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Medical Image Registration Using Mutual

Information and B-Splines
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Abstract—A popular technique for nonrigid registration of med-
ical images is based on the maximization of their mutual infor-
mation, in combination with a deformation field parameterized
by cubic B-splines. The coordinate mapping that relates the two
images is found using an iterative optimization procedure. This
work compares the performance of eight optimization methods:
gradient descent (with two different step size selection algorithms),
quasi-Newton, nonlinear conjugate gradient, Kiefer–Wolfowitz, si-
multaneous perturbation, Robbins–Monro, and evolution strategy.
Special attention is paid to computation time reduction by using
fewer voxels to calculate the cost function and its derivatives. The
optimization methods are tested on manually deformed CT images
of the heart, on follow-up CT chest scans, and on MR scans of
the prostate acquired using a BFFE, T1, and T2 protocol. Reg-
istration accuracy is assessed by computing the overlap of seg-
mented edges. Precision and convergence properties are studied
by comparing deformation fields. The results show that the Rob-
bins–Monro method is the best choice in most applications. With
this approach, the computation time per iteration can be lowered
approximately 500 times without affecting the rate of convergence
by using a small subset of the image, randomly selected in every it-
eration, to compute the derivative of the mutual information. From
the other methods the quasi-Newton and the nonlinear conjugate
gradient method achieve a slightly higher precision, at the price of
larger computation times.

Index Terms—B-splines, mutual information, nonrigid image
registration, optimization, subsampling.

I. INTRODUCTION

NONRIGID registration is an important technique in med-
ical image processing. However, in general, it requires a

large computation time, which is a big disadvantage for many
clinical applications. Comprehensive studies, such as lung
cancer screenings, with many high-resolution 3-D images, ask
for faster registration algorithms [1]. Other applications, such
as brain shift estimation based on intraoperatively acquired
ultrasound [2], require almost real-time registration. Also,
in external radiotherapy, there is a need for fast registration
methods. Movements of organs may cause discrepancies be-
tween the expected radiation dose distribution and the actually
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received dose. Fast nonrigid registration would allow for online
updating of the treatment plan [3].

The aim of registration is to find a deformation field that
spatially relates two images, such that the deformed “moving”
image matches the “fixed” image at every
position . In this work, we focus on a widely used nonrigid reg-
istration technique, based on maximization of the mutual infor-
mation similarity measure, in combination with a deformation
field parameterized by cubic B-splines [4], [5]. The approach
can be formulated as a minimization problem

(1)

where the cost function equals the negated mutual informa-
tion similarity metric, and represents the parameter vector
containing the B-spline coefficients that define the deformation
field . The cost function may have multiple local minima.
Which local minimum is selected as the solution depends on
the optimization algorithm and on the initial alignment of the
images. A regularization term can be added to the cost func-
tion, to penalize undesirable deformations, and, consequently,
to reduce the number of local minima

(2)

In this equation, serves as a weighting factor for the regular-
ization term. Well-known examples for are the curvature term
[6], the elastic energy [7], and the volume preserving penalty
term [8]. With nonparametric registration techniques, which do
not employ a parametric model of the deformation, a proper reg-
ularization term is essential to ensure smoothness (differentia-
bility) of the deformation field [6]. In the parametric approach
that we focus on, the regularization term may be superfluous,
since the cubic B-spline basis functions are inherently smooth.
However, additional regularization may be needed in order to,
for instance, avoid singularities (“folding effects”) in the defor-
mation field.

To determine the optimal set of parameters an iterative op-
timization strategy is employed

(3)

with the “search direction” at iteration , and a scalar
gain factor controlling the step size along the search direction.
The search directions and gain factors are chosen such that the
sequence converges to a local minimum of the cost func-
tion . Many optimization methods can be found in the litera-
ture [9]–[12], differing in the way and are computed. In
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contrast to the field of rigid registration [13], no extensive com-
parison of optimization procedures has been done for nonrigid
image registration problems.

In this paper, several optimization methods are compared
with respect to speed, accuracy, precision, and robustness.
The following methods are included in the study: gradient
descent [9], quasi-Newton [14], nonlinear conjugate gradient
[15], Kiefer–Wolfowitz [16], simultaneous perturbation [17],
Robbins–Monro [18], and evolution strategy [19]. The first
three are deterministic gradient-based algorithms. They have
in common that the expression for the search direction
is based on , the derivative of the cost function with
respect to the parameters, and they assume that can be
computed exactly. The second three methods are stochastic
gradient-based algorithms. They also derive their search direc-
tions from , but only need stochastic approximations
of the derivative, potentially faster to compute than the exact
derivative. The last method, evolution strategy, is not based on

, but it can be classified as stochastic, since its choice
of search directions depends on a random process. Section III
explains the optimization methods under scrutiny.

Special attention is paid to the effect of using only a small,
randomly selected set of image samples in each iteration, in-
stead of the full image. This is an easy way to decrease the
computation time per iteration, but it may deteriorate the rate
of convergence. The stochastic nature of such an approxima-
tion technique makes it unsuitable for the deterministic opti-
mization methods, because they expect exact derivatives. How-
ever, stochastic optimization methods may be able to deal with
it. The technique has been proposed for rigid registration prob-
lems [20], but its effect on nonrigid registration has not been
evaluated in the literature. Section IV discusses the topic more
extensively.

The experiments and results are described in Section V. The
optimization methods are tested on manually deformed CT im-
ages of the heart, on follow-up CT scans of the chest, and on
MR scans of the prostate acquired with three different proto-
cols. Conclusions are given in Section VI.

II. NONRIGID REGISTRATION METHOD

This section describes the various components of the non-
rigid registration method. The design of the algorithm is largely
based on the papers by Rueckert et al. [5], Mattes et al. [4], and
Thévenaz and Unser [21].

The registration method uses cubic B-splines to parameterize
the deformation field, and mutual information as the similarity
measure. Several implementations for the computation of mu-
tual information can be found in the literature [20]–[23]. The
approach described by Thévenaz and Unser [21] is used here.
The mutual information is defined as follows:

(4)

where and are sets of regularly spaced intensity bin
centers, is the discrete joint probability, and and are the
marginal discrete probabilities of the fixed and moving image,
obtained by summing over and , respectively. The joint
probabilities are estimated using B-spline Parzen windows

(5)

where denotes the spatial coordinates of voxel in the fixed
image volume , is the B-spline deformation field, and
and represent the fixed and moving Parzen windows. For

, a third-order B-spline is used, which makes it possible to
derive an analytic expression for ; see [4] and [21]. For

, a zeroth-order B-spline can be used [4]. The scaling con-
stants and must equal the intensity bin widths defined by

and . These follow directly from the gray-value ranges
of and and the user-specified number of histogram bins

and .
A number of experiments described in this paper have been

performed with and without the regularization term . A reg-
ularization term is used that penalizes second-order derivatives
of the deformation field

(6)

Equivalent combinations of and that occur twice are counted
once.

To guide the optimization towards the desired local minimum
of the cost function, multiresolution strategies are often em-
ployed. For extensive overviews on this subject, we refer to
[24] and [25]. In our experiments, the commonly used Gaussian
image pyramid was used for the image data. The complexity of
the deformation model is defined by the B-spline control point
resolution. We let it follow the image resolution: when the image
resolution is doubled, the control point resolution is doubled, as
well. The number of resolution levels and the final B-spline con-
trol point spacing are problem specific.

III. OPTIMIZATION METHODS

All optimization algorithms studied in this paper can be
written in the form of (3). The methods differ in the way they
compute the gain factors and search directions .

Many strategies exist for determining the gain . It can, for
example, simply be set to a constant, or defined by a decaying
function of . Another possibility is the use of a line search,
which, in each iteration, tries to minimize the cost function
along the search direction

(7)

The disadvantage of such an exact line search is that many ad-
ditional evaluations of the cost function and/or its derivative are
required. Therefore, an inexact line search is more often used.
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Instead of solving (7) exactly, an inexact line search finds a gain
factor that gives a sufficient reduction of .

In all but one of the investigated optimization methods, the
expression for is based on the derivative of the cost function,

, henceforth referred to as . As mentioned in Section II,
an analytic expression for the derivative of the mutual informa-
tion is available. Some optimization methods require exact eval-
uation of this expression. Other methods are satisfied with an
approximation.

A. Gradient Descent (GDD and GDL)

The gradient descent method [9] takes steps in the direction
of the negative gradient of the cost function

(8)

where is the derivative of the cost function evaluated at
the current position .

In this paper, we study two variants of the gradient descent
method. In the first variant, called GDD, the gain factor is
defined as a decaying function of : , with
user-defined constants , , and . This
choice makes the gradient descent method more comparable to
the stochastic gradient descent algorithms (see Section III-D),
where the specific form of this expression is justified. In the
second variant, called GDL, the gain factor is determined by an
inexact line search routine, called “Moré–Thuente.” This choice
makes the gradient descent method more comparable to the
quasi-Newton and nonlinear conjugate gradient methods, which
are described in Sections III-B and C. Further details about the
Moré–Thuente algorithm are given in those sections.

In order to give an indication of the rate of convergence of gra-
dient descent methods, it is possible to derive theoretical bounds
on the distance to the solution at iteration , . Provided
that the sequence converges to a local nonsingular min-
imum of , it can be proven [10] that there exist a and

, such that the following expression, holds:

for all (9)

This means that the method has a linear rate of convergence. If
, the term “sublinear convergence” is used [26].

B. Quasi-Newton (QN)

QN methods [9], [14] are inspired by the well-known
Newton–Raphson algorithm, which is given by

(10)

where is the Hessian matrix of the cost function, evalu-
ated at . The use of such second-order information gives the
algorithm better theoretical convergence properties than the gra-
dient descent. The computation of the Hessian matrix and its
inverse is computationally expensive, especially in high-dimen-
sional optimization problems such as nonrigid registration. QN
methods tackle this problem by using an approximation to the
inverse of the Hessian: . The approximation
is updated in every iteration . Second-order derivatives of the

cost function are not needed for this update; only the already
computed first-order derivatives are used. Direct approximation
of the inverse of the Hessian avoids the need for a matrix in-
version. QN methods are typically implemented in combination
with an inexact line search routine, determining a gain factor
that ensures sufficient progress towards the solution. This results
in the following QN algorithm:

(11)

Given certain conditions, many QN methods can be shown to
be superlinearly convergent [14]

(12)

Many ways to construct the series are proposed in the
literature [9], [14], most notably Symmetric-Rank-1 (SR1),
Davidon–Fletcher–Powell (DFP), and Broyden–Fletcher–Gold-
farb–Shanno (BFGS). Numerical experiments indicate that
BFGS is very efficient in many applications [9]. It uses the
following update rule for :

(13)

where is the identity matrix, , and
. In our study, we use a popular variant of the BFGS method,

the limited memory BFGS (LBFGS) [27], which eliminates the
need for storing the matrix in memory.

Following the implementation described in [27], we use the
inexact line search routine described by Moré and Thuente [28].
It determines such that the so-called strong Wolfe conditions
are satisfied

(14)

(15)

with user-defined scalars and satisfying .
Recall that represents the search direction of the optimization
algorithm [see (3)], which equals in the case of QN
methods. The first Wolfe condition (14) demands a sufficient de-
crease of the cost function value. The second Wolfe condition
(15) enforces reasonable progress towards a stationary point of
the cost function, where the derivative vanishes. For optimiza-
tion problems where the computational cost of evaluating the
gradient is high compared to the cost of computing , the
values and are suggested in [29]. To re-
alize superlinear convergence it is important to always try a gain
factor first [9]. If this step size does not satisfy the strong
Wolfe conditions, the iterative Moré–Thuente line search proce-
dure is started to find a suitable gain. If no gain factor satisfying
the strong Wolfe conditions can be found, the optimization is
assumed to have converged.

C. Nonlinear Conjugate Gradient (NCG)

The development of conjugate gradient methods started with
the linear conjugate gradient method [30]. This routine was de-
signed for solving a system of linear equations, which is equiv-
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alent to the minimization of a quadratic cost function. The non-
linear conjugate gradient method is an extension suitable for
minimizing general nonlinear functions [9], [15]. The NCG al-
gorithm follows the general iterative scheme (3). The search
direction is defined as a linear combination of the gradient

and the previous search direction

(16)

Several expressions for the scalar have been proposed in the
literature [15], including

(17)

(18)

where the notation is introduced for clarity. The
choice of has a large influence on the global convergence
properties. For an extensive review on this topic, we refer to
[15]. In our study, we use a hybrid version, proposed in [31]
and shown to be very efficient compared to other methods

(19)

Depending on the line search technique used, various theo-
retical bounds on the rate of convergence have been derived in
the literature. Most results are obtained assuming an exact line
search. In practice, an exact line search is seldom feasible, since
it would require too many cost function evaluations. In [32], it
is shown that, with a more practical inexact line search routine,
a superlinear rate of convergence can be achieved. For our com-
parative study, we choose the same inexact line search routine
as used with the QN method, i.e., the Moré–Thuente algorithm.
Whereas the unit gain has to be tried first for QN, there is no
such rule for NCG. A reasonable approach is to try
as a first guess. This choice appears to satisfy the strong Wolfe
conditions often and, thus, inhibits the number of line search it-
erations needed. For the GDL method (see Section III-A), the
same approach is used.

D. Stochastic Gradient Descent

The stochastic gradient descent method [12] follows the same
scheme as the deterministic gradient descent, see (8), with the
distinction that the derivative of the cost function, , is
replaced by an approximation , resulting in the following
scheme:

(20)

Convergence to the solution can only be guaranteed [11] if the
bias of the approximation error goes to zero

(21)

where denotes expectation. A stochastic gradient descent
method is often applied when computation of the exact deriva-
tive is very costly. Using an approximation of the exact deriva-
tive could decrease the computation time per iteration, but may
have negative effects on the speed of convergence.

Three variants of the stochastic gradient method are investi-
gated: KW, SP, and RM.

• Kiefer–Wolfowitz (KW): This method, originally pro-
posed in [16], is based on a finite difference approximation
of the derivative, given by

(22)

where represents the th element of , is a small
scalar, and is the unit vector consisting of only zeros,
except for the th element, which equals one. The KW
method assumes that only approximations of the cost func-
tion values are available

and

(23)

where and represent the approximation errors. Sub-
stituting this in (22) yields the KW algorithm

(24)

The derivative approximation is twofold. Besides the
approximation error introduced by the finite difference
scheme, an external source of error is taken into account,
which is expressed by the -terms in (23). For , the
following expression is commonly used:

(25)

where and are user-defined constants.
Note that, for an -dimensional optimization problem, the
KW procedure requires evaluations of the cost function
for each iteration . However, in our application, the com-
putational costs can be reduced by exploiting the compact
support of the cubic B-splines that model the deformation
field.

• Simultaneous Perturbation (SP): The simultaneous pertur-
bation method, first described by Spall [17], also bases its
derivative estimate on approximate evaluations of the cost
function. However, whereas the KW algorithm requires

cost function evaluations per iteration, the SP method
uses only two evaluations, independent of

and

(26)

In these expressions, denotes the “random perturbation
vector” of which each element is randomly assigned 1 in
each iteration, with equal probability. The approximation
errors are represented by the terms. The th element of
the derivative vector is then computed by

(27)
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The scalar is defined according to (25). The simulta-
neous perturbation method has been used for rigid regis-
tration [33], but its performance has not been compared to
other optimization methods.

• Robbins–Monro (RM): Whereas KW and SP construct a
derivative estimate based on approximate evaluations of
the cost function, the RM algorithm [18] does not specify
how the derivative is computed. It assumes that an approx-
imation of the derivative of the cost function is available

(28)

In fact, this makes KW and SP special cases of RM. Note
that, if the -term is zero in every iteration, the method
equals the deterministic gradient descent procedure, de-
scribed in Section III-A.

In Section IV, a method to approximate the mutual information
and its derivative is discussed, which is used in conjunction with
KW, SP, and RM in our experiments.

The approximated gradient does not necessarily vanish
close to the solution , in contrast to the exact derivative that
satisfies . Thus, convergence of must be forced
by ensuring as . In most theoretical work on
stochastic approximation algorithms, is defined as a decaying
function of : , where and
are user-defined constants. In practice, the following modified
expression is often used [34]:

(29)

with . This will be used in our experiments. The same gain
sequence is used by the GDD method (Section III-A). Theoret-
ically optimal values for are derived in [11] and [17]. For SP
specifically, practical guidance for choosing , , and is pro-
vided in [34]. For , the lowest theoretically admissible value of
0.602 is recommended. For , a value of approximately 10% of
the user-defined maximum number of iterations is suggested, or
less. The choice of the overall gain, , depends on the expected
ranges of and and is, thus, problem specific.

Due to the stochastic nature of the algorithms, theoretical
bounds on the rate of convergence can not be given in the same
form as in the previous sections, like in (9). Instead, the theo-
retical convergence properties are given in terms of the “asymp-
totic normality” of

(30)

where denotes a multivariate normal distribution with
mean and covariance matrix . Intuitively, the higher , the
better the rate of convergence. More details can be found in [11],
[17], [35], and [36].

E. Evolution Strategy (ES)

Evolution strategies are based on the principle of natural se-
lection. Many variants of the basic idea have been described in
the literature. For an extensive review, we refer to [37]. The co-
variance matrix adaptation (CMA) ES [19] is generally consid-
ered to be the current state-of-the-art ES algorithm [38] and is,
therefore, included in this study.

Each iteration of the CMA-ES algorithm consists of three
phases: offspring generation, selection, and recombination. In
the first phase, a set of trial search directions is generated from
a normal distribution

(31)

The population size is a user-defined parameter. The covari-
ance matrix favours search directions that were successful
in previous iterations. For each trial search direction, the cost
function value is evaluated. The scalar again
serves the role of a gain factor that controls the step size. The
selection phase consists of selecting the trial directions
that yield the lowest cost function values. The th best trial di-
rection out of all trial directions is denoted by . In the
recombination phase, a weighted average of the selected trial
directions is computed

(32)

The weight factors should satisfy and
. The new position is determined using (3).

After each iteration, and are automatically updated,
based on the previous search direction and the selected
trial search directions . Basically, the gain factor is in-
creased when the preceding search directions are similar, and
decreased when the preceding steps tend to cancel each other
out. The reader is referred to [19] for the exact adaptation mech-
anisms of and . The initial step size is a user-defined
parameter. For the identity matrix is used. Reference [19]
also contains expressions for the weights , and gives recom-
mendations for and : and ,
with the dimension of the parameter vector .

Theoretical results on the convergence properties of CMA-ES
are not available. For ES algorithms in general, some results
can be found in [38]–[40], for example. Experimental results
with synthetic cost functions [41], [42] indicate that approxi-
mate (noisy) cost function evaluations can be dealt with to some
degree.

IV. APPROXIMATION BY SUBSAMPLING

In this section, we describe two techniques to approximate
the mutual information and its derivatives. The approximation
techniques are based on subsampling.

In our implementation, the computation times of both the
mutual information and its derivative are linearly de-
pendent on the number of voxels in the fixed image. The
computation time of the derivative also depends linearly on the
number of B-spline coefficients

(33)

(34)

where , , , and are positive constants. For most nonrigid
registration problems, tends to be much larger than , and

much larger than . In these cases, we can lower the
computation time significantly by not using all the voxels, but
only a small subset of voxels.
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The stochastic optimization algorithms (KW, SP, RM, and
ES) take into account that only approximations of the cost func-
tion are available. By using a new, randomly selected subset of
voxels in every iteration of the optimization process, a bias in the
approximation error is avoided. This technique, which we call
“stochastic subsampling,” has been proposed before for rigid
registration problems [20], but its effect on nonrigid registra-
tion has not been evaluated in the literature. In our experiments,
we test the stochastic algorithms with and without stochastic
subsampling. The number of samples used in each iteration is
denoted by a number behind the optimization method’s name.
For example, KW-2048 refers to the Kiefer–Wolfowitz method
using 2048 voxels. Voxels are allowed to be selected more than
once. If all voxels are used to compute the search direction (no
subsampling), the postfix “-all” is used.

A possible subsampling strategy for the deterministic
methods (GDD, GDL, QN, and NCG) is to select a single
subset of voxels in the fixed image and use these samples
throughout the registration process [4], [43]. A disadvantage
of this “deterministic subsampling” technique is that conver-
gence to the correct solution cannot be guaranteed, because the
approximation error is biased. However, for completeness, we
include this technique in our experiments. The deterministic
subsampling technique is implemented by selecting voxels
on a regular grid using identical downsampling factors for
each image dimension. The downsampling factor is added as a
number behind the optimization method’s name, for example
QN-2. A downsampling factor of 1 corresponds to using the
full image.

V. EXPERIMENTS AND RESULTS

To compare the deformation fields and resulting from
two different optimization methods, we define the average dis-
placement distance

(35)

When the true solution of a registration problem is known (in
case of a manually imposed deformation for example), this mea-
sure can also be used to compare the results to the ground truth.
The proposed (Euclidian) distance measure is appropriate as
long as the deformations are reasonably small. For a discussion
on distance metrics for deformation fields, we refer to [44].

To compare the registration results in terms of accuracy, we
calculate the overlap of segmented structures after their align-
ment. The overlap of two corresponding volumes and is
defined as

(36)

This measure is known as the Dice similarity index [45]. A
higher overlap indicates a better alignment of the objects. A
value of 1 indicates perfect overlap, a value of 0 means no
overlap at all. The sensitivity of the overlap measure depends
on the surface-volume ratio of the objects [46]. To increase the
sensitivity we compute the morphological gradients of and

Fig. 1. CT heart data, used in the experiments with known ground truth: (a) an
example slice, (b) the same slice after application of the initial deformation field
to the image volume, and (c) the difference between (a) and (b). Voxels in the
deformed volume that map outside the original image were set to 0.

and evaluate the overlap measure on the resulting edge struc-
tures. The morphological gradient of an object is defined as its
dilation minus its erosion. For the dilation and erosion, we use
a kernel.

The computational efficiency of the optimization method de-
pends on the number of required iterations and the computation
time per iteration. The computation time per iteration is dom-
inated by the time required for calculating the (approximation
of) the mutual information or its derivative. Timing measure-
ments indicated that the term in (34) can be neglected. Con-
sequently, for GD, QN, NCG, and RM, the computation time
per iteration equals , with the fraction of the voxels used
to compute the derivative, and the time required to compute
the derivative using all voxels. All timing results in this paper
are reported as a factor times . For example, for 512 itera-
tions of QN-4 with 3-D images, we report a computation time
of . Note that the computation times per it-
eration of KW, SP, and ES are not obviously related to . To
express them as a factor times , we rely on experimental mea-
surements. For each application, we also report the value of
in seconds (measured with an AMD Opteron 244, 1.8 GHz), to
give an indication of the typical computation times.

A. Artificial Motion

In the first experiment, an image is registered with a de-
formed version of itself. To avoid interpolation errors, the de-
formed version of is not actually generated. Instead, an initial
deformation field is subtracted from the B-spline deformation
field that is updated during optimization. The average dis-
placement distance can be used to assess the registra-
tion quality.

The registrations were performed on four 3-D CT images of
the heart. The images originated from chest scans. These were
manually cropped to the area of the heart and downsampled
by a factor of two in each dimension, resulting in images of

voxels with an isotropic voxel size of 1.4 mm.
For each image, an initial deformation field was generated,
composed of randomly placed Gaussian blobs with a standard
deviation of 14 mm. Each component of was composed of
300 blobs. The amplitudes of the blobs were uniformly dis-
tributed between 3.5 and 3.5 mm. Fig. 1 shows an example
slice, its deformed version, and the difference image visualizing
the initial misalignment.

The registrations were performed using a grid
of B-spline control points to parameterize the deformation field
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, yielding to be optimized. For the
number of histogram bins, we used . No mul-
tiresolution schemes were used in this experiment, which makes
comparison of the results more straightforward. No regulariza-
tion term was used, either. The maximum number of iterations
was limited to 2000. Three constants must be set for the gain
sequence (29) employed by the optimization methods GDD,
KW, SP, and RM. For GDD, KW, and RM, we used ,

, and . For SP, slightly different parameters
had to be used, since the method appeared to be sensitive to the
choice of the gain sequence. The following values were used, re-
sulting in a lower gain, especially in the first iterations: ,

, and . Two more parameters need to be
specified for KW and SP [see (25)]: and . The
choices for and are based on the recommendations in [34].
For ES, the initial step size was set to 1.0, and, following the
recommendations in [19], the values and were
used. The stochastic optimization methods were tested with and
without the stochastic subsampling strategy. Stochastic subsam-
pling was tested using 10 , 16384, 2048, and 256 voxels. The
deterministic methods were tested with the deterministic down-
sampling strategy, using downsampling factors of 1 (full image),
2, 4, 8, and 16, corresponding to 10 , 10 , 15625, 2197, and
343 voxels, respectively.

In this paper, we present the results for one of the four CT
images. The outcome for the other images was similar. In
Fig. 2(a), the convergence results are given for all methods,
without subsampling. The error measure is plotted
against the number of iterations . The methods GDL, QN,
and NCG were terminated before the limit of 2000 iterations
was reached, because the strong Wolfe conditions could not
be satisfied anymore and convergence was assumed (see
Section III-B). The graph shows that SP and ES exhibited a
substantially lower rate of convergence than the other methods.
The methods QN-1 and NCG-1 converged in fewer iterations
than the others and achieved a higher precision. The effect of
subsampling on the performance of each optimization method
is presented in Fig. 2(b)–(i). Fig. 2(b)–(e) shows the effect
of deterministic subsampling: downsampling by a factor of
4 or more degraded the registration results of GDD, GDL,
QN, and NCG. Fig. 2(f)–(i) shows the results for stochastic
subsampling. Interestingly, for RM and KW the convergence
properties of using all voxels were retained when going down
to only 2048 samples, which is 0.2% of the total image volume.
The computation times per iteration of GDD, GDL, QN, NCG,
and RM are equal to , with the fraction of voxels used.
One was measured to be 20 s approximately. For KW, SP,
and ES, the computation times needed for the cost function
evaluations in each iteration were measured to be around ,

, and , respectively. It follows
that the KW method is not competitive, despite its fair rate
of convergence. The computation times per iteration of SP
and ES do not compensate for their low rates of convergence.
Among the stochastic gradient descent methods the RM-2048
procedure clearly performed superior in this experiment. The
GDD method with the deterministic downsampling approach
is also outperformed by RM. The methods have an equal rate
of convergence, but, because of the stochastic subsampling

strategy, RM can be used with fewer voxels than GDD with
deterministic subsampling. In Fig. 3, the average displacement
distance is plotted as a function of computation time for the
most competitive methods: GDL, QN, and NCG with down-
sampling factors of 1, 2, and 4, and RM-2048. The result of
RM-all is added for reference, to visualize the acceleration
realized by stochastic subsampling. The results of GDL-8,
QN-8, and NCG-8 are included to show that a downsampling
factor higher than four is not feasible for those methods. Note
that a logarithmic scale is used for the horizontal axis. The
RM-2048 method is clearly the fastest. The stochastic sub-
sampling strategy yields an acceleration factor of about 500,
compared to RM-all. The better rate of convergence of QN and
NCG results in an acceleration factor of 10, approximately,
compared to RM-all.

The tests were repeated for a more difficult registration
problem, constructed by composing the imposed deformation
field of Gaussian blobs with a standard deviation of 7 mm,
instead of 14 mm. This smaller standard deviation results in
a deformation field that is hard to recover, since the B-spline
control point grid used during registration is not dense enough.
Each component of was composed of 1500 blobs. The ampli-
tudes of the blobs were uniformly distributed between 3.5 and
3.5 mm. The timing results for the same CT image as before
are shown in Fig. 4. Interestingly, the QN and NCG methods
could not handle this very ill-defined registration problem. The
GDL and RM routines gave reasonable results. As expected,
none of the optimization methods were able to achieve a very
large reduction of the initial average displacement error, since
the B-spline control point grid was not dense enough. Note
that the QN and NCG methods did find a set of parameters that
decreased the cost function. The Moré–Thuente line search,
employed in both QN and NCG to set the gain factor ,
guarantees that the cost function decreases in every iteration,

. Apparently, the lower cost function did
not translate into a better accuracy. We have repeated the
experiments using the regularization term with [see
(2)]. This resolved the issue, but did not change the efficiency
differences between the methods. The effect of regularization
is studied further in the following sections.

B. Motion Between Follow-Up CT Chest Scans

Computed tomography is a commonly used modality for the
diagnosis of lung diseases. To study the evolution of disease in
a patient, it is helpful to automatically register follow-up scans.
In this section, a number of experiments with follow-up scans
of the thorax is described. We limit our attention to the methods
that turned out most favourable in the previous section: GDL,
QN, NCG, and RM.

The images were acquired with a Philips Mx8000IDT
16-slice CT scanner. The original images, with an in-plane
dimension of 512 512 and a number of slices ranging from
400 to 800, were downsampled by a factor of two in each di-
mension, in order to be able to register the images on a standard
PC with one gigabyte of memory. The resulting voxel size was
approximately 1.4 mm in all directions. In this paper, we used
data of five patients.
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Fig. 2. Convergence results for all methods. Note that the horizontal axis contains a gap in some graphs and does not have the same scale everywhere. Also note
that several curves are overlapping. (a) All methods without subsampling; (b) GDD; (c) GDL; (d) QN; (e) NCG; (f) KW; (g) SP; (h) RM; (i) ES.

Fig. 3. Timing results for GDL, QN, NCG, and RM (t � 20 s).

For each patient two scans, taken several months apart, were
registered. The nonrigid registration was preceded by a rigid
registration with mutual information as the similarity measure.

Fig. 4. Timing results on a more difficult registration problem (t � 20 s).

For both rigid and nonrigid registration a four-level multires-
olution approach was applied. At each resolution the number
of iterations was limited to 1000. At the highest resolution the



KLEIN et al.: EVALUATION OF OPTIMIZATION METHODS FOR NONRIGID MEDICAL IMAGE REGISTRATION 2887

TABLE I
RESULTS FOR THE CT CHEST SCAN APPLICATION, THE MR BFFE PROSTATE SCANS, AND THE MR T1-T2 REGISTRATION

B-spline control point spacing was set to 22 mm, yielding a grid
of about control points; approximately 20000 pa-
rameters to optimize. For the number of histogram bins, we used

. The RM method was tested with and
without stochastic subsampling. The numbers of voxels used
with the stochastic subsampling strategy were 10 , 16384, 2048,
and 256 voxels. The GDL, QN, and NCG methods were tested
with downsampling factors of 1, 2, 4, 8, and 16, respectively
corresponding to about 10 , 10 , 10 , 20000, and 2500 voxels.
For the gain sequence the following parameters were used:

, , and .
Experiments were performed both with and without the regu-

larization term . For the weighting factor , a value of 500 was
used. Without a regularization term QN and NCG yielded unre-
alistic deformation fields at low-contrast regions of the image.
The Jacobian of the transformation exhibited large neg-
ative values, indicating foldings in the deformation field. With a
regularization term the foldings were avoided. The RM proce-
dure did not have this problem. It produced a folding only once,
in the vicinity of a fast-growing tumour. The GDL method had
similar problems as QN and NCG, but to a lesser extent.

To compare the methods in terms of registration accuracy, we
use the overlap measure, applied on the morphological gradients
of segmentations of the lungs. The segmentations were made
by means of a region-growing method based on the work of
Hu et al. [1], [47]. Pulmonary vessels are not included in the
lung segmentations, so that the morphological gradient of the
segmentation contains the vessel boundaries and the global lung
boundaries.

The precision is measured by the average displacement dis-
tance to the solution obtained by QN-1, since that method

found the deformation with the lowest cost function value and
is, thus, our best estimate of the true optimum. The precision
values are calculated on a region of interest defined by dilation
of the lung segmentations with a structuring element.

The results are located in the left part of Table I. Overlap and
precision values were calculated after rigid registration and non-
rigid registration using GDL, QN, NCG, and RM, all with reg-
ularization. The results for the five patients are summarized by
the average (avg) and standard deviation (sd). The first column,
“time,” shows the average required computation time for one
registration (number of iterations times computation time per
iteration). One was measured to be 220 s approximately. The
time needed to calculate the derivative of the regularization term
was not counted, since it could be implemented as a cascade of
fast filter operations on the B-spline coefficients [48]. The fourth
column (“effect ”) shows the average displacement distance
between the solutions obtained with and without , indicating
how the regularization term affected the solution.

All methods resulted in a considerable improvement on the
rigid registration. With RM, the quality of the nonrigid regis-
tration was little affected by the random subsampling strategy.
Only with 256 samples the overlap and precision measures were
seriously degraded. Note that the same minimum of 2048 sam-
ples was found as in the previous section, while the images con-
sidered here were almost three times larger, and the number of
parameters to be optimized seven times higher. The precision
of RM-2048 was somewhat better than that of GDL-4, QN-4,
and NCG-4, and remained lower than the size of one voxel. The
algorithms GDL-1, QN-1, QN-2, NCG-1, and NCG-2 achieved
slightly better overlap and precision than RM-2048. The “ef-
fect ” column confirms that the solution of RM was hardly
changed by adding the regularization term.



2888 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 16, NO. 12, DECEMBER 2007

C. Motion Between Interfraction MR Prostate Scans

Prostate cancer treatment by radiation therapy requires an ac-
curate localization of the prostate: the tumour should receive a
maximum dose, while neighbouring tissue (rectum and bladder)
should be spared. The dose is delivered in several fractions. To
keep track of deformations of the prostate that occur between
consecutive treatment days, fast nonrigid registration is required
[3], [49]. In this section, we consider MR scans of the prostate,
acquired with different protocols.

The images were acquired on a Philips Gyroscan NT Itera
3T MR scanner. Six volunteers were scanned on two days,
3–49 days apart. On each day, a balanced fast field echo
(BFFE), a T1 and a T2 scan were taken. The BFFE scans
have a dimension of voxels, with a voxel size
of mm. The T1 and T2 have a dimension
of voxels, with highly anisotropic voxels of

mm. In the T2, the various structures within
the prostate can be clearly distinguished, whereas the T1 pro-
vides a good contrast between the prostate and neighbouring
tissue. The BFFE combines these characteristics and offers a
good resolution, but often suffers from artefacts, caused by
air in the rectum. Two types of experiments were performed:
intramodality registration of BFFE scans and intermodality
registration of T1 with T2 scans. In both experiments, the image
acquired at the first day was selected as the moving image .
The image that served as a fixed image was cropped to
a rectangular region of interest roughly encompassing the
prostate, bladder, and rectum.

All scans were first registered using an affine transform, with
mutual information as the similarity measure and a four-level
multiresolution strategy. After that a three-resolution nonrigid
registration scheme was employed. We again limit our attention
to the methods GDL, QN, NCG, and RM. For the registration of
BFFE scans a B-spline control point spacing of 16 mm was used,
leading to approximately 2500 parameters to be optimized. For
the T1-T2 experiments a grid resolution of mm
was used, corresponding to approximately 1000 parameters. A
maximum of 2000 iterations per resolution was allowed. In all
experiments, we used , , and
for the gain sequence . As in the previous section, a regu-
larization term appeared to be necessary, both for
the BFFE-BFFE and the T1-T2 registrations. The mutual infor-
mation was computed using . The BFFE
experiments were also repeated with a larger number of joint
histogram bins, , to investigate whether this
influences the subsampling strategies. We may expect that more
voxels are required to estimate the joint histogram.

For evaluation of the BFFE-BFFE registration, manual seg-
mentations of the prostate (including the seminal vesicles) were
made by an experienced observer and approved by a radiation
oncologist. We use the morphological gradient of the segmenta-
tion to compare the optimization methods with respect to accu-
racy. For the T1 and T2 scans no segmentations were available.
Precision is measured like in the previous section, by calculating
at every voxel the distance of the deformation field to the solu-
tion obtained by QN-1.

The center and right part of Table I present the results. The as-
terisk marks the results obtained with . The
results of the BFFE registrations agree with those presented in
the previous sections. The effect of increasing the number of
bins can be observed most clearly for RM-256, whereas with

, the average overlap value equals that of
RM-all, the results for are slightly worse.
With 2048 samples or more the results are comparable to those
obtained with 32 joint histogram bins. For the T1-T2 experi-
ments, the results with respect to precision followed the gener-
ally observed pattern. However, the differences in computation
time were not so spectacular, since the images were rather small
to begin with. For the BFFE registrations, was around 56 s,
for the T1-T2 registrations was around 9 s.

VI. CONCLUSION

We have compared eight optimization methods for nonrigid
registration based on the maximization of mutual information,
in combination with a deformation field parameterized by cubic
B-splines. The experiments indicate that a stochastic gradient
descent technique, the Robbins–Monro process, is the preferred
approach. With this method, the computation time can be ex-
tremely decreased by using a very small subset of the image to
compute the derivative of the mutual information. Experiments
were performed with different image modalities, image sizes,
B-spline control point spacing, and number of histogram bins.
In all cases the minimum number of samples required was found
to be around 2000. It is very important to use a new, randomly
selected subset of voxels in every iteration of the optimization
process (stochastic subsampling). If a single subset of voxels is
used in all iterations (deterministic subsampling) the precision
quickly deteriorates with increasing downsampling factors.

The quasi-Newton and nonlinear conjugate gradient method
result in a slightly higher precision than the Robbins–Monro
method, at the price of a ten to hundred times larger compu-
tation time. A point of attention when using quasi-Newton and
nonlinear conjugate gradient is that a regularization term is es-
sential in many applications, to avoid unrealistic deformations.
The gradient descent with line search improves the rate of con-
vergence compared to the gradient descent without line search,
but is slower than the quasi-Newton and conjugate gradient. The
Kiefer–Wolfowitz algorithm converges reasonably fast, but suf-
fers from a high computation time per iteration. The conver-
gence rates of the simultaneous perturbation method and the
evolution strategy are too low to make them competitive. Note
that it remains to be investigated whether the conclusions can
be generalized to the branch of nonparametric registration algo-
rithms [6], [7].

A possible drawback of the Robbins–Monro method is the
definition of the gain sequence . The parameters involved
must be tuned for each application. Some guidelines are
provided in the literature on the simultaneous perturbation
method [34], which work satisfactorily for the Robbins–Monro
method, as well, in our experience. Note that in all experiments
described in this paper the gain sequence was equal for each
resolution. This indicates that the choice of the gain sequence
is rather robust with respect to changes of the B-spline control
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point spacing and the amount of smoothing of the image. Using
the Robbins–Monro approach, acceleration factors of approxi-
mately 500, compared to a basic gradient descent method, can
be easily achieved on many 3-D nonrigid registration problems.
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