment corresponding structures
in the images to be registered. The overlap of these corresponding structures can be computed before and after
registration. An increase in overlap indicates that the alignment of the image has improved. The overlap of two
segmented objects, V1 and V2, is defined as:

Overlap =
2 · |V1 ∩ V2|
|V1| + |V2| . (15)



(a) (b) (c)

Figure 1. CT heart data, used in the experiments with known ground truth: (a) an example slice, (b) the same slice after
application of the initial deformation field to the image volume, (c) the difference image, visualising the misalignment
between (a) and (b).

3. RESULTS

Using the two evaluation procedures described in Section 2.4, three types of experiments have been performed.
Firstly, the registration of a 3D CT image of the heart to a deformed version of itself is considered. Secondly,
the results of registering 3D CT follow-up scans of the chest are assessed by comparing the overlap measures
computed on the segmented lungs. Finally, the registration results of pre- and intra-operative 3D ultrasound
brain scans are compared by computing overlap measures for segmented tumours.

All registrations have been performed using elastix,15 a computer program developed by the authors. This
package is largely based on the Insight Segmentation and Registration Toolkit (ITK).16

3.1. Registration with known ground truth

The registration experiments with known ground truth were performed on four 3D CT images of the heart.
The images originated from chest scans, having an in-plane resolution of 512 × 512, that were cropped to cubic
volumes of 194×194×194 voxels containing the heart. To limit the total computation time, the resulting images
were downsampled to a size of 97 × 97 × 97 voxels. Voxel sizes are about 1.4 mm in all directions. Figure 1(a)
shows an example of a slice of such an image.

For each image a deformation field was generated, not based on the previously mentioned B-spline model
that is used during the registration, but composed of randomly placed Gaussian blobs. Figure 1(b) shows the
same slice as in Figure 1(a), after application of the initial deformation to the volume. The difference of the
image and its deformed version is displayed in Figure 1(c).

Registrations were performed using the three gradient approximation methods described in Section 2.2. Each
method was tested with a varying amount of image samples used for computing the gradient. During registration
the deformation field was parameterised by a 10 × 10 × 10 grid of B-spline control points, which means that
3000 parameters were to be optimised. No multiresolution schemes were used, which makes comparison of the
results more straightforward, and the maximum number of iterations was limited to 2048. The gain sequence of
Equation (7) was adopted for all experiments. The following parameters were used for the tests with MA and
FD: a = 3200, A = 50, and α = 0.602. For SP slightly different parameters had to be used, since the method
appeared to be quite sensitive to the choice of the gain sequence. The following values gave the best results:
a = 800, A = 200, and α = 0.602. Two more parameters need to be specified for SP, see Equation (6): c = 1.4
(equal to the voxel size) and γ = 0.101.

Figures 2-5 show the results for the four images. The error measure e(µk), defined in Section 2.4, is plotted
as a function of the number of iterations k. The numbers next to the labels in the graph represent the numbers
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Figure 2. Results for the first heart image. The graph shows the average displacement error as a function of the number
of iterations for three gradient approximation techniques: FD, SP and MA. The numbers next to the labels represent the
numbers of image samples used for the gradient computations.
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Figure 3. Results for the second heart image. The graph shows the average displacement error as a function of the
number of iterations for three gradient approximation techniques: FD, SP and MA. The numbers next to the labels
represent the numbers of image samples used for the gradient computations.
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Figure 4. Results for the third heart image. The graph shows the average displacement error as a function of the number
of iterations for three gradient approximation techniques: FD, SP and MA. The numbers next to the labels represent the
numbers of image samples used for the gradient computations.
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Figure 5. Results for the fourth heart image. The graph shows the average displacement error as a function of the number
of iterations for three gradient approximation techniques: FD, SP and MA. The numbers next to the labels represent the
numbers of image samples used for the gradient computations.



of image samples used for computation of the gradients. The FD method was only tested for 256 and 2048 image
samples. Using more samples yielded unacceptable computation times on our Pentium IV 2.8 MHz.

When comparing Figures 2-5 it can be concluded that the results for the four images are very similar.
Obviously, the SP approximation worsens the rate of convergence significantly. The (≈ 4×) shorter computation
time per iteration compared to MA does not compensate for the lower speed of convergence. The methods
FD and MA have an almost equal convergence rate. However, the FD approach is much slower per iteration
(≈ 700×).

A remarkable result is that, for MA, the convergence properties of using all (106) voxels are retained when
going down to only 2048 samples, which is 0.2% of the total image volume. This, in combination with the
decrease in computation time per iteration gives a speed-up of a factor of approximately 500.

3.2. Overlap of segmented lungs

Three-dimensional CT is a commonly used modality for the diagnosis of lung diseases. To study the evolution
of a disease in a patient it is helpful to automatically register follow-up scans. In this section a number of
experiments with 3D CT chest scans are described. Assessment of registration quality is performed by segmenting
the lungs, and comparing overlap measures computed on the segmented lungs. This procedure has been outlined
in Section 2.4.

(a) (b) (c)

(d) (e) (f)

Figure 6. Examples of the CT chest data: (a) an example slice, (b) the corresponding slice in the follow-up scan after
rigid registration, (c) the difference image, visualising the misalignment between (a) and (b), (d) the difference image
after nonrigid registration using all voxels in each iteration, (e) the difference image after nonrigid registration using 2048
randomly selected image samples in each iteration, (f) the difference image after nonrigid registration using 256 randomly
selected image samples in each iteration.



P1 P2 P3 P4 P5

rigid 0.942 0.909 0.821 0.792 0.738

all voxels 0.976 0.973 0.943 0.958 0.955
131072 0.976 0.973 0.943 0.958 0.955
16384 0.976 0.973 0.943 0.958 0.955
2048 0.975 0.972 0.942 0.958 0.954
256 0.970 0.959 0.937 0.949 0.946

Table 1. The results of CT chest scan registration for patients P1-P5. The overlap of segmented lungs is shown after
rigid registration (first row), and after nonrigid registration with a varying number of image samples used for computation
of the gradient approximation. Each column contains the results for a single patient.

The images were acquired with a Philips Mx8000IDT 16-slice CT scanner. The original images, with an
in-plane resolution of 512×512 and a number of slices ranging from 400 to 800, were downsampled by a factor of
2 in order to be able to register the images on a standard PC with one gigabyte of memory. The resulting voxel
size is approximately 1.4 mm in all directions. In this study we used data of five patients. For each patient two
scans, taken several months apart, were registered. In Figure 6(a) a slice is shown for illustration, next to the
corresponding slice of the follow-up scan after rigid registration (Figure 6(b)). The difference image is displayed
in Figure 6(c) to give an indication of the residual misalignment after rigid registration.

To compensate for this misalignment a nonrigid registration is needed. A four-level multiresolution approach
was applied (see Section 2.1 for details on the utilised multiresolution scheme). At each resolution the number
of iterations was fixed to 256. At the highest resolution the B-spline control point spacing was set to 22 mm,
yielding a grid of about 193 control points; approximately 20000 parameters to optimise. The exact size of the
grid varied between patients, due to the varying amounts of slices in the images. The results from the previous
section show that the gradient estimation method MA is superior to FD and SP. Therefore, this method was
used in the experiments, again with a varying number of image samples.

After registration the overlap of the segmented lungs can be calculated. The segmentations were made by
means of a method based on the work of Hu et al.17 In the segmentations large pulmonary vessels are not
considered part of the lungs. Table 1 shows the overlap measure after rigid registration and nonrigid registration
using all (≈ 107) voxels each iteration, 131072 randomly sampled voxels, 16384, 2048, and 256 samples. Each
column displays the results for a single patient. The overlap measures confirm the results found in Section 3.1.
The final accuracy of the nonrigid registration is not affected by the random subsampling strategy. Only when
256 samples are used, the overlap measure decreases. Visual inspection of the results supports this conclusion.
In Figures 6(d), 6(e), and 6(f) an example is given of the residual misalignments after nonrigid registration using
respectively all voxels, 2048 samples, and 256 samples. The difference images in Figure 6(d) and Figure 6(e) are
very similar. In Figure 6(f) a slightly larger misalignment can be observed. All three images show a considerable
improvement on the rigid registration (Figure 6(c)).

Surprisingly, the same minimum of 2048 samples is found as in the previous section, whilst the images
considered here are almost three times larger, and the number of parameters to be optimised seven times higher.

3.3. Overlap of brain tumours

During neurosurgical interventions, 3D ultrasound (US) is an increasingly popular modality to visualise intra-
operatively occurring brain deformations. The next step would be to use the ultrasound data not only for
visualisation purposes, but also for automatically updating preoperatively acquired image data to the actual,
intraoperative situation.3, 4 Needless to say, computation time is a critical issue for such applications. In this
section the nonrigid registration of 3D US volumes is the subject of our attention. For evaluation, a similar
procedure is followed as in the previous section.

The data used in this section was obtained during brain surgery, before and immediately after opening
the dura. Around 100 2D scans were acquired by a free-hand sweep. For the 3D reconstruction the software
package StackSX18 was used, which combines the 2D scans using their relative positions as recorded by the



(a) (b) (c)

Figure 7. Examples of the US brain data: (a) a slice from a patient, immediately after opening of the dura, (b) the
corresponding slice in the image created before opening the dura (after rigid registration), (c) the difference image,
visualising the misalignment between (a) and (b) around the tumour.

P1 P2 P3

rigid 0.809 0.900 0.851

all voxels 0.822 0.932 0.888
131072 0.822 0.932 0.888
16384 0.821 0.932 0.888
2048 0.817 0.932 0.887
256 0.797 0.930 0.884

Table 2. The results of US brain scan registration for patients P1-P3. The overlap of segmented tumours is shown after
rigid registration (first row), and after nonrigid registration with a varying number of image samples used for computation
of the gradient approximation. Each column contains the results for a single patient.

neuro-navigation system. The resulting 3D images have a size of 300 × 300 × 200 voxels, with isotropic voxels
of 0.5 × 0.5 × 0.5 mm. Figure 7(a) shows an example slice from an image acquired after opening the dura. The
tumour is clearly visible. In Figure 7(b) the corresponding slice in the image obtained before opening the dura is
shown. Only a rigid registration has been performed between these images. In the difference image, displayed in
Figure 7(c), it can be seen that the tumour alignment is already quite good. However, the rigid transformation
model could not completely recover the brain shift. A nonrigid registration is necessary.

For the nonrigid registration a three-level multiresolution scheme was used. At the highest resolution, the
deformation field was modelled by a 41×41×28 grid of control points, having a spacing of 4 mm. The optimisation
at each resolution was stopped after 256 iterations. To estimate the derivative of the mutual information with
respect to the B-spline coefficients, the MA approach was used. Only voxels inside the US beam were taken into
account in the registration.

For three patients the 3D US scans were registered using different amounts of samples. In all images the
tumours were manually segmented by an experienced person, which allows the computation of the overlap
measure, defined in Section 2.4. The results are presented in Table 2. The same pattern can be observed as in
the former two sections. Even when only 2048 samples are used in each iteration, the accuracy of the registration
is retained. The results are less consistent for patient 1. This may be a result of the quality of the ultrasound
scans, which makes it difficult to segment the tumours.



4. CONCLUSION

We investigated the influence of several gradient approximation techniques on the convergence speed and the
computation time per iteration. The experiments performed clearly show that extremely few samples are needed
for obtaining an acceptable approximation of the gradient. The minimum number was observed to lie around
2048. Even in the case of large 3D images, in combination with many parameters to be optimised, the speed of
convergence and the final accuracy did not suffer at all from this approach. Accelerations up to a factor of 500
could easily be achieved with this strategy.

A big difference between the three gradient computation methods was observed. The finite difference method
converges fast, but the large number of parameters to be optimised causes a very high computation time per
iteration. The computation time of gradient approximation by simultaneous perturbation of the parameters
does not depend on the number of B-spline coefficients, and is therefore faster per iteration, but its convergence
properties are much worse. The expression for the derivative described by Mattes et al. makes efficient use of the
small support of the B-spline basis functions modelling the deformation field. This, in combination with the fast
convergence, makes it the preferred method. In applications where the deformation field is modelled by basis
functions with a global support, such as thin-plate splines, the simultaneous perturbation method may become
more advantageous.

Future extensions of this work include the investigation of different methods to set the gain ak. Instead of a
decaying function of k, other functions can be used, which may improve the rate of convergence. In the literature
on stochastic gradient descent optimisation a so-called “search-then-converge” strategy19 has been suggested
for example. Another approach would be to use a one-dimensional line search, which optimises the gain every
iteration.

A second important topic is the choice of search direction. In this paper we focussed on gradient descent
methods. As mentioned in Section 1 other options include the quasi-Newton search direction, and the conjugate
gradient. We aim to evaluate if these approaches can benefit from the random subsampling technique as well.
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