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General Introduction 1
Image registration is the process of aligning images, in other words the sequence of

steps (algorithm) that attempts to overlay the structures visualised by the data. In
this thesis we consider data acquired in the clinic. An example of a 2D image modality
is x-ray. Nowadays, most acquisition protocols are 3D, from which Computed Tomog-
raphy (CT) and Magnetic Resonance (MR) are well-known. Other examples are Single
Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography
(PET). Some acquisition techniques are not only capable of visualising anatomy, but also
function-related information, such as metabolism.

Further analysis of the acquired data often requires (nonrigid) image registration.
The technique can be used for several applications, of which we give some examples:

Combining information Image modalities provide a wealth of information about the
subject of interest. Combining this information often yields additional clinical in-
sight not apparent in the separate images. An example is shown in Figure 1.1. One
image modality provides detailed information about the anatomy (CT), the other
modality (PET) provides functional information. To combine both information
sources, the spatial relationship between the multi-modal images has to be found.

Follow-up Often, a single modality is used to follow a patient over time. A scan is
taken every couple of months or every year. This is done to analyse the progress of
a certain disease. An example is the growth or shrinkage of a cancer. Physicians
not only need to know disease progress, but also the success of treatment. Did
radiation therapy indeed shrink a prostate tumour? In this case we need to find
the spatial relationship between images from the same modality.

Contrast-enhancement Also data sets acquired within minutes often need image reg-
istration. This is for example the case when vessels are analysed. Contrast material
is injected in a vessel and a sequence of scans is made, each depicting part of the
vasculature. Because of e.g. respiratory motion or heart beats the scans are not
spatially aligned. Examples of images generated with the use of contrast material
are given in Figure 4.3.

In the next chapter, more information can be found about the specific registration
framework used in this thesis.

As indicated by the title of this thesis, we focus on data sets originating from the
same patient: intrasubject registration. We concentrate on the use of image registration

1



2 Chapter 1.

Figure 1.1: Combining CT and PET data. The CT scan (top row) provides information
about the patients anatomy. PET has a higher diagnostic accuracy for staging lung
tumours compared to CT, but has a much lower spatial resolution. The PET scan
(bottom row) clearly reveals a lung tumour. Image courtesy [1].

for the analysis of change in medical images. This area of application of image alignment
demand some special requirements from the registration algorithm. A naive registration
algorithm may have the following drawbacks:

1. All tissue is treated the same way, regardless of the possibly different properties.
Specifically, rigid and nonrigid tissue are both deformed while performing a nonrigid
registration. This way the progress of a disease may be concealed.

An example is shown in Figure 1.2. A patient suffering from a ground-glass opacity
(a type of lung nodule, that may be benign or malignant) is followed over time using
chest CT. Two scans, separated by a few months or a year, need to be compared
to assess whether the nodule has grown. Growth would indicate malignancy, upon
which clinical action is taken (surgery). If the nodule did not grow it may be a
benign nodule, which for now does not require clinical intervention. Change can be
visualised by subtracting registered scans. However, common nonrigid registration
algorithms conceal the growth, as shown in Figure 1.2(a) and (c). When we make
a distinction between the nodule and the other tissue, it is possible to visualise
the growth. In this case, the clear rim in Figure 1.2(d) indicates malignancy and
clinical action is required. Details can be found in Chapter 4 and 5.

2. In some registration problems, using only the image intensities may not be sufficient
for obtaining a satisfactory alignment. This hinders the analysis of change.

The registration of MR images of women with cervical cancer is an example of a
challenging registration problem. The size and position of organs around the cervix



General Introduction 3

(a) (b) (c) (d)

Figure 1.2: Visualising nodule growth. Figures (a) and (c) show the results when all
tissue is treated the same way, and (b) and (d) when the nodule is kept rigid, but all
other tissue is deformed. (a) and (b) show the deformation field superimposed on the
registration result. The subtraction image after registration is shown in (c) and (d).
Note the undesired compression of the ground-glass opacity (located in the center of the
image) in (a), resulting in a less clear rim in (c).

can vary considerably, which influences the position of the tumour. For success of
radiation therapy it is crucial to know the exact location of the tumour, as well as
the location of some surrounding organs. The tumour needs to receive a prescribed
radiation dose, while the surrounding organs need to be spared as much as possible.
Registration can be used to track the relevant organs, to study their motion over
time, and to detect when positions have changed. This will make it possible to
reduce the treatment margins, thereby reducing complications during and after
therapy. As will be shown in Chapter 6, a standard algorithm using image intensity
only did not give satisfactory registration results. An extension is proposed which
uses multiple image features, and improves registration performance.

This thesis addresses the two problems given above.

Outline of this Thesis

Chapter 2 gives a general overview of image registration and describes the registration
framework and software used in this thesis. The registration software was developed
at the Image Sciences Institute jointly with Stefan Klein for our research projects. All
experiments described in this thesis were performed with this software package, called
elastix.

A first approach to tackle the rigid-nonrigid tissue problem uses adaptive filtering of
the deformation field. The technique is reported in Chapter 3. Issues that remain with
this approach are solved with another technique based on a local rigidity penalty term,
see Chapter 4. The last technique is clinically employed for the detection of subtle
changes in ground-glass opacities in the lung. The results of this study are presented in
Chapter 5.
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To address the problem of insufficient registration quality, in Chapter 6 the regis-
tration cost function is extended with multiple image features, instead of using image
intensity only, as is commonly done.
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Abstract

Medical image registration is an important task in medical
image processing. It refers to the process of aligning data sets,
possibly from different modalities (e.g., magnetic resonance (MR)
and computed tomography (CT)), different time points (e.g.,
follow-up scans), and/or different subjects (in case of population
studies). A large number of methods for image registration are
described in the literature. Unfortunately, there is not one method
that works for all applications. This chapter presents elastix:
a publicly available computer program for intensity-based med-
ical image registration. The software consists of a collection
of algorithms that are commonly used to solve medical image
registration problems. The modular design of elastix allows the
user to quickly configure, test, and compare different registration
methods for a specific application. The command-line interface
enables automated processing of large numbers of data sets, by
means of scripting. The usage of elastix for comparing different
registration methods is illustrated with three example experiments,
in which individual components of the registration method are
varied.

Based upon: S. Kleina, M. Staringa, K. Murphy, M.A. Viergever,
and J.P.W. Pluim, elastix: a toolbox for intensity-based medical
image registration, submitted.

aIn alphabetical order. Both authors contributed equally.
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6 Chapter 2.

2.1 Introduction

Image registration is a frequently used technique in medical image processing. It
is the task of finding the spatial relationship between two or more images. Areas of

application include the alignment of data sets from different modalities [2], comparison of
follow-up scans to a base-line scan [3] (see Chapter 4), alignment of pre- and postcontrast
images [3–5], updating treatment plans for radiotherapy and surgery [6, 7], atlas-based
segmentation [8, 9], creating models of anatomy [10], and aligning training images for
classification [11,12].

In registration, one image, which is called the moving image IM(x), is deformed to
fit the other image, the fixed image IF (x). In other words, registration is the problem
of finding a coordinate transformation T (x) that makes IM(T (x)) spatially aligned with
IF (x). The quality of alignment is defined by a cost function C(T ; IF , IM). The optimal
coordinate transformation is estimated by minimising the cost function with respect to
T , usually by means of an iterative optimisation method embedded in a hierarchical
(multiresolution) scheme. Extensive reviews on the subject of image registration are
given in [13–17].

Application of an image registration method requires many choices to be made, such
as the the optimisation method, the multiresolution strategy, the method of image inter-
polation to evaluate IM(T (x)), the coordinate transformation model, and the definition
of the cost function. Several possibilities for the optimisation method are discussed in
[18, 19]. An overview of multiresolution strategies is given in [15]. Various image in-
terpolation methods are compared in [20]. The degrees of freedom of the coordinate
transformation T determine the types of deformations that can be recovered. Whereas
in many applications it may be sufficient to consider only rigid transformations (global
translations and rotations) [21, 22], frequently a more flexible transformation model is
needed, allowing for local deformations [2,4,23,24]. For the cost function C many options
have been proposed in the literature. Commonly used intensity-based cost functions are
the mean squared difference (MSD) [25,26], normalised correlation (NC) [27,28], mutual
information (MI) [21,29–31], and normalised mutual information (NMI) [5,8,32]. Some-
times, a regularisation term is added to the cost function, in order to penalise undesired
deformations [3, 5, 24] (see Chapter 4). In medical image processing research it is often
necessary to compare several options for each of the registration components. Given the
large number of choices, this can be a tedious procedure.

This chapter presents a software package for medical image registration: elastix.
The elastix software has a modular design, including several optimisation methods,
multiresolution schemes, interpolators, transformation models, and cost functions. This
allows the user to quickly compare different registration methods, in order to select a
satisfactory configuration for a specific application. elastix has a command-line inter-
face, which enables automated processing of large numbers of data sets, by means of
scripting. The software is built upon a widely used open source library for medical image
processing, the Insight Toolkit (ITK) [33].

In Section 2.2, the general registration framework of elastix is discussed, key features
of the software are presented, and an overview of the available registration components
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Figure 2.1: The basic registration components. The scheme is an extended version of the
scheme introduced in [33].

is given. In Section 2.3, three examples of applications that can be handled with the
software are given. In these experiments, the influence of three important registration
components is demonstrated.

2.2 Image Registration with elastix

2.2.1 Registration Framework

Mathematically, the registration problem is formulated as an optimisation problem in
which the cost function C is minimised with respect to T . The elastix software is
based on a parametric approach, meaning that the number of possible transformations
is limited by introducing a parameterisation of the transformation. The optimisation
problem reads:

µ̂ = arg min
µ

C(Tµ; IF , IM), (2.1)

where the subscript µ indicates that the transform has been parameterised. The vector µ
contains the transformation parameters. The reader is referred to [17,24] for an overview
on nonparametric methods. The minimisation problem (2.1) is solved with an iterative
optimisation method, usually in a multiresolution setting. A schematic overview of the
basic registration components and their relations is given in Figure 2.1, which is a slightly
extended version of the scheme introduced in [33].

2.2.2 Software Characteristics

The elastix software is structured according to the block scheme of Figure 2.1. For
each component (transform, cost function, etc.) several choices are available. The user
can configure a registration algorithm by specifying the names of the desired components
in a parameter text file. Additional settings that some components may require can also
be entered in this parameter file. Fixed and moving image file names are supplied as
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command-line arguments, so that multiple image pairs can be registered using the same
parameter settings.

All output of the registration, such as the deformed moving image IM(Tµ̂(x)) and
intermediate progress information, is saved to disk. It is often necessary to apply the
resulting transformation Tµ̂ to data sets other than the moving image. For example, in
atlas-based segmentation methods [8, 9] the transformation is applied to a segmentation
(label image) of the moving image. To that end, elastix outputs a text file that describes
the transformation Tµ̂. This text file can subsequently be passed to an accompanying
program, called transformix, together with the image to be deformed. This program
can also be used to evaluate the transformation at user-defined points, or to generate the
deformation field.

A large part of the elastix code is based on the ITK [33]. The use of the ITK implies
that the low-level functionality (image classes, memory allocation etc.) is thoroughly
tested. Naturally, all image formats supported by the ITK are supported by elastix

as well. The source code can be compiled on multiple operating systems, using various
compilers, and supports both 32 and 64 bit systems. Executables and source code are
publicly available from the website http://elastix.isi.uu.nl, under the BSD license.
A manual for elastix and an example of usage can also be downloaded. The manual
includes an example parameter file, describes in detail the various options that can be
specified, and provides recommendations for image registration.

2.2.3 Registration Components

In the following subsections, more information is given about each component of the
block scheme in Figure 2.1.

Cost Function

The cost function C measures the similarity between the fixed image and the deformed
moving image. An example is the MSD:

MSD(Tµ; IF , IM) =
1

N

∑
x∈ΩF

(IF (x) − IM(Tµ(x)))2 , (2.2)

where ΩF denotes the fixed image domain, and N the number of voxels x sampled from
the fixed image domain. The sampler, which is responsible for selecting the samples x,
is discussed in more detail in Section 2.2.3.

The following metrics are currently supported by elastix: MSD, NC, MI, NMI, and
the κ-statistic. MSD is only suited for two images with equal intensities, i.e. for images
from the same modality. NC is less strict, it assumes an affine relation between the inten-
sity values of the fixed and moving image. MI and NMI assume only a statistical relation
between the intensities of the images. They are therefore suited not only for monomodal,
but also for multimodal image pairs. The κ-statistic can be used for registering binary
images. It measures the overlap of objects in the images. For each of the metrics above,
a localised version can be constructed, as explained in [9], by selecting the appropriate
sampler. This is described in Section 2.2.3.

http://elastix.isi.uu.nl
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Parameters such as the number of bins of the joint histogram, needed for MI and
NMI, can be set in the aforementioned parameter file.

When a nonrigid transformation model is used, a regularisation term that penalises
undesired deformations can be added to the cost function. An example is the incom-
pressibility constraint described by [5], which penalises compression and expansion of
structures. Other examples of regularisation terms are the bending energy of a thin plate
[4] and the rigidity penalty term [3] (see Chapter 4). elastix supports these constraints,
but currently in combination with MI only.

Transformation

The parameterisation of the coordinate transformation Tµ determines the degrees of
freedom of the deformation. An example is the affine transformation model, which allows
for translation, rotation, scaling and skew of the images:

Tµ(x) = Ax + t, (2.3)

where A is a matrix and t represents the translation vector. The parameter vector µ is
formed by the matrix elements aij and the translation vector. In 2D, this gives a vector
of length 6: µ = (a11, a12, a21, a22, tx, ty)

T . In 3D, µ consists of 9 matrix elements and 3
translations.

The following transformation models are currently supported by elastix: transla-
tion, rigid (translation and rotation), similarity (rigid plus isotropic scaling), affine, and
nonrigid. In the literature, several nonrigid transformation models have been proposed
[4,34,35], each having its own advantages and disadvantages. In elastix a B-spline rep-
resentation [4] has been implemented. The transformation is modelled as a weighted sum
of B-spline basis functions, placed on a uniform control point grid. The B-spline basis
functions have local support [36], which is beneficial for fast computation. The flexibility
of the deformation is defined by the resolution of the control point grid, which has to be
supplied by the user via the parameter file. Section 2.3.1 demonstrates the effect of using
different transforms for an example application.

Frequently, nonrigid registration must be preceded by a rigid or affine registration, in
order to achieve a rough initial alignment. elastix supports the concatenation of any
sequence of transforms. The user may also supply an initial transformation, determined
in advance, for example by manually clicking corresponding points.

Optimisation

To solve (2.1), an iterative optimisation procedure is employed. In every iteration k,
the current transformation parameters µk are updated by taking a step in the search
direction dk:

µk+1 = µk − akdk, (2.4)

with ak a scalar that determines the step size. A wide range of optimisation methods can
be formulated in this way, each having different definitions of ak and dk [19]. A common
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choice for the search direction is the derivative of the cost function ∂C/∂µ evaluated at
the current position µk. In this case, Eq. (2.4) boils down to a gradient descent method.

elastix includes all optimisation methods described in [19]: gradient descent, quasi-
Newton, nonlinear conjugate gradient (several variants), evolution strategy, and a number
of stochastic gradient descent methods (Kiefer-Wolfowitz, Robbins-Monro, and simulta-
neous perturbation). Also an exhaustive search routine is included, which is mainly useful
for examining the cost function, as demonstrated in Section 2.3.2. The experimental re-
sults in [19] indicate that a stochastic gradient descent method (Robbins-Monro) is a good
choice for many applications. It reduces the computation time per iteration by using only
a small subset of the fixed image’s voxels for computing the cost function derivative. In
each iteration, new samples must be selected randomly. This can be realised in elastix

by selecting an appropriate sampler, which is explained in the next subsection.

Sampling Strategies

To compute the cost function C (and its derivative ∂C/∂µ) a set of samples x ∈ ΩF needs
to be selected, as in (2.2). The sampler component in Figure 2.1 is responsible for this.
The most straightforward strategy is to use all voxels from the fixed image, which has
as an obvious downside that it is time-consuming for large images. A common approach
is to use a subset of voxels, selected on a uniform grid, or sampled randomly. Another
strategy is to pick only those points that are located on striking image features, such as
edges.

elastix currently supports the use of all voxels, a subset of voxels selected on a
uniform grid, random sampling of voxels, and random sampling off the voxel grid (at
non-voxel locations). Random sampling off the grid has been shown to improve the
smoothness of the cost function [37, 38]. In Section 2.3.2, we demonstrate this effect
by comparing several sampling schemes on an example application. For all sampling
strategies discussed above, the user may optionally supply a mask image, indicating
regions of interest. In this way, one can force the sampler to pick only points near edges
in the image, for example.

With random sampling, the elastix user can enforce the selection of new samples
in every iteration k of the optimisation process. In this way, the stochastic optimisation
methods described in [19] can be realised. The localised mutual information strategy, pre-
sented in [9], can be implemented by letting the sampler pick points in a small neighbour-
hood. A new neighbourhood is randomly selected in every iteration of the optimisation
procedure.

Interpolation

For computation of the cost function, the value IM(Tµ(x)) is evaluated at non-voxel
positions, for which intensity interpolation is needed. Several methods for interpolation
exist, varying in quality and speed, including nearest neighbour, linear and N -th order
B-spline interpolation [36,39]. elastix supports all interpolators mentioned above.
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(a) res. 0 (b) res. 1 (c) res. 2 (d) original

(e) res. 0 (f) res. 1 (g) res. 2 (h) original

Figure 2.2: Two multiresolution strategies using a Gaussian pyramid (σ = 8.0, 4.0, 2.0
voxels). The top row shows multiresolution with downsampling, the bottom row without.
Note that in the top row the number of voxels in each dimension is halved every resolution,
but the voxel size is doubled, so physically the images are of the same size.

Hierarchical Strategies

Hierarchical (multiresolution) strategies are an important aspect of image registration.
For an extensive overview, the reader is referred to [15]. elastix implements several
hierarchical strategies.

The pyramid components in the block scheme of Figure 2.1 represent the multiresolu-
tion schemes for the image data. Two types of image pyramids are available in elastix:
Gaussian pyramids with and without downsampling. Figure 2.2 illustrates the difference.

The second important multiresolution strategy, not apparent from Figure 2.1, is the
gradual increase of transformation model complexity. During nonrigid registration, a
hierarchical effect can be realised by starting with a coarse B-spline control point reso-
lution and gradually refining the grid in subsequent resolutions, thereby introducing the
capability to recover more fine-scale deformations.

More generally, any parameter setting can be subjected to a hierarchical strategy in
elastix. For example, the number of joint histogram bins that is used for computing
MI and NMI could be gradually increased, as was suggested in [30].

In Section 2.3.3 several multiresolution strategies are compared for the nonrigid reg-
istration of CT chest scans.
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2.3 Experiments and Results

In this section, some applications of elastix are described, to illustrate its convenience
for configuring, testing, and comparing different registration methods. Three key com-
ponents of registration were studied: the transformation model in Section 2.3.1, the
sampling technique in Section 2.3.2, and the multiresolution strategy in Section 2.3.3.
The experiments demonstrate the impact these components can have on the registration
results, and therefore stress the importance of a proper configuration for the application
at hand.

2.3.1 Transformation Models

The effect of the type of transformation was investigated by comparing the registration
performance of several transformation models.

To this end, a set of 50 clinical MR scans of the prostate was used, all originating
from different patients. The scans were made by the Department of Radiotherapy of the
University Medical Center Utrecht, as part of prostate cancer treatment planning. They
were acquired on a Philips 3T scanner (Gyroscan NT Intera, Philips Medical Systems,
Best, The Netherlands) using a balanced steady-state free precession sequence with fat
suppression. The scans had a dimension of 512×512×90 voxels of size 0.49×0.49×1.0 mm.

Fifty interpatient registrations were performed by registering each MR scan with its
predecessor in the 50-scan series. Interpatient registration of these scans is needed for
atlas-based segmentation of the prostate [9]. The registration problem is challenging,
since the anatomical variability between subjects is large. Also, the data suffer from
several artefacts, as shown in [9]. For our experiments we used the same settings as in
[9], with localised MI as a cost function (see Section 2.2.3), and a four-level Gaussian im-
age pyramid with downsampling. The following transformation models were compared:
translation, rigid, affine, and B-spline with different control point spacings: 64, 32, 16,
8, and 4 mm. The result of the registration with translations only was used as an initial-
isation for all other registrations. For the B-spline registrations, the control point grid
was subjected to a multiresolution scheme: registration starts with a coarse control point
resolution; with smoother versions of the images, the control point resolution is increased
accordingly.

For all images a manual segmentation of the prostate was available, made by an
experienced radiation oncologist. After registration with elastix, the transformation
Tµ̂ was applied to the prostate segmentation of the moving image, using transformix.
The overlap with the segmentation of the fixed image was computed, using the Dice
similarity coefficient (DSC) [40]:

DSC(X,Y ) =
2|X ∩ Y |
|X| + |Y | , (2.5)

where X and Y represent the two segmentations, and | · | denotes the number of voxels
within the segmentation. A DSC of 1 indicates perfect registration. A value of 0 means
that the prostates had no overlap at all after registration.
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Figure 2.3: The effect of the transformation model on the accuracy of registration, mea-
sured by the prostate overlap. The abbreviation BS-〈sp〉 refers to a B-spline transforma-
tion with control point spacing sp, in mm.

The results are presented in Figure 2.3. For each transformation model, the DSC
values of the 50 MR scans were summarised by a box-and-whiskers plot. A paired, two-
sided Wilcoxon test was used to assess the median differences between adjacent columns.
A star on top of a column indicates a significant difference (p < 0.05) with respect to the
previous column. The graph clearly shows that a nonrigid registration was essential in
this application. The best results were obtained using a B-spline control point spacing of
8 mm. With this setting, the computation time was around 15 minutes per registration
on a single processor Pentium 2.8 GHz personal computer.

2.3.2 Sampling Strategies

The grid effect is a well-known issue in image registration. It refers to the problem that
the cost function contains irregularities at locations representing grid-aligning transfor-
mations, which can impede the registration process. It has often been studied in the
context of interpolation artefacts [20]. In this section it is demonstrated that the sam-
pling mechanism can solve this issue, by taking samples off the voxel grid, as suggested
in [37,38].

Brain images were taken from the “Retrospective Image Registration Evaluation”
project [22]. We investigated the registration of a T1-weighted MR image (moving image)
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Figure 2.4: The effect of different sampling strategies on the smoothness of the cost func-
tion; a) translation in the z direction, b) translation in the z direction after downsampling
the MR image in the z direction, c) translation in the x direction.

to a PET image (both of patient 001). The PET image had a dimension of 128×128×15
voxels of size 2.59 × 2.59 × 8.0 mm. The MR image had a dimension of 256 × 256 × 26
voxels of size 1.25 × 1.25 × 4.0 mm.

The cost function (MI) was analysed using an exhaustive search in a single trans-
lation direction, with a step size of 0.1 mm. Linear interpolation was used to compute
IM(Tµ(x)). Different sampling strategies were employed for computing the cost function:
all voxels, random sampling at the voxel grid, and random sampling off the voxel grid.

In Figure 2.4(a) the cost function −MI(Tµ; IF , IM) is plotted as a function of the
translation tz, the direction with the largest voxel spacing. The two samplers that take
samples on the voxel grid have a very irregular cost function. The irregularities show
a pattern, related to the voxel sizes of the images in the z direction (8 mm for PET,
4 mm for MR). Every 8 mm a slice of the PET image maps outside the MR image. This
causes the large discontinuities at tz = 12 mm and 20 mm for example. Every 4 mm, the
cost function exhibits a small local maximum, caused by the aligning voxel grids of the
images. The random sampler that takes samples off the grid clearly leads to a much
smoother cost function.

The experiment was repeated after downsampling the MR image by a factor of 2 in
the z direction. The voxel size of the MR image thus became equal to that of the PET
image (8 mm). Figure 2.4(b) shows the cost function as a function of tz. The irregularities
follow a single pattern in this graph, with a peak at every 8 mm.

Figure 2.4(c) shows the result for translation in the x direction (obtained using the
original non-downsampled MR image). The portion of voxels of the PET image that
move simultaneously outside the MR image domain is smaller than in the z direction.
Consequently, the grid effect is reduced. The cost function appears much smoother, also
for the two samplers that take samples on the voxel grid, although small irregularities
remain visible at multiples of the voxel spacing. This example shows that, in practice, it
may not always be strictly necessary to sample voxels off the grid.
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Figure 2.5: The effect of the multiresolution strategy on registration accuracy, expressed
as the mean distance between corresponding points. ‘R1’ - ‘R8’ refer to the number of
image resolution levels that was used. The numbers on top of the graph refer to the
number of outliers with mean distance larger than 5 mm.

2.3.3 Multiresolution Strategies

The influence of the choice of multiresolution strategy is examined in this section. CT
chest scans of 26 patients were taken from a lung cancer screening trial [41]. Each patient
had a baseline and a follow-up scan, acquired 3-9 months apart. The scans were obtained
at full inspiration and without contrast injection on a 16-detector-row scanner (Mx8000
IDT or Brilliance 16P, Philips Medical Systems, Best, The Netherlands). Images were of
size 512× 512 in-plane, with the voxel size ranging from 0.55× 0.55 mm to 0.8× 0.8 mm.
The number of slices varied from 383 to 529, with slice thickness 1 mm and slice spacing
0.7 mm. The images were downsampled by a factor of two in each dimension before
registration, in order to decrease computational load.

For each patient the baseline and follow-up scans were registered using a nonrigid
B-spline transformation. An affine registration was used for initialisation. The regis-
tration was performed with a Gaussian image pyramid (without downsampling) using
R ∈ {1, . . . , 8} levels. Two experiments were performed for each value of R. Firstly,
the resolution of the B-spline control point grid was kept at a constant value of 12 mm
(isotropic) in all resolutions. Secondly, the grid was refined after each resolution, such
that at the final resolution the control points were spaced 12 mm apart again. This yields
16 experiments on 26 image pairs, resulting in a total of 416 registrations. For the cost
function MI was used. The Robbins-Monro stochastic optimisation method was applied,
using 1000 iterations per resolution level. The image sampler was configured to select
2000 samples randomly in each iteration.

One hundred corresponding points in each baseline and follow-up scan were estab-
lished by two independent observers using a semi-automatic algorithm [42]. The trans-
formation Tµ̂ was applied to the annotated points in the fixed image using transformix.
To evaluate the registration accuracy, the mean distance between the resulting locations
and the reference standard of the observer annotations was computed.
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Figure 2.5 shows box-and-whisker plots of the mean distance to the annotations of one
of the observers. The interobserver variability is shown in the left-most column. The first
group R1-R8 displays the results without grid refinement. The second group shows the
results with grid refinement. When no grid refinement was used, the registration quality
improved until R = 3, but deteriorated for R > 3. Apparently, the dense B-spline grid
yielded too much freedom on the heavily smoothed images. With grid refinement the
results kept improving with increasing R up to R = 6 (note the decreasing number of
outliers above 5 mm). In practice, when considering the computation time, three or four
resolutions with grid refinement seems to be a reasonable choice. With these settings the
runtime was about 10 minutes on an AMD Opteron running at 2.4 GHz.

2.4 Conclusion

A software package, elastix, for medical image registration has been presented. Rather
than implementing a single registration method, elastix is a collection of parametric
intensity-based registration methods. Thanks to the modular design, the user can eas-
ily construct a registration algorithm, tailored to a specific application. Configuration
of the registration method can be accomplished by writing a few lines in a parameter
text file, without having to write any programming code. elastix has a command-line
interface, which simplifies batch-processing of large numbers of data sets. Registration
of large three-dimensional images can be done efficiently, thanks to the use of stochastic
subsampling techniques.

The usage of elastix has been illustrated with three experiments. In the first ex-
periment, eight transformation models were compared for the interpatient registration
of 50 MR prostate scans. In the second experiment, we reproduced a result from the
literature, showing that the so-called grid effect can be reduced by sampling the fixed
image off the voxel grid. The third experiment demonstrated the importance of choosing
a suitable hierarchical (multiresolution) strategy, by registering 26 chest CT image pairs
with 16 different multiresolution configurations. These three investigations are just a few
examples of the many possible comparative studies that one can perform with elastix.

The software has been used in several research projects, including [3,9, 11,19,43,44].
Both the executables and the source code are publicly available. The source code provides
the users with the exact construction of the available algorithms, and allows them to
enhance the functionality of elastix by adding their own algorithms. These features, in
combination with the modular design, make elastix a useful tool for research on medical
image registration.
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Tissue-Dependent Filtering of the
Deformation Field 3

Abstract

In present-day medical practice it is often necessary to nonrigidly
align image data. Current registration algorithms do not generally
take the characteristics of tissue into account. Consequently, rigid
tissue, such as bone, can be deformed elastically, growth of tumours
may be concealed, and contrast-enhanced structures may be reduced
in volume.
We propose a method to locally adapt the deformation field at struc-
tures that must be kept rigid, using a tissue-dependent filtering tech-
nique. This adaptive filtering of the deformation field results in locally
linear transformations without scaling or shearing. The degree of fil-
tering is related to tissue stiffness: more filtering is applied at stiff
tissue locations, less at parts of the image containing nonrigid tis-
sue. The tissue-dependent filter is incorporated in a commonly used
registration algorithm, using mutual information as a similarity mea-
sure and cubic B-splines to model the deformation field. The new
registration algorithm is compared with this popular method.
Evaluation of the proposed tissue-dependent filtering is performed on
3D CT data of the thorax and on 2D Digital Subtraction Angiography
(DSA) images. The results show that tissue-dependent filtering of
the deformation field leads to improved registration results: tumour
volumes and vessel widths are preserved rather than affected.

Based upon: M. Staring, S. Klein, and J.P.W. Pluim, Nonrigid
Registration with Tissue-Dependent Filtering of the Deformation
Field, Physics in Medicine and Biology, vol. 52, no. 23, pp. 6879 -
6892, December 2007.
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3.1 Introduction

Nonrigid image registration is an important technique in the field of medical image
processing [14–16]. It performs the task of finding the spatial correspondence be-

tween two images, i.e. it searches for a one-to-one mapping from voxels in one image to
voxels in the other image. This mapping is called the transformation. Commonly, first a
rigid or affine registration is performed to capture the global transformation. The rigid
or affine transformation is then used as a starting point for a nonrigid registration, which
searches for local deformations. An example of a popular nonrigid registration algorithm
is the one of [4].

A possible drawback of such a general nonrigid registration approach is that all tissue
in the image volume is treated nonrigidly. The rigidity or stiffness of different tissue
types is not taken into account. The implicit assumption that all tissue is deformable is
violated in at least three situations:

a. truly rigid tissue: Bone tissue that is present in the image volume must not be
allowed to deform. Treating the bones as deformable tissue can lead, for example,
to undesired thickening and bending of ribs [45].

b. temporal changes of tissue: An example is the study of tumour progression in a
patient. A successful nonrigid registration will achieve a perfect fit between tumours
of two different time points, effectively concealing tumour growth or shrinkage. To
visualise the tumour growth with a difference image, the tumours have to be kept
rigid.

c. intensity changes of tissue: Local intensity changes can be induced, for example,
by injection of a contrast agent. [5] and [46] demonstrate that contrast-enhanced
breast lesions in MR are compressed after intensity-based nonrigid registration. In
[47] shrinkage is reported for contrast-enhanced vessels in CT Digital Subtraction
Angiography (CT-DSA).

In cases (b) and (c) the tissue is not truly, i.e. physically, rigid. However, in order
to prevent undesired volume changes of these structures, they should be regarded as
undeformable.

Several methods are reported in the literature to address this issue. Some of these
methods add a regularisation or penalty term to the registration, thereby constraining
the transformation. [5] achieve incompressibility by penalising a deviation of the deter-
minant of the Jacobian of the transformation from 1. The method does not distinguish
between different tissue types, nor does it enforce rigidity of stiff tissue. [48] employ
a rigidity penalty term to certain structures by penalising a deviation of the Jacobian
from orthonormality. Other ways to enforce rigidity of structures have also been pre-
sented. [46] propose to couple the control points of a B-spline deformation to enforce
rigidity on certain structures. It is assumed that the rotational part of the deformation
can be captured by the initial rigid registration. Another approach is taken by [49], who
constrain the nonlinear part of a deformation at rigid locations by multiplication with a
weight function. Multiple rigid transformations are used by [35], each defined on different
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parts of the image, but influencing each other. [50] model the deformation field using
a three-component deformation model, consisting of rigid, elastic and fluid structures.
[51] have employed a finite element method to introduce tissue-specific parameters. For
the viscous fluid algorithm a locally adaptable regularisation technique is proposed that
spatially varies the viscosity parameter [52].

A structure is kept rigid during registration if and only if the underlying deformation
field represents a locally rigid transformation. We propose to achieve rigidity of certain
structures by filtering the deformation field.

Filtering of deformation fields has been used in other situations, for example in optical
flow like registration algorithms. In these cases the filtering is typically used to regularise
the deformation field to get more plausible results. [53] uses a Gaussian kernel to smooth
the deformation field. This kernel is not adapted to the underlying tissue type; it is
fixed for the entire image volume. [54] use the Demons algorithm, which they adapt with
a filtering of the deformation field. They derive and employ a priori and a posteriori
smoothing weights for the filtering; these weights vary over the image, but do not depend
on tissue type. Another method to smooth the deformation field is used by [55]. They
regularise the deformation field by smoothing it with a Gaussian kernel with a standard
deviation depending on the spatial position. They propose to take a large standard
deviation in areas where little deformation is expected (e.g., rigid areas), and vice versa.
At boundaries of rigid and nonrigid tissue the deformation field within the rigid objects
is influenced by the nonrigid deformations of its surroundings. Both the extent and
strength of this influence is quite large, because a large standard deviation is used. Also,
a scaling of the deformation field within rigid objects is not prevented with this method.
Therefore, that approach is not suitable for the problem we address. To ensure rigidity
of the deformation field, an asymmetric kernel is needed with a large standard deviation
inside the rigid object and a small one outside.

The filter we propose has the property that undesired deformations at rigid structures
are addressed, while the surroundings are free to deform. The deformation field is adapted
by filtering the deformation field in a tissue-dependent way: the filter is different for each
voxel, depending on the stiffness of the underlying tissue. In this way some parts of the
image can be kept rigid, whereas other parts are allowed to deform freely. In Section 3.2
the proposed tissue-dependent filter for regularising the deformation field is described in
detail. Incorporation of the filter in the registration algorithm is also described in that
section.

For evaluation two applications are considered: the study of tumour progression in
CT thorax imaging (an example of case (b)), and the study of the vasculature at several
regions in the human body in DSA imaging (an example of case (c)). The validation of
the algorithm is described in Section 3.3, and the chapter is concluded in Section 3.4.

3.2 Method

Registration of a moving image IM(x) : ΩM ⊂ R
D �→ R to a fixed image IF (x) : ΩF ⊂

R
D �→ R, both of dimension D, is the problem of finding the deformation field d, or
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equivalently the transformation T (x) = x+d(x), that spatially aligns IM(x+d(x)) and
IF (x). Registration can be defined as a minimisation problem:

d̂ = arg min
d

C [IF (x), IM(x + d(x))] , (3.1)

where C denotes a cost function and d̂ the optimal solution.
As discussed in the introduction, registration can result in a deformation field d̂(x)

which is nonrigid at rigid structures. The filter we propose filters the deformation field
adaptively, based on the content of a ‘stiffness coefficient’ image c(x).

3.2.1 Filter Design

For rigid tissue the corresponding part of the deformation field should be linear without
scaling or shearing. Given the deformation field d, we achieve this by calculating a
weighted mean m(x) of d over a neighbourhood Nx of x ∈ ΩF :

m(x) �
∑

x∈Nx

c(T (x))d(x)/
∑

x∈Nx

c(T (x)), (3.2)

where c(x) is the stiffness coefficient image with values between 0 and 1. The stiffness
coefficient image indicates for each voxel the relative stiffness of the underlying tissue.
In case

∑
x∈Nx

c(T (x)) = 0, we choose m(x) = d(x), to avoid division by zero. In
order to control the degree of filtering, we define a filtered deformation field F(d(x)) by
assigning a value close to the locally weighted mean deformation m(x) when the stiffness
coefficient c(x) is high, and a value close to the original deformation d(x) for low stiffness
coefficients:

F(d(x)) � (1 − c(T (x)))d(x) + c(T (x))m(x). (3.3)

For neighbourhoods on the edge of rigid and nonrigid structures, the weighted mean m(x)
is determined mainly by the voxels having a high stiffness coefficient. In other parts of
the image Equation (3.2) yields an averaging, also in the nonrigid parts. By defining the
tissue-dependent filtering as in (3.3), it is controlled to what extent the weighted mean
is used, such that it is only employed at rigid parts of the image. The result is a more
homogeneous, linear deformation field at regions with a high c(x), where tissue is more
stiff. At regions with a low c(x) the deformation field is unaffected by the filtering, and
therefore those regions can deform freely, as desired.

To obtain the stiffness coefficient image c(x) it is necessary to process the moving
image, for example by segmenting the relevant structures and assigning a stiffness co-
efficient (a value within [0, 1]) to the voxels. For CT images the Hounsfield units can
be rescaled to values in [0, 1], since stiffer material usually implies a higher attenuation
value. In this work we focus on the registration method, and therefore we have opted for
a simple manual segmentation.

We are interested in the deformed moving image. Therefore, we only have to take care
that the transformation of that image, as found by the registration, obeys restrictions of
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Figure 3.1: The original 2D deformation field (a), stretches the underlying tissue both
vertically and horizontally. Applying the tissue-dependent filter, with c(x) = 1 every-
where, once to this field results in (b). This field still stretches tissue, but less. After
applying the adaptive filter several times, the result is a homogeneous deformation field
(c), yielding a rigid transformation of the underlying tissue. (d) illustrates in 1D the
adaptive filter applied to a scaling. The dashed line (k = 0) shows an unfiltered defor-
mation function that scales the data (d(x) = 0.2x). The dashed-dotted and the solid
lines refer to applying the adaptive filter 1 and 10 times, respectively, using l = 5. Above
the graph the stiffness coefficients c(T (x)) are shown: 0 referring to complete nonrigid
tissue and 1 to rigid tissue. In this case c(T (x)) is the same for all three (k = 0, 1, 10)
transformations T . The adaptive filter works from the edge of the rigid structure to the
inside, and converges after 10 iterations.

rigidity. This means that only the relevant structures in the moving image have to be
segmented.

The tissue-dependent filter F can be applied to the deformation field several times in
succession to increase the power of the filter. We define:

Fk(d(x)) � F(Fk−1(d(x))), (3.4)

F0(d(x)) � d(x). (3.5)

When applying F multiple times (k > 1), the orientation and magnitude of the deforma-
tion field in a neighbourhood become more similar. This effect is shown in Figure 3.1.

The neighbourhood Nx in (3.2) is another parameter that can be controlled. It
is chosen to be a square in 2D and a cube in 3D, of size l × l and l × l × l voxels,
respectively. For large l the adaptive filter will linearise larger parts of the image at
once, thereby increasing the power of the filter. However, for large l, the deformation
fields of two separate rigid structures lying close together might both be within the
neighbourhood. This way, the deformation field of both rigid structures evolves to the
average of them, which is undesired. Therefore, a small neighbourhood of l = 3 is used
in this study. The power of the tissue-dependent filter is controlled with the number
of successive applications k of the filter, see (3.4). In the following section a second
parameter m is introduced, that also controls the power of the filter.

Figure 3.1(d) illustrates that the effect of the tissue-dependent filter is first observed
near the boundary of rigid structures. After successive application of the filter, the results
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are propagated to the inside of such regions. Strong edges in the stiffness coefficient
image at the boundary of rigid and nonrigid tissue can result in sharp transitions in the
deformation field after filtering. Invertibility of the deformation field is not guaranteed.
This can be easily achieved by defining some rules on the displacement field [55]. However,
no problems were encountered in the experiments and therefore this step is omitted. The
tissue-dependent filter is based on a weighted mean, therefore, the filtered deformation
field will eventually, for large k, evolve to a translational field, not allowing rotations of
rigid objects.

The computational complexity of the tissue-dependent filter is linearly dependent on
the size of the neighbourhood lD, the number of voxels N in the image, and the number
of successive applications k: O(lDNk).

3.2.2 Tissue-Dependent Nonrigid Registration

This section describes how the tissue-dependent filter F is incorporated in the registra-
tion. The registration algorithm is largely based on the papers of [4], [2], and [30].

The methods described by these authors use the well-known mutual information be-
tween the fixed image IF and the moving image IM as a cost function C. In this study
the implementation of [30] is adopted, who use B-spline Parzen windows to describe the
joint histogram. This way the cost function is a continuous, differentiable function of the
transformation parameters p. The derivative of the cost function ∂C/∂p can therefore be
computed analytically. The deformation field d is parameterised by cubic B-splines [36]
with parameters pBS. The B-splines modelling the deformation field have an inherent
smoothness, which is desired in registration problems. They also have local support,
which is beneficial both for modelling local transformations, and for fast computation.
The derivative ∂d/∂pBS, needed for computing ∂C/∂p, is available analytically.

An iterative optimisation strategy is used to solve the minimisation problem (3.1):

dt+1(x) = dt(x) + ∆t(x; pBS), (3.6)

where ∆t is an incremental deformation field at iteration t, as found by the optimiser.
Incorporating our tissue-dependent filtering of the deformation field in the optimisation
scheme is straightforward:

dt+1(x) = Fk
(
dt(x) + ∆t(x; pBS)

)
. (3.7)

The resulting deformation dt+1(x) is a filtered version of a B-spline based deformation
field for t > 1 and it cannot be parameterised by B-splines. It is described by a vector
field. Only the additional deformation field ∆t(x; pBS) is modelled by B-splines, which
has fewer restrictions than modelling the entire transformation with B-splines. The op-
timisation is performed on ∆t(x; pBS), i.e. on the B-spline coefficients only. This is
computationally advantageous compared to optimising over the entire deformation field.

The tissue-dependent filtering does not necessarily have to be applied after every
optimisation iteration. To decrease the power of the filter it can be applied after every
m iterations. Summarising, the proposed nonrigid registration is given by:
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1. Perform m > 0 iterations of the optimiser, resulting in a new additional deformation
field ∆t(x; pBS).

2. Calculate the deformation field d̃t+1(x) = dt(x) + ∆t(x; pBS).

3. Filter the deformation field, i.e., calculate dt+1(x) = Fk
(
d̃t+1(x)

)
according to

Equations (3.2), (3.3), and (3.4),(3.5).

Repeat step (i) - (iii) until convergence.
A stochastic gradient descent optimiser is used to determine the additional deforma-

tion field ∆t(x; pBS) in the following way: ∆t(x; pBS) = −at∂C/∂pBS, where at is the size
of the step taken in the direction −∂C/∂pBS. The stochastic gradient descent optimiser
uses an approximation of the derivative of the mutual information with respect to the
B-spline parameters pBS. Approximation is done by using only a small random subset of
voxels from the fixed image. This has been shown to accelerate registration significantly,
without compromising registration accuracy [19]. At each iteration a step is taken to-
wards the minimum of the cost function C. The size of this step at is determined by a
decreasing function of the iteration number t. This function is of the form at = a/(t+A)α,
where a, A, and α are user-defined constants. Following the suggestions in [56], in this
chapter A = 100.0 and α = 0.602 are used. The parameter a is related to the expected
magnitude of the deformation, and is tuned for each application. As a stopping condition
a user-defined number of iterations is used, upon which convergence is assumed. In order
to avoid local minima, a multiresolution approach is taken. A Gaussian image pyramid
is used with a subsampling factor of two. Also a multigrid approach is taken: when the
image resolution is doubled, the B-spline control point spacing is halved. Prior to the
nonrigid registration an affine registration is performed, in order to capture the global
transformation between fixed and moving image.

3.3 Experiments and Results

In order to evaluate the effectiveness of the proposed tissue-dependent nonrigid registra-
tion, it is compared with a general nonrigid registration approach based only on B-splines.
This general approach does not apply the tissue-dependent filtering of the deformation
field, but is similar to the proposed algorithm in all other respects (see the description in
Section 3.2.2). The methods will be referred to as ‘BS’ (B-spline only based) and ‘BSF’
(B-splines with tissue-dependent filtering of the deformation field).

The two methods are illustrated on a synthetic example (Section 3.3.1), and com-
pared on clinical data, viz. 3D CT follow-up data of the thorax containing lung tumours
(Section 3.3.2), and 2D Digital Subtraction Angiography (DSA) image data, see Sec-
tion 3.3.3. The applications are examples of cases (b) and (c) of the list given in the
Introduction. Both applications consider structures that are not physically rigid, but to
prevent undesired volume changes, they should be regarded as undeformable. Special
attention is given to the influence of the parameters k and m.

In all experiments with BSF, the size of the neighbourhood Nx in Equation (3.2)
is 3×3 voxels in 2D and 3×3×3 in 3D. For both BS and BSF, the number of bins for
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calculation of the mutual information was set to 32. All experiments were performed
with software developed by the authors (http://elastix.isi.uu.nl). This registra-
tion package is largely based on the Insight Segmentation and Registration Toolkit [33].
Filtering the deformation field took approximately 1 s. and 1.7 s. for k = 1 and k = 10,
respectively, on 2D 5122 data. For 3D 2563 data this took 140 and 275 s. approximately.
An AMD Opteron 2218 running at 2.6 GHz. was used, without multi-threading enabled.

3.3.1 2D Synthetic Example

A 2D synthetic example image was constructed to demonstrate the behaviour of the non-
rigid registration algorithm with and without tissue-dependent filtering. Figures 3.2(a)
and 3.2(b) show the fixed and moving image, respectively, both of size 128×128 pixels.
The central white structure represents a rigid structure, for which the stiffness coeffi-
cient image c(x) was set to 1.0. The two larger white structures represent some nonrigid
image content, for which c(x) = 0.0. A standard nonrigid registration was performed
using three resolutions. At each resolution 350 iterations of the optimiser were used.
A multigrid approach was taken, with a B-spline grid spacing at the final resolution of
64 pixels. No affine or rigid registration was performed prior to nonrigid registration.
The result of the registration is shown in Figure 3.2(c). It is clear that the rigid inner
structure has thickened. The B-spline fails to keep the inner rigid structure rigid, because
the control points are pulled apart by the contraction of the two outer white structures.
The experiment is repeated with BSF with low filtering power (k = 1, l = 3,m = 100),
resulting in a still thickened inner structure, see Figure 3.2(d). The power is increased
by applying the filter more often (m = 10), and by extending the neighbourhood size
to l = 5. Both approaches result in a perfect registration. In Figure 3.2(e) a horizontal
profile through the inner rigid structure of the x-component of the deformation field is
shown for the three BSF versions. BSF (1,100,3) still thickens the inner structure, while
the other two show no displacement at the centre.

3.3.2 3D CT Thorax Data with Lung Tumours

Nonrigid registration is a valuable tool for following disease progress of patients over
time. A possible way to detect changes is by analysing the deformation field found by
the nonrigid registration, as is done by [57]. Another way to evaluate this progress is
to visually inspect the difference between a first scan, taken at time t0, and a registered
follow-up scan, taken at t1. For the case of patients suffering from lung tumours, there
might be tumour growth between the first scan and the follow-up. Because of nonrigid
motion occurring between scans, a rigid registration is not sufficient to achieve good
alignment of the anatomy. However, standard nonrigid registration methods will minimise
the difference between tumours at different time points, effectively concealing tumour
growth (see Figure 3.3). Therefore, the tumours should not be allowed to deform by the
nonrigid registration algorithm. It is assumed that the tumour volume does not change
between scans due to differences in the lung inspiration levels, because the protocol for
acquiring the data was such that inspiration levels are approximately equal. In this
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Figure 3.2: BS registration compared with the adaptive filtering of the deformation field.
(a) The fixed image IF , (b) the moving image IM , (c) the result with BS, (d) the result
with BSF (k = 1, m = 100, l = 3). When the neighbourhood size is increased to l = 5,
or when more filtering is applied (m = 10), the resulting images are equal to the fixed
image. In (e) a profile in the horizontal direction of the x-component of the deformation
field is depicted. In the legend the parameters (k, l,m) refer to the corresponding BSF
registration. The two vertical lines indicate the rigid part.

section, BS registration of CT thorax follow-up scans of patients suffering from lung
tumours is compared with BSF registration. Rigidity is evaluated with tumour volume
measurements.

Data Description

Registration was performed on CT follow-up data sets of the thorax of five patients having
lung tumours. For each patient two images were taken at different time points. The
data were acquired with a 16-slice spiral CT scanner (Mx8000 IDT 16, Philips Medical
Systems, Best, The Netherlands). The images have an in-plane resolution of 512×512
pixels. The number of slices varies for the data sets, ranging from 400 to 550. The in-

(a) (b) (c)

Figure 3.3: BS registration compared with BSF for the CT thorax follow-up data. Dif-
ference images of the registration result with the fixed t0 image are shown. (a) for affine,
(b) for BS, and (c) for BSF registration. The white box shows a tumour location.
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Table 3.1: Average lung overlap. Between brackets the parameters (k,m) are given.

before registration affine BS BSF (10,1) BSF (1,1) BSF (1,10)

0.64 ± 0.22 0.92 ± 0.06 0.97 ± 0.02 0.97 ± 0.02 0.97 ± 0.02 0.97 ± 0.02

plane voxel size is around 0.7×0.7 mm. Slice thickness was always 1.0 mm and slices were
reconstructed every 0.7 mm. Before registration, each data set was downsampled with a
factor of two in each dimension by discarding odd rows, columns and slices, to reduce
computer memory and computational load. The five data sets contain thirty-six tumours
in total, with an average volume of 2.8 ± 3.4 ml for the first scan t0 and 5.9 ± 7.2 ml for
the follow-up t1. No new tumours had developed at t1.

Experiment Setup

The CT image taken at time t0 is set to be the fixed image, the CT image taken at
time t1 the moving image. In order to get a coarse alignment between fixed and moving
image an affine registration was performed first. For both the affine and the nonrigid
registration three resolutions were employed. For the nonrigid registration the B-spline
grid spacing at the final level was 16 voxels. In the three resolutions 100, 100, and 300
iterations were used for the optimiser, respectively. In every iteration 5000 samples were
selected to calculate (the derivative of) the mutual information, see Section 3.2.2. The
parameter a that defines the step size for the optimisation algorithm was chosen 100000.0,
70000.0, and 50000.0 for the three resolutions. For BSF, a crude manual segmentation
of the tumours was used to define c(x), setting c(x) to 1.0 for voxels within the tumour
and to 0.0 elsewhere. The BSF method was tested with varying strength of the adaptive
filtering, with (k,m) = (1, 10), (1,1), and (10,1).

Results

Accuracy of the registration is measured by calculating the lung overlap of the registered
image and the fixed image. For this purpose, automatic lung segmentations were made
with an algorithm based on the method by [58], described in detail in [59]. The segmen-
tation does not include the lung vasculature and the tumours. The overlap measure is
defined as

overlap � 2|L1 ∩ L2|
|L1| + |L2| , (3.8)

where Li is the set of all voxels within the lung, and |Li| denotes the size of set Li.
The average and standard deviation values of lung overlap were calculated over all data,
and are reported in Table 3.1. The results show that a good lung overlap was achieved
with both nonrigid registration algorithms. This is confirmed by visual inspection of the
results, see Figure 3.3 for an example.
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(a) BS (b) BSF (10,1)

Figure 3.4: Deformation fields for the CT thorax follow-up data around a tumour, fol-
lowing from the (a) BS, and the (b) BSF registration. Where BS compresses the tumour
(rBS = 0.69), BSF retains rigidity (rBSF = 0.98).

For evaluation of the rigidity of the tumours, a second manual segmentation of the
tumours in the moving image is used. The second segmentation was performed in a pre-
cise manner, unlike the segmentation used for BSF. Tumour volume measurements were
performed to evaluate if the registration is volume preserving, a condition for rigidity.
Volume preservation is expressed by the ratio r between the tumour volume after reg-
istration, denoted by vreg , and the tumour volume at t1 (since t1 is the moving image),
denoted by vt1 : rreg = vreg/vt1 . The tumour segmentation after registration is determined
by applying the coordinate transformation to the tumour segmentation of the moving
image. Linear interpolation was used in this step. If a nonrigid registration is volume
preserving for a tumour, the volume ratio will be 1.0; if a tumour is compressed rreg < 1.0.
For ratios it is better to use the geometric mean and standard deviation, instead of their
arithmetic counterparts. This can be easily seen with a small example. Say, we have
two ratios 0.5 and 2.0. The arithmetic mean of those two ratios is 1.25, whereas the
geometric mean equals 1.0, rating a two times increase in volume equal to a two time

decrease. The geometric mean is defined as µg = n

√∏n
i=1 ri

reg . From the definition of

the geometric standard deviation it follows that σg ≥ 1. The geometric mean volume
ratios and standard deviations are reported in Table 3.2, where the symbol ×/ is used
to indicate the distinction with the arithmetic mean and standard deviation. Geometric
means were calculated for four volume ratio groups and for all ratios together. The tu-
mours were grouped according to tumour growth vt1/vt0 . The third group, for example,
is the group of tumours with tumour growth between 3/2 and 3. Table 3.2 shows that
volume was much better preserved with BSF, compared to BS. For a low strength of the
adaptive filter (BSF (1,10)) volume-preservation is low, which increases by increasing the
power (BSF (1,1) and BSF (10,1)). Volume is by definition preserved for rigid registra-
tion. Residual volume differences of the BSF method can partly be explained by the fact
that the tissue-dependent nonrigid registration obtains a trade-off between the rigidity
of tumours and the maximisation of similarity. Especially when there are large tumour
volume differences between t0 and t1 (the fourth group in Table 3.2), volume preservation
is harder to obtain. Examples of the deformation fields after BS and BSF registration
are given in Figure 3.4. Unlike BS, the deformation field for BSF is clearly rigid at the
tumour location.



28 Chapter 3.

Table 3.2: Geometric mean tumour volume ratios. Between brackets the parameters
(k,m) are given.

group vt1/vt0 rrigid rBS rBSF (1,10) rBSF (1,1) rBSF (10,1)

(0, 1] 1.00 ×/ 1.00 1.06 ×/ 1.03 1.01 ×/ 1.01 1.00 ×/ 1.00 0.99 ×/ 1.00
(1, 3/2] 1.00 ×/ 1.00 1.09 ×/ 1.11 1.03 ×/ 1.03 1.02 ×/ 1.02 1.02 ×/ 1.02
(3/2, 3] 1.00 ×/ 1.00 0.89 ×/ 1.04 0.93 ×/ 1.04 0.97 ×/ 1.02 0.99 ×/ 1.01
(3,∞) 1.00 ×/ 1.00 0.88 ×/ 1.05 0.93 ×/ 1.04 0.96 ×/ 1.02 0.98 ×/ 1.01
all 1.00 ×/ 1.00 0.95 ×/ 1.08 0.96 ×/ 1.04 0.99 ×/ 1.02 0.99 ×/ 1.02

3.3.3 Digital Subtraction Angiography

Digital Subtraction Angiography (DSA) is an established modality for visualising blood
vessels in the human body. During image acquisition patient motion often occurs, due
to breathing, heart beat, activity in the intestines, or movement of the body. This
motion results in artifacts in the subtraction images. In Figure 3.5(a) a subtraction
image is shown after rigid registration; the artifacts in the original subtraction image
are even larger. In order to correct for patient motion after acquisition, a nonrigid
registration is needed. Typically, a sequence of images is taken, where different parts of
the vasculature are visible at different times. To see the whole imaged vasculature, all
the images from the specific sequence have to be registered to some fixed image. The first
image, acquired just before the arrival of the contrast bolus and known as the baseline
image, is used as the fixed image. As reported in the literature [5,46], nonrigid registration
of images containing contrast-enhanced structures can lead to significant compression of
those structures. Switching the fixed and the moving image and simply using BS does
not guarantee that compression is avoided, and requires the inverse of the transformation.
Therefore, a nonrigid registration is required that can treat the vasculature different from
other tissue, to maintain vasculature size.

Data Description

The 2D digital X-ray angiography image data were acquired with an Integris V3000 C-arm
imaging system (Philips Medical Systems, Best, The Netherlands). In total, twenty-six
image sequences of twelve different patients were obtained. The image sequences were of
size 512×512 pixels for twenty-two data sets, and 1024 by 1024 pixels for four data sets;
they contain about ten images each. Intensities in the DSA images range approximately
from 100 to 950, with an arithmetic mean and standard deviation of 550 ± 180. Images
were taken of different locations in the body: abdomen (10), brain (5), hip and foot (4),
heart (1), neck (5) and lungs (1). The first image in each sequence was taken before
arrival of the contrast bolus, in the following images contrast agent is visible in parts of
the vasculature.
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(a) (b) (c)

Figure 3.5: BS registration compared with BSF for the DSA data. Difference images of
the registration result with the fixed image are shown. (a) for rigid, (b) for BS, and (c)
for BSF (2,1) registration. Note the substantial change in vessel radius of the BS method,
compared to the other algorithms. Whereas the BS method compresses the vasculature,
the BSF method is much more capable of retaining vessel widths.

Experiment Setup

The baseline image was taken to be the fixed image. For our experiments one image from
each sequence was registered to the fixed image. The image showing the most vasculature
was manually selected as the moving image. To get a coarse alignment between fixed
and moving image, a rigid registration was performed prior to nonrigid registration. Two
resolutions were used, with a B-spline grid spacing of 32 and 16 pixels at the first and
final resolution level, respectively. For the two resolutions 600 and 300 iterations were
used, respectively. At every resolution 5000 samples were used to calculate (the derivative
of) the mutual information, see Section 3.2.2. The parameter a that defines the step size
for the optimisation algorithm was chosen 6000.0, and 3500.0 for the two resolutions.
For the BSF registration, a crude manual segmentation of the vessels was used to define
c(x), setting c(x) to 1.0 for voxels within the vasculature and to 0.0 otherwise. The BSF
method was tested with the parameter settings (k,m) = (1, 5), (1,1), (2,1), and (5,1).

Results

The Root Mean Square Difference (RMSD) of IM(x+d(x)) with IF (x) at the background
was calculated to see if the nonrigid registration indeed reduces motion artifacts. The
background is defined as everything within the cone beam, but outside the manual vessel
segmentation. Differences at vessel locations are not taken into account, since these
differences are meant to be large. Arithmetic means and standard deviations of the
RMSD were calculated for all 26 images. The results are reported in the top row of
Table 3.3. Rigid registration reduced the motion artifacts. Both BS and BSF nonrigid
registration methods improved substantially on that. In Figure 3.5 the difference image
after rigid registration, and after the two nonrigid registration methods (BS and BSF
(2,1)) is shown for an example DSA image. Visual inspection confirms the reduction in
motion artifacts, as measured by the RMSD.
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Table 3.3: Results for DSA data. Arithmetic means and standard deviations for the
RMSD are displayed in the top row. Geometric means and standard deviations for the
vessel diameter ratios are shown in the bottom row. Between brackets the parameters
(k,m) are given.

no registration rigid BS BSF (1,5) BSF (1,1)

RMSD 14.0 ± 6.0 13.5 ± 5.7 12.1 ± 4.2 11.8 ± 4.0 11.9 ± 4.0
diameter 1.00 ×/ 1.00 1.00 ×/ 1.00 0.85 ×/ 1.16 0.91 ×/ 1.11 0.96 ×/ 1.06

· · ·
BSF (2,1) BSF (5,1)

11.9 ± 4.0 11.9 ± 4.0
0.97 ×/ 1.04 0.98 ×/ 1.03

-10 -8 -6 -4 -2 0 2

Drigid,noreg

DBS,rigid

DBSF,rigid

DBSF,BS

Figure 3.6: A box-and-whisker plot for the difference D in background motion artifacts.
The box represents the first and third quartiles. The horizontal line in this box is the
median. The whiskers indicate the extent of the rest of the data, except for outliers.
Outliers are points falling more than 1.5 times the interquartile range past the ends of
the box, and are denoted by a dot.

In order to compare the reduction in motion artifacts between the different registration
methods, the difference of the RMSDs is defined as Di,j = RMSDi − RMSDj, where
i �= j are the different registration methods. This difference was calculated for several
combinations of registration methods and for all DSA data, resulting in the differences
Drigid,noreg, DBS,rigid, DBSF,rigid, and DBSF,BS, where BSF is BSF (2,1). In Figure 3.6 a box-
and-whisker plot for these differences in motion artifacts is shown. Rigid registration
reduced the motion artifacts slightly, compared to no registration (top row). The second
and third row show that nonrigid registration indeed improved substantially on rigid
registration (rigid vs. BS and rigid vs. BSF both have p < 0.05 in a two-tailed paired
t-test). The bottom row indicates that the RMSD for the BS and BSF method are
similar.

Rigidity of the vasculature is evaluated by manually measuring the vessel diameter vd
at several locations. Six locations were selected for each of the 26 images, yielding a total
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of 156 diameter measurements. As in the previous section, ratios r are used to evaluate
vessel compression. The vessel diameter after registration is compared to the diameter
before registration: rreg = vd reg/vdnoreg. The geometric mean of the vessel diameter ratios
is reported in the bottom row of Table 3.3. Standard nonrigid registration (BS) clearly
resulted in compression of the vessels, whereas the tissue-dependent filtering (BSF (2,1))
retained the vessel widths. When the adaptive filtering strength is decreased (BSF (1,1)
and BSF (1,5)) rigidity-preservation is decreased, and vice versa (BSF (5,1)).

3.4 Discussion and Conclusions

In common nonrigid registration approaches all tissue is treated equally, thereby deform-
ing rigid tissue. We propose a method that takes the rigidity of different tissue types
into account, using a tissue-dependent filtering of the deformation field. Such a filter is
described in this chapter, and incorporated in a nonrigid registration framework: tissue-
dependent nonrigid registration.

In contrast to other work on filtering of the deformation field, we designed the filter
specifically to maintain rigidity of tissue. All other work we are aware of uses filtering
to obtain smoothness of the deformation, sometimes also in a tissue-dependent manner.
The proposed filter does not affect the deformation field outside the region that is to
be kept rigid, thereby allowing the neighbouring tissue of the rigid structures to deform
freely. Methods that add a penalty term to the cost function to achieve rigidity need to
weigh the penalty term against similarity. The choice of this weight is somewhat nonin-
tuitive and a matter of tuning. Varying the strength of the proposed tissue-dependent
filtering can be done with two intuitive parameters (k and m). The results show that
by increasing k and/or decreasing m the method is better capable of retaining rigidity,
and vice versa. For very large k the deformation field will converge to a translational
field. The proposed method also offers possibilities to move rigid objects that are in close
proximity, independently of each other by adding an object label to the filtering process.

A segmentation of the rigid structures is needed to define which regions are to be kept
rigid. In this chapter we used rough manual segmentations, which is labour intensive, and
therefore not very practical in a clinical setting. Since a rough segmentation is sufficient,
a (semi-) automatic segmentation method will usually be available.

The proposed tissue-dependent nonrigid registration was evaluated on CT thorax
follow-up data and Digital Subtraction Angiography (DSA) data. It was compared
against a standard B-spline based registration approach. From the experiments on the
CT thorax follow-up data it is observed that tissue-dependent nonrigid registration is bet-
ter in terms of preserving tumour volume than a standard B-spline based approach. The
DSA data show a clear improvement of the proposed method over the B-spline method
in retaining vessel widths.

Based on the results and on visual inspection of the data, it is concluded that the
tissue-dependent nonrigid registration algorithm is indeed able to model locally rigid
transformations, thereby improving registration results.





A Rigidity Penalty Term for
Nonrigid Registration 4

Abstract

Medical images that are to be registered for clinical applica-
tion often contain both structures that deform and ones that
remain rigid. Nonrigid registration algorithms that do not model
properties of different tissue types may result in deformations of
rigid structures. In this chapter we propose a local rigidity penalty
term, which is included in the registration function in order to
penalise deformation of rigid objects. This term can be used for
any representation of the deformation field capable of modelling
locally rigid transformations. By using a B-spline representation of
the deformation field, a fast algorithm can be devised. We compare
the proposed method with an unconstrained nonrigid registration
algorithm. It is evaluated on clinical 3D CT follow-up data of the
thorax and on 2D DSA image sequences. The results show that
nonrigid registration using the proposed rigidity penalty term is
capable of nonrigidly aligning images, while keeping user-defined
structures locally rigid.

Based upon: M. Staring, S. Klein, and J.P.W. Pluim, A
Rigidity Penalty Term for Nonrigid Registration, Medical Physics,
vol. 34, no. 11, pp. 4098 - 4108, November 2007.
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4.1 Introduction

Image registration is an important technique in the field of medical imaging. In
many clinical situations several images of a patient are made in order to analyse the

patient’s situation. These images are acquired with, for example, X-ray scanners, Mag-
netic Resonance Imaging (MRI) scanners, Computed Tomography (CT) scanners, and
Ultrasound scanners, which provide knowledge about the anatomy of the subject. Combi-
nation of patient data, mono- or multi-modal, often yields additional clinical information
not apparent in the separate images. For this purpose, the spatial relation between the
images has to be found. Image registration is the task of finding a spatial one-to-one
mapping from voxels in one image to voxels in the other image. Good reviews on the
subject are given in [14–16].

Popular nonrigid image registration algorithms, as described by Rueckert et al. [4]
and Mattes et al. [2], do not take the rigidity of different tissue types into account. This
can lead to undesired effects in three situations:

• The image contains various tissue types, each with its own mechanical stiffness.
An example is the presence of rigid objects like bones or surgical instruments in a
soft tissue region. Not taking into account the spatially varying stiffness during the
registration likely results in unwanted distortions of these rigid objects [45].

• Structural changes over time (e.g. tumour growth) need to be visualised. Differences
that are not of interest (e.g. due to breathing or heart beat) should be compensated
for by the nonrigid registration, while the relevant differences induced by changes in
the objects of interest should be retained. This would lead to a subtraction image
from which the relevant changes are immediately clear.

• The visibility of structures varies between acquisitions. For instance, in pairs of pre-
and post-contrast images, like angiography images, vessels are visible in one image
and not or only partially in the other. Intensity-based registration algorithms are
designed to minimise the difference between two images, resulting in compression of
the contrast-enhanced structures. Rohlfing et al. [5] and Tanner et al. [46] report
shrinkage of contrast-enhanced breast lesions in MRI. Rohlfing et al. [47] report
shrinkage for contrast-enhanced vessels in CT-DSA.

In all three situations the objects of interest should be considered as locally rigid by the
registration algorithm.

Other possibilities to detect structural changes over time exist. For example, the
deformation field as found by nonrigid registration can be analysed. This is commonly
done by looking at the determinant of the Jacobian of the transformation, see [57, 60]
and references therein. A discussion on the advantages and disadvantages of the two
approaches can be found in the literature [61,62].

Several methods to constrain deformations have been described in the literature. One
that is well known and widely used is to employ a regularisation term to penalise un-
desired transformations. Typical regularisation terms include the bending energy of a
thin plate [4], the linear elasticity constraint [24,63], and the incompressibility constraint
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[5, 64]. Methods that specifically enforce rigidity on structures have also been proposed.
Tanner et al.[46] propose to couple the control points of a B-spline deformation to impose
rigidity on certain structures. Another approach is taken by Little et al.[49], who use
modified basis functions to describe the deformation. At rigid locations the deformation
is constrained. Arsigny et al.[35] use multiple rigid transformations on different parts
of the image, which they fuse in such a way that the transformation is invertible. Re-
cently, some approaches were published [48,65] in which rigidity is enforced by penalising
deviation of the Jacobian of the transformation from orthonormality.

In this chapter we propose a novel penalty term that is capable of locally penalising
nonrigid transformations, which we call a rigidity penalty term. It is based on three
criteria a transformation must meet in order to be rigid: the transformation should be
affine, and the rotation matrix of the transformation should be orthonormal and proper.
Our rigidity penalty term is a weighted combination of three terms, each imposing one
of these conditions. While parts of the proposed rigidity penalty proved to be similar
or identical to penalty terms used by other authors [4, 5, 48, 65], we demonstrate that
imposing the complete rigidity penalty term performs better than each of the terms
separately. First results of the method were published previously [66]. In Section 4.2 we
construct the rigidity penalty term and proof its validity. Nonrigid registration using the
rigidity penalty term is compared against a standard unconstrained nonrigid registration
algorithm in Section 3.3. Special attention is paid to the sensitivity of the results to the
choice of the parameters controlling the rigidity penalty term. We end with a discussion
and conclusion in Section 4.4.

4.2 Method

Registration of a moving image IM(x) : ΩM ⊂ R
d �→ R to a fixed image IF (x) : ΩF ⊂

R
d �→ R, both of dimension d, is the problem of finding a displacement u(x) that makes

IM(x+u(x)) spatially aligned to IF (x). The quality of alignment is defined by a distance
or similarity measure S, such as the sum of squared differences (SSD), the correlation
ratio, or the mutual information (MI) measure.

Because this problem is ill-posed, a regularisation or penalty term P is often intro-
duced that constrains u. The registration problem is formulated as an optimisation
problem in which the cost function C is minimised w.r.t. u, with:

C[u; IF , IM ] = −S[u; IF , IM ] + αP[u], (4.1)

where α weighs similarity against regularity. This formalism is used in many other
papers[4,5,24,48,63,64]. Note that at the minimum of C the derivatives of the similarity
measure and the regularisation term are not necessarily zero. Rather, a balance is found
between the two, which is influenced by the parameter α. Therefore, the penalty term
cannot be regarded as a hard constraint; it is sometimes referred to as a soft constraint.

The regularisation term P can not only be considered as a way to achieve well-
posedness, but also as a way to enforce desirable properties on the transformation. We
propose a regularisation term Prigid[u; IM ] that penalises deformations of rigid objects,



36 Chapter 4.

which we call the rigidity penalty term. This penalty term can be weighted locally, so
that some parts of the image are restricted to rigid movement, while other parts may be
penalised partially or may deform freely.

In the following sections we describe the general registration algorithm (Section 4.2.1),
derive the rigidity penalty term (Section 4.2.2), and describe how this penalty term can be
efficiently computed if the deformation field field is parameterised by B-splines (Section
4.2.3).

4.2.1 Registration Algorithm

We employ a registration framework largely based on the papers of Rueckert et al. [4] and
Mattes et al. [2]. The deformation field u is parameterised by cubic B-splines [4], with
parameters µ. The similarity measure S is the mutual information measure implemented
according to Thévenaz and Unser [30]:

MI (µ; IF , IM) =
∑
ι∈LM

∑
κ∈LF

p(ι, κ; µ) log2

(
p(ι, κ; µ)

pM(ι; µ)pF (κ)

)
, (4.2)

where LF and LM are the sets of histogram bin centres of the fixed and moving image,
respectively, p is the joint discrete probability, and pF and pM are the marginal discrete
probabilities. B-spline Parzen windows are used to estimate the joint probabilities:

p(ι, κ; µ) =
1

|IF |
∑

xi∈IF

wF (κ/σF − IF (xi)/σF )

· wM(ι/σM − IM(xi + uµ(xi))/σM),

(4.3)

with wF and wM the fixed and moving Parzen windows, σF and σM the histogram bin
widths, and uµ the B-spline deformation field. The marginal probabilities are obtained
by summing (4.3) over κ or ι.

For the optimisation of the cost function C, an iterative stochastic gradient descent
optimiser is used:

µk+1 = µk − ak
∂C
∂µ

, (4.4)

where ∂C
∂µ

= −∂S
∂µ

+ α∂P
∂µ

, and ak > 0 is the size of the step taken in the negative direc-

tion of the derivative. Thévenaz and Unser [30] derived an analytical expression for the
derivative ∂S/∂µ. In this chapter the analytical expression is evaluated approximately.
Instead of evaluating the derivative over all voxels of the fixed image, i.e. taking all
xi ∈ IF in Equation (4.3), only a randomly chosen subset of IF is used. This random
subset is renewed every iteration. Klein et al. [67] showed that, using this stochastic
gradient descent optimiser, the computation time per iteration can be significantly de-
creased, without affecting the rate of convergence and final precision. In this chapter,
a decaying function of the iteration number k is used for computing the gain factor:
ak = a/(k + A)γ, where a > 0, A ≥ 1, and 0 ≤ γ ≤ 1 are user-defined constants. This
function, and practical guidance for choosing the parameters, is suggested by Spall [56].
A multiresolution approach is taken to avoid local minima, using a Gaussian pyramid
with a subsampling factor of two in each dimension.
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4.2.2 Construction of the Rigidity Penalty Term

In this section we derive three conditions that must hold for a transformation u(x) + x
to be a rigid transformation. These three conditions are combined in one penalty term,
our rigidity penalty term Prigid[u; IM ], constructed such that deviation from these three
conditions is penalised. For the sake of clarity the penalty term is derived in 2D. The
results can be readily extended to 3D, or even nD.

For a displacement field u to be rigid, it must hold that

u(x) + x = Rx + t, (4.5)

with R and t a rotation matrix and a translation vector, respectively. Three conditions
on u(x) + x can be derived:

affine A rigid transformation is an affine function in x, giving the ‘affinity’ conditions
ACkij(x), which state that the second order derivatives of u to x have to be zero:

ACkij(x) =
∂2uk(x)

∂xi∂xj

= 0, (4.6)

for all k, i, j = 1, 2, not counting duplicates. Rueckert et al.[4] penalises deviation
from this constraint to enforce smoothness.

orthonormality For the matrix R to be a rotation matrix it must be orthonormal. This
defines the orthonormality conditions

∑2
k=1 rkirkj = δij, for all i, j = 1, 2, with rij

the elements of R, and δij the Kronecker delta function. From Equation (4.5) it
follows that ∂ui

∂xj
= rij − δij, for all i, j = 1, 2. Hence, the orthonormality conditions

OCij can be rewritten as

OCij(x) =
2∑

k=1

(
∂uk(x)

∂xi

+ δki

)(
∂uk(x)

∂xj

+ δkj

)
− δij = 0, (4.7)

for all i, j = 1, 2, again not counting duplicates. Note that, since rij = ∂ui

∂xj
+ δij

(Equation (4.5)), the rotation matrix R is the Jacobian of the transformation u(x)+
x. Therefore, the OC term is equal to forcing orthonormality of the Jacobian, which
is used in Loeckx et al.[48] and Ruan et al.[65].

properness A matrix R satisfying the orthonormality conditions can still be proper or
improper, meaning that the determinant can still be either 1 or -1, respectively. An
improper orthonormal matrix corresponds to a rotation with an inversion (mirror-
ing). Therefore we need to impose the properness condition PC(x) = det(R)− 1 =
0, with the elements rij of the matrix R again expressed in derivatives of u to x.
Note that, since R is the Jacobian of the transformation u(x) + x, this condition
basically amounts to an incompressibility constraint, see also [5].
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We define the rigidity penalty term Prigid[u; IM ] to be the sum of all these conditions
squared. In order to distinguish between rigid and nonrigid tissue, the total penalty term
is weighted by a so-called rigidity coefficient c(x) ∈ [0, 1] of the tissue type at position x.
This results in the following expression:

Prigid[u; IM ] � 1∑
x c(x + u(x))

∑
x

c(x + u(x))

{

cAC

∑
k,i,j

ACkij(x)2 + cOC

∑
i,j

OCij(x)2 + cPC PC(x)2

}
.

(4.8)

The weights cAC, cOC, and cPC determine the relative strength of each of the three terms.
The rigidity coefficient c(x) is set to zero for pixels x in completely nonrigid tissue, and
to one for rigid tissue. For other tissue types a value of c(x) is chosen between zero and
one. The rigidity coefficient image can be constructed by performing a manual or (semi-)
automatic segmentation of structures of interest, after which a rigidity coefficient can be
assigned to each segment. For the case of CT images the Hounsfield units themselves
may be used, rescaled to the range [0, 1], since more rigid tissue usually has a higher
attenuation value. This chapter concerns the registration method and therefore we use
a simple manual segmentation. The rigidity coefficient image only has to be defined on
the moving image. The moving image deforms to the fixed image, so specific parts of
the moving image should transform in a rigid fashion. Therefore, the regions that corre-
spond to rigid structures have to be defined on the moving image. When computing the
derivative ∂P/∂µ we neglect the derivative of c(x+u(x)) to u, the same way as overlap
changes of images are sometimes neglected in registration [30]. Hence, discontinuity of
c(x) is not an issue here.

The following theorem states the validity of the proposed rigidity constraint. For
clarity, we assume that c(x) > 0, on a connected subregion ΩS of the moving image.

Theorem 1. Prigid[u; IM ] = 0 if and only if the transformation u(x)+x is rigid, provided
that c(x) > 0, ∀x ∈ ΩS ⊂ ΩM .

Proof. The if -part is trivial, so we prove the only if -part. Let Prigid[u; IM ] = 0, which
is at every location x a sum of three nonnegative terms. Therefore, each of the three
terms is zero. Since the first term is zero, all second order derivatives are zero, making
u(x) affine. Therefore the displacement can be written as u(x) = R̃x + t. Given that
the second term is zero it holds that

2∑
k=1

(r̃ki + δki) (r̃kj + δkj) = δij, ∀i, j = 1, 2, (4.9)

since ∂ui

∂xj
= r̃ij. Now splitting up R̃ = R− Id (giving a displacement u(x) = Rx−x+ t),

gives r̃ij = rij−δij. Substituting this in Equation (4.9) results in
∑2

k=1 rkirkj = δij, ∀i, j =
1, 2, in which we recognise the orthonormality conditions for R. A similar argument holds
for the third term, resulting in the properness condition. Therefore R is a rotation matrix,
and u(x) + x represents a rigid transformation.
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For every application the parameters cAC, cOC, and cPC have to be tuned. A suit-
able first estimate for those values is the energy of the three terms after unconstrained
registration, relative to each other. The energy of AC is defined as:

EAC = 1∑
c(x+u(x))

∑
x

c(x + u(x))
∑
k,i,j

ACkij(x)2. (4.10)

EOC and EPC are defined similarly. We have found that a ratio in the order cAC : cOC :
cPC = 100 : 1 : 10 is a good starting point. The results did not appear to be overly
sensitive to the choice of the Section 4.3.

Provided that no mirroring occurs the OC term is a sufficient condition for local
rigidity[48, 65]. In the experiments OC per se is explicitly compared with the complete
penalty term.

4.2.3 Using B-splines

The proposed rigidity penalty term is not dependent on a parameterisation of the dis-
placement field. We employ a B-spline parameterisation, because of the computational
benefits. Parameterising the displacement field u(x) by cubic B-splines yields in 2D:

ui(x1, x2) =
∑
l∈Vx

µli β
3(x1 − xl1)β

3(x2 − xl2), (4.11)

for all i = 1, 2, with β3(x) the cubic B-spline polynomial, µli the B-spline coefficients,
and Vx the set of all control points within the compact support of the B-spline at x.
It is well known [36] that the derivatives of u(x) can also be expressed in terms of the

B-spline coefficients, using the rule dβn(x)
dx

= βn−1
(
x + 1

2

) − βn−1
(
x − 1

2

)
. Therefore,

Prigid[u, IM ] can be expressed in terms of the B-spline coefficients µli. We evaluate the
rigidity constraint over the control points only, which imposes local rigidity of the control
point grid. Rigidity of the control points in the B-spline support region of an object
guarantees rigidity of the entire object. Evaluating over the control points only, combined
with the compact support of B-splines, gives us an efficient way to calculate Prigid[u, IM ]
and its derivatives, needed for gradient descent like optimisers.

In order to define a rigid transformation at some point x, all control points within
the compact support of the B-spline have to be kept rigid. The nonrigid deformation in
the neighbourhood of a rigid structure is therefore also penalised to some extent. The
precision with which a rigid region can be defined, is determined by the density of the
B-spline control point grid and the order of the B-spline.

4.2.4 Synthetic Example

To illustrate the effect of the three terms in Equation (4.8) we have constructed a synthetic
example of size 512 by 512 pixels, see Figure 4.1. The ellipsoid in the fixed image in
Figure 4.1(a) is rotated and anisotropically scaled compared to the moving image. It
represents a tumour that has grown. The rectangle is only rotated and represents a rigid
object, such as a bone. The bar is an example of a structure visible in only one of the
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images, representing a situation before and after contrast uptake in a vessel. The desired
behaviour of a registration algorithm is that all three objects are kept rigid. Therefore,
c(x) = 1.0 on the three objects and zero elsewhere. The resulting rigidity coefficient
image is dilated with a kernel of radius 8.0 pixels (two control point spacings). The other
parameters in Equation (4.8) for this experiment are α = 1.0, cAC = 250.0, cOC = 2.0,
and cPC = 10.0. A B-spline control point spacing of 4.0 pixels is used.

In the remainder of this chapter the abbreviation ‘NRP’ is used for registration with
the rigidity penalty term Prigid[u, IM ] and ‘NRU’ for unconstrained nonrigid registration
(only a similarity term). When only one of the conditions in Equation (4.8) is used, the
method is referred to as ‘AC’, ‘OC’, or ‘PC’.

The NRU algorithm, see Figure 4.1(b), registers the ellipsoid and the rectangle, and
tries to eliminate the bar, since it is not visible in the fixed image. Note that the outer
border of the rectangle is registered correctly, but the deformation field within the object
is not rigid at all. When only AC is applied as in Figure 4.1(c), the deformations are affine
at the three objects, but not rigid, since scaling is not penalised. The orthonormality
condition nicely preserves rigidity, see Figure 4.1(d). The PC term is volume preserving
(Figure 4.1(e)), but volume preservation is not equal to rigidity. Finally, in Figure 4.1(f),
the combination of all terms is used. Rigidity of the three objects is achieved, and the
deformation field looks slightly smoother than that of OC alone. Note, that the major
axes of the ellipsoids are not aligned in some cases. This is due to the fact that the
similarity measure has a constant value for a range of inclination angles, as long as the
smaller ellipsoid fits in the larger one entirely.

When the three objects are placed somewhat closer together OC alone is unable to
reach the optimum, resulting in a failed registration (the ellipsoid and the rectangle
are not rigid, the rectangles do not match completely), see Figure 4.1(g). The use of
all terms gives a smoother deformation field, and also a good registration, see Figure
4.1(h). Note that when the objects are placed closer together some folding appears.
This is a consequence of the use of B-splines: invertibility of the deformation field is
not guaranteed. Since the rigidity penalty term is independent of the representation
of the deformation field, it can also be applied in combination with a diffeomorphic
transformation model.

In Table 4.1 the energies of the three components are given for the several registrations
of Figure 4.1. Together they form a measure of rigidity, since Theorem 1 states that each
of them is zero in case of rigidity. The three conditions help each other in achieving
rigidity, OC is the most dominant of the three, and the total rigidity term yields the best
results.

4.3 Experiments and Results

In order to evaluate the effectiveness of the rigidity penalty term (4.8), NRP was compared
to NRU. Additionally, all registrations were performed with only the AC, OC or PC term
as penalty. An appropriate setting for α in (4.1) and for the relative strength of each of
the terms of Prigid[u, IM ], controlled by cAC, cOC and cPC, was determined experimentally.
Sensitivity of the results to the relative strength of each term was also investigated.
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(a) the synthetic images (b) NRU (c) AC

(d) OC (e) PC (f) NRP

(g) closer together: OC (h) closer together: NRP

Figure 4.1: Illustrating the different parts of the penalty term. In (a) the fixed and
moving image are shown, together with their difference. The other images show the
result after registration using the various methods. (g) and (h) show the result of OC
and NRP, respectively, when the objects are placed a little closer together.

The methods were compared on clinical data, viz. 3D CT follow-up data of the thorax
containing lung tumours (Section 4.3.1), and 2D Digital Subtraction Angiography (DSA)
(DSA) image data, see Section 4.3.2.

Throughout this chapter a 32 × 32 joint histogram was used to estimate the mutual
information. The parameters A and γ, needed to compute the gain factor ak in (4.4),
were set to A = 100.0 and γ = 0.602, see [56]. All experiments were performed with soft-
ware developed by the authors (http://elastix.isi.uu.nl). This registration package
is largely based on the Insight Segmentation and Registration Toolkit [33]. The com-

http://elastix.isi.uu.nl
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Table 4.1: The energy E of the three conditions.

method EAC EOC EPC

NRU 1.9 · 10−3 3.4 · 10+1 3.6 · 100

AC 5.6 · 10−6 3.0 · 10+1 3.6 · 100

OC 3.6 · 10−5 8.6 · 10−3 2.9 · 10−3

PC 4.8 · 10−4 6.3 · 10−1 2.9 · 10−4

NRP 1.4 · 10−6 1.1 · 10−3 1.3 · 10−4

putation time for the rigidity penalty term scales linearly with the number of B-spline
parameters, and is about 0.06 s for 10 000 parameters in 2D and about 3 s for 100 000
parameters in 3D, on a standard computer (AMD Opteron 250 running on 2.4 GHz).
Calculation of the derivative of the mutual information in 2D and 3D requires 0.11 s and
1 s, respectively.

4.3.1 3D CT Thorax Data With Lung Tumours

A possible way to follow disease progress over time is to visually inspect the difference
between a first scan, taken at t0, and a registered second follow-up scan, taken at t1.
For the case of patients with lung tumours, this difference will indicate tumour growth
between two scans. Because of differences in lung inspiration levels, rigid registration is
not sufficient to achieve good alignment of the anatomy. However, standard nonrigid reg-
istration methods will minimise the difference between tumours at different time points,
effectively concealing tumour growth, see Figure 4.2(b). Therefore, the tumours should
be considered rigid tissue by the nonrigid registration algorithm. Rigidity is evaluated
with tumour volume measurements.

Data Description

Registration was performed on CT follow-up data sets of the thorax of five patients
having lung tumours. For each patient two or three images of different time points were
available, such that in total seven registrations were performed. The data were acquired
with a Philips 16-slice spiral CT scanner (Mx8000 IDT 16). The images have slices of
512 by 512 voxels. The number of slices varies for the data sets, ranging from 400 to 550.
The in-plane voxel size is around 0.7×0.7 mm. Slice thickness is always 1.0 mm and slices
were reconstructed every 0.7 mm. Before registration, each data set was downsampled
with a factor of two in each dimension to reduce computer memory and computational
load. Downsampling was performed by discarding odd rows, columns and slices. The five
data sets contain thirty tumours in total at time t0, with an average volume of 2.5 ml for
the first scan t0 and 5.1 ml for the follow-up t1. No new tumours had developed at t1.
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(a) (b) (c)

(d) (e) (f)

Figure 4.2: Comparison of NRU and NRP for a slice taken from 3D CT thorax images.
The tumours, located within the box (see (d)), are to be kept rigid. (a) and (d): CT
slice at time t0 (the fixed image) and time t1 (the moving image), respectively; (b)
and (e): difference of the registration result with the fixed image, for NRU and NRP,
respectively; (c) and (f): the resulting deformation field near the tumours for NRU and
NRP, respectively.

Experiment Setup

The CT image taken at time t0 was set to be the fixed image. The CT image taken at
time t1 was used as the moving image. A coarse alignment between fixed and moving
image was obtained by a rigid registration. For the rigid registration three resolutions
were used, for the nonrigid registration four. For nonrigid registration the resolution of
the B-spline grid is adapted each resolution: for the four resolutions the grid spacing was
set to 64, 32, 16, and 8 voxels, respectively. The number of optimisation iterations for
the first three resolutions was 300, for the last one 1200. For every iteration 5000 samples
were used to calculate the derivative of the mutual information. The parameter a in the
gain factor (see below (4.4)) was set to 150000, 120000, 70000 and 20000, for the four
resolutions, respectively. For the nonrigid registrations using the rigidity penalty term, a
crude manual segmentation of the tumours was used to define c(x), setting c(x) to 1.0
for voxels within the tumour and to 0.0 elsewhere. The weight α was set to 4.0, and
the weights of the three terms were chosen cAC = 100.0, cOC = 1.0, and cPC = 2.0. In
the final resolution the rigidity coefficient image was dilated with a radius of 16 voxels
(two B-spline control points) to achieve (almost) complete rigidity of the tumours, as
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Table 4.2: Quantitative results for the 3D CT thorax data. The last five columns show the
geometric mean and standard deviation of the tumour volume ratios, grouped according
to true tumour growth vt1/vt0 . The number of lung or tumours segmentations the means
and standard deviations are based on, is indicated by n.

vt1

vt0
: all

vt1

vt0
: (0, 1]

vt1

vt0
: (1, 3

2
]

vt1

vt0
: (3

2
, 3]

vt1

vt0
: (3,∞)

method lung overlap rreg rreg rreg rreg rreg

rigid 0.93 ± 0.05 0.99×/1.05 0.99×/1.01 0.96×/1.08 0.99×/1.03 1.02×/1.05
NRU 0.97 ± 0.01 0.78×/1.24 0.96×/1.04 0.93×/1.06 0.73×/1.15 0.69×/1.34
AC 0.98 ± 0.01 0.89×/1.16 1.04×/1.05 1.01×/1.11 0.85×/1.12 0.84×/1.16
OC 0.99 ± 0.01 0.96×/1.08 1.02×/1.03 1.00×/1.06 0.96×/1.09 0.91×/1.04
PC 0.98 ± 0.01 0.95×/1.06 0.97×/1.03 1.00×/1.04 0.94×/1.06 0.91×/1.03
NRP 0.99 ± 0.01 0.98×/1.05 1.02×/1.04 1.00×/1.05 0.97×/1.03 0.95×/1.06

n 7 30 3 6 13 8

discussed in Section 4.2.3.

Results

As can be seen from Figure 4.2(b) and 4.2(c), NRU fails to keep the tumours rigid.
Therefore, the difference in size due to growth can not be appreciated. Using a crude
segmentation of the tumours, NRP succeeds in keeping the tumours rigid, see the defor-
mation field in Figure 4.2(f). From the difference image in Figure 4.2(e) it is immediately
clear that the tumours have grown, whereas the rest of the image was registered with
equal accuracy as for the unconstrained nonrigid registration.

Accuracy of the registration was measured by calculating the lung overlap of the
registered image with the fixed image. For this purpose, automatic lung segmentations
were made with an algorithm based on the method by Hu et al. [58], described in detail
in [59]. The overlap measure is defined as

overlap � 2|L1 ∩ L2|
|L1| + |L2| , (4.12)

where Li is the set of all voxels within the lung, and |Li| denotes the size of set Li. The
averages and standard deviations of lung overlap were calculated over all data, and are
reported in Table 4.2. The results show that good lung overlap was achieved with all
nonrigid registration algorithms. This is confirmed by visual inspection of the results.

For evaluation of the rigidity of the tumours, precise manual segmentations of the tu-
mours were used. Tumour volume measurements were performed to see if the registration
is volume preserving, a condition for rigidity. Tumour volume before registration at t1 is
denoted by vt1 ; tumour volume after registration with algorithm reg is denoted by vreg .
The volume after registration was computed by applying the resulting transformation to
the manual segmentation of the tumour in the moving image, and subsequently calculat-
ing the volume of the transformed segmentation. Volume preservation is expressed by the



A Rigidity Penalty Term for Nonrigid Registration 45

Table 4.3: The arithmetic means and standard deviations of the energy E of the three
conditions for the 3D CT thorax data.

method EAC EOC EPC

NRU 1.6 · 10−4 ± 8.3 · 10−5 1.4 · 10−1 ± 1.4 · 10−1 2.8 · 10−2 ± 3.1 · 10−2

AC 1.5 · 10−5 ± 1.7 · 10−5 9.7 · 10−2 ± 1.1 · 10−1 2.3 · 10−2 ± 3.8 · 10−2

OC 2.8 · 10−4 ± 5.1 · 10−4 7.7 · 10−3 ± 1.2 · 10−2 2.2 · 10−2 ± 5.6 · 10−2

PC 7.1 · 10−3 ± 1.1 · 10−2 6.7 · 10+0 ± 1.1 · 10+1 1.5 · 10−3 ± 1.3 · 10−3

NRP 5.1 · 10−6 ± 6.9 · 10−6 5.2 · 10−3 ± 7.6 · 10−3 3.6 · 10−4 ± 6.2 · 10−4

ratio rreg between the tumour volume after registration and at t1 (since t1 is the moving
image): rreg = vreg/vt1 . If a nonrigid registration is volume preserving for a tumour, then
vreg = vt1 , and rreg = 1.0; if a tumour is compressed rreg < 1.0. For ratios it is better
to use the geometric mean µg and the geometric standard deviation σg, instead of their
arithmetic counterparts. This can be easily seen from a small example. Say, we have two
ratios 0.5 and 2.0. The arithmetic mean of those two ratios is 1.25, whereas the geometric
mean equals 1.0, rating a two time increase in volume equal to a two time decrease. From
the definition of the geometric standard deviation it follows that σg ≥ 1.

The geometric mean volume ratios and standard deviations are reported in Table
4.2, where the symbol ×/ is used to indicate the distinction with the arithmetic mean
and standard deviation. Geometric means were calculated for four volume ratio groups
and for all ratios together. The tumours were grouped according to true tumour growth
vt1/vt0 . The 6th column in Table 4.2, for example, is about the group of tumours with
true tumour growth between 3/2 and 3.

It can be appreciated from Table 4.2 that volume was much better preserved when
applying the rigidity penalty term, compared to unconstrained nonrigid registration. To
evaluate the difference in rigidity between NRP and NRU, a statistical test was performed
on the logarithm of rreg . Wilcoxon signed-ranks tests1 show that NRP is significantly
(p < 0.001, n = 30) more rigid than NRU. Volume is by definition preserved for rigid
registration. However, the corresponding column in Table 4.2 shows that the volume
measurements do not result in the perfect value 1.0 ×/ 1.0. This indicates that part of
the residual volume difference for all methods can be explained by interpolation artifacts
due to resampling when computing vreg . For the nonrigid registration methods, the
residual volume difference can partially also be explained by the aforementioned balance
(Section 4.2) between the intensity-based similarity measure, which yields a force that
keeps compressing the tumour, and the rigidity penalty term. This balance can of course
be influenced by the parameter α. From Table 4.2 it is observed that the separate
conditions each are less capable of preserving volume than the combined penalty term.
The OC term is again the most dominant term, and performs even better than the PC
that penalises volume changes. The AC term is not volume preserving, since it does not

1The differences of NRP with NRU, are not normally distributed (p < 0.0001 for Shapiro-Wilk tests).
Therefore, we employ the Wilcoxon signed-ranks test.
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penalise scalings. In Table 4.3, the energies of the different components of the penalty
term are reported. It shows that when only one of the conditions is used, the energies
of the other terms also decline. The three terms aid each other in achieving rigidity. To
evaluate the difference between NRP and OC for rigidity and smoothness (i.e. EAC), a
statistical test was performed. For rigidity the test was again performed on the logarithm
of rreg . Wilcoxon signed-ranks tests (the data is not normally distributed: p < 0.0001 for
Shapiro-Wilk tests) show that NRP is significantly (p < 0.01, n = 30) more rigid than
OC; no significant difference was found between the EAC’s of NRP and OC (p = 0.016,
n = 7). We conclude that nonrigid registration with the total penalty term NRP is best
capable of achieving rigidity.

To investigate the sensitivity of the results to the relative importance of each of the
three terms of Prigid[u, IM ], the experiments were repeated while varying the weights
cAC, cOC and cPC. Each of the weights was subsequently increased and decreased by a
factor of two, resulting in six additional experiments. The results are given in Table 4.4,
where the three numbers after NRP refer to the setting of the parameters cAC, cOC and
cPC, respectively. For example NRP: 11

2
1 refers to a registration with the parameter cOC

chosen half the original value of 1.0. All other parameter settings were taken equal to
NRP above. A Wilcoxon signed-ranks test was used to investigate the difference with
NRP in terms of rigidity and smoothness (EAC). No significant difference for rigidity,
at a confidence level of p = 0.01, can be found between NRP and its perturbations,
except for NRP: 111

2
, which is significantly less rigid. No significant difference is found

for NRP: 113
4
. At the same confidence level, no significant difference was found regarding

smoothness. We conclude that the results are quite robust to the weights of the AC, OC
and PC terms relative to each other.

4.3.2 Digital Subtraction Angiography

Digital Subtraction Angiography (DSA) is an established modality for visualising blood
vessels in the human body. During image acquisition patient motion often occurs, due
to breathing, heart beat, activity in the intestines, or movement of the body. This
motion results in artifacts in the subtraction images. In Figure 4.3(c) an example of a
subtraction image is shown. Rigid registration is not sufficient in these cases, as shown by
the difference image after rigid registration, Figure 4.3(d), since 3D rigid motion cannot
always be corrected with a 2D rigid transformation of the projection image, and since
patient motion is usually of a nonrigid nature.

Typically, in DSA imaging a sequence of images is taken, where different parts of the
vasculature are visible at different times. To see the entire imaged vasculature, all the
images from this sequence have to be registered to some fixed image. The first image,
acquired just before the arrival of the contrast bolus and known as the baseline image,
was used as the fixed image. As reported in the literature [5, 46], nonrigid registration
of images containing contrast-enhanced structures can lead to significant compression
of those structures. See Figure 4.3(e) for an example of this behaviour. Switching the
fixed and the moving image and simply using NRU does not guarantee that compression
is avoided. Another disadvantage is that the inverse of the transformation is required.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.3: Comparison of different registration algorithms for 2D DSA images. (a) DSA
baseline image: the fixed image, (b) DSA image after injection of the contrast bolus:
the moving image, (c) - (f) are difference images of the fixed image, (c) with the moving
image, (d) with the result of rigid registration, (e) with the result of NRU, (f) with the
result of NRP. (g) and (h) depict parts of the resulting deformation field for NRU and
NRP, respectively. The rectangle in Figure (e) and (f) denotes the part of the deformation
field that is depicted.

Therefore, a nonrigid registration is required that can treat the vasculature differently
from other tissue, to maintain vasculature size.

Data Description

Two-dimensional digital X-ray angiography image data were acquired with an Integris
V3000 C-arm imaging system (Philips). In total, twenty-six image sequences of twelve
different patients were obtained. The image sequences are of size 512 by 512 pixels for
twenty-two data sets, and 1024 by 1024 pixels for four data sets; they contain about ten
images each. Intensities in the DSA images range approximately from 100 to 950, with
an arithmetic mean and standard deviation of about 550 ± 180. Images were taken of
different locations in the body: abdomen (10), brain (5), hip and foot (4), heart (1),
neck (5) and lungs (1). The first image in each sequence was taken before arrival of the
contrast bolus, the following images each show a part of the vasculature.
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Experiment Setup

The baseline image was taken to be the fixed image. For our experiments one image from
each sequence was registered to its fixed image. The image showing the most vasculature
was manually selected. To get a coarse alignment between fixed and moving image, a
rigid registration was performed prior to nonrigid registration. For nonrigid registration,
two resolutions were used, with a B-spline grid spacing of 16 pixels for both resolution
levels. For both resolutions, 600 iterations were used. For every resolution 5000 samples
were used to calculate the derivative of the mutual information. The parameter a was
set to 6000.0 and 3500.0, for the respective resolutions. For the rigidity penalty term,
a crude manual segmentation of the vessels was used to define c(x), setting c(x) to 1.0
for voxels within the vasculature and to 0.0 otherwise. The weight α was set to 8.0, and
the weights of the three terms were chosen cAC = 250.0, cOC = 1.0, and cPC = 10.0.
The rigidity coefficient image was dilated with a radius of 16.0 pixels to achieve complete
rigidity of the vasculature.

Results

The Root Mean Square Difference (RMSD) of the background was calculated to verify
that the nonrigid registration indeed reduces motion artifacts. The background is defined
as everything within the cone beam, but outside the manual vessel segmentation. Arith-
metic means and standard deviations of the RMSD were calculated for all 26 images. The
results are reported in the second column of Table 4.5 and show that rigid registration
reduces the motion artifacts only slightly. All nonrigid registration methods improve on
that.

In order to further compare the reduction in motion artifacts between the different
registration methods, the difference of the RMSDs is calculated as Di,j = RMSDi −
RMSDj, where i �= j are the different registration methods. This difference was calculated
for several combinations of registration methods and for all DSA data. A statistical t-
test was performed to test the hypothesis that the difference has a zero mean. For the
difference Drigid,noreg this hypothesis is rejected (p < 0.01, n = 26). The difference of
any of the nonrigid registration algorithms with rigid registration was also significant
(p < 0.005). No significant difference was found between NRU and the several nonrigid
registration algorithms with a penalty term (p > 0.2). It is clear that rigid registration
reduces the motion artifacts slightly, compared to no registration. Nonrigid registration
improves substantially on rigid registration.

Visual inspection confirms the reduction in motion artifacts, as measured by the
RMSD. An example of this is shown in Figure 4.3, where the difference images before
registration, after rigid registration, and after NRU and NRP are shown. Compression is
clearly visible for NRU (Figure 4.3(e)), whereas the vessels for NRP in Figure 4.3(f) are
similar to the image without registration, Figure 4.3(c). The deformation fields in Figure
4.3(g) and 4.3(h) show that NRU compresses the vessels, whereas the rigidity penalty
term preserves rigidity.

Rigidity of the vasculature was evaluated by manually measuring the vessel diameter
vd at several locations, see Figure 4.4 for an example. Six locations were selected for
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Figure 4.4: An example of six locations where the vessel diameter is measured.

each of the 26 images, yielding a total of 156 diameter measurements. Similar to the
tumour volumes in the previous section, ratios r are used to evaluate vessel compression.
The vessel diameter after registration is compared to the diameter before registration:
rreg = vd reg/vdnoreg. The geometric mean and standard deviation of the vessel diameter
ratios are reported in the third column of Table 4.5. Unconstrained nonrigid registration
(NRU) severely compresses the vasculature, which is avoided with the use of Prigid[u, IM ]
(NRP). A Wilcoxon signed-ranks test confirms that this difference is significant (p <
0.001, n = 156). The three conditions each preserve the vessel diameter to a large
extent. The AC term performs slightly worse than the other two, and the combination
again gives a slight improvement, both in mean and standard deviation. Judging from
the last three columns in Table 4.5 the three conditions help each other in achieving
rigidity. Again, a Wilcoxon signed-ranks test was performed (the data is not normally
distributed: p < 0.0001 for Shapiro-Wilk tests) on the difference log rNRP − log rOC, and
on the difference in smoothness (EAC). A significant difference is found for both rigidity
(p < 0.01, n = 156) and smoothness (p < 0.01, n = 26), showing that the combination
of all terms performs best.

Experiments were repeated with cAC, cOC and cPC halved and doubled. The results
are shown in the last six rows of Table 4.5. Changing the relative importance of the
three terms does not change the vessel rigidity significantly (using a Wilcoxon signed-
ranks test). Smoothness is sometimes significantly different from NRP, see column EAC

in Table 4.5, but is still in the order of 10−7.

4.4 Conclusions and Discussion

We have proposed a novel method to keep user-defined structures locally rigid, while
performing nonrigid registration. This is achieved by including a rigidity penalty term,
derived from three rigidity conditions, in the registration cost function.

The method was evaluated on 2D and 3D clinical data. It was compared against



50 Chapter 4.

an unconstrained nonrigid registration approach. From the experiments on CT thorax
follow-up data it is observed that tumour volume is preserved when applying the rigidity
penalty term, in contrast with unconstrained nonrigid registration. The results on the
DSA data show that vessel width is also much better retained with the rigidity penalty
term.

The rigidity penalty term consists of three terms: an affinity, an orthonormality, and
a properness condition. If used separately, both the properness and the orthonormality
condition are to a large extent capable of achieving volume preservation. The affinity
condition aids in regularising the problem. The affinity and properness conditions are by
themselves not capable of achieving rigidity. The orthonormality condition is the most
dominant of the three terms. The three terms aid each other in achieving rigidity, giving
better results than a single condition. Also, the results are quite robust to changing the
relative importance of each of the terms. In conclusion, the combination of all terms is
the best choice.

Unlike the algorithm described by Tanner et al. [46], the proposed method does not
rely on the assumption that the rotation of the rigid object was captured by the initial
registration. The rigidity penalty term is suitable for any transformation capable of
modelling locally rigid transformations, and does therefore not rely on particular basis
functions to describe the transformation [49], or on its specific design [35]. Compared
to approaches that only take into account the orthonormality of the Jacobian of the
transformation [48, 65], we have shown that the proposed method gives better results
in terms of achieving rigidity and smoothness of the resulting deformation field. Since
a B-spline parameterisation of the deformation field is used, the ability to model local
deformations is limited by the B-spline control point spacing. Therefore, segmentation
errors in the rigidity coefficient image are a minor problem, as long as they remain smaller
than approximately half the control point spacing.

We conclude that nonrigid registration using the proposed rigidity penalty term is
capable of nonrigidly aligning images, while keeping user-defined structures locally rigid.
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Image Subtraction for Change
Detection in Ground-Glass Opacities

in Chest CT 5
Abstract

Purpose: To study the impact of image subtraction of registered images on
the detection of change in pulmonary ground-glass nodules, identified on chest CT
scans of a lung screening trial.
Materials and Methods: A cohort of 33 individuals (25 men, 8 women; age
range 51 to 75 years) with 37 focal ground-glass opacities (GGO) were recruited
from a lung cancer screening. For every participant, at least one follow-up scan
was available (total number of pairs, 84). Pairs of scans of the same nodule were
registered nonrigidly, to generate a subtraction. Four observers rated size and
density change of the GGO between pairs of scans by visual comparison alone and
with availability of an additional subtraction image and indicated their confidence.
An independent experienced chest radiologist established a standard of reference
for nodule change having all reader data, clinical data and follow-up examinations
available. Exclusion of nodule pairs for which the standard of reference could not be
securely established, left 59 and 58 pairs for evaluation of size and density change,
respectively. Weighted kappa statistics (κw) were used to assess inter-observer
agreement and agreement with the standard of reference. Statistical significance
was tested with a kappa z-test.
Results: When the subtraction image was available, the average inter-observer κw

improved from 0.52 to 0.66 for size change and from 0.47 to 0.57 for density change.
Average agreement with the standard of reference improved from 0.61 to 0.76 for
size change and from 0.53 to 0.64 for density change. The effect was especially
seen when observer confidence without the subtraction image was low: agreement
improved from 0.26 to 0.57 and from 0.19 to 0.47 in those cases.
Conclusion: Image subtraction improves the detection of subtle changes in
pulmonary ground-glass opacities, and decreases inter-observer variability.

Based upon: M. Staring, J.P.W. Pluim, B. de Hoop, S. Klein, B. van Gin-
neken, H. Gietema, G. Nossent, C. Schaefer-Prokop, S. van de Vorst, and M.
Prokop, “Influence of Image Subtraction on the Assessment of Volume and Density
Change in Ground-Glass Opacities in Chest CT”, submitted.
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5.1 Introduction

Differentiation of benign and malignant nodules in lung cancer screening trials
[41,68–70] is largely based on the detection of subtle density and size changes after a

short period of time. Various software tools are available for automatic or semiautomatic
volumetry. Multiple studies could proof the superiority of those software tools over
manual measurements of diameters [71] and visual assessment. Until now these software
tools are only approved for solid nodules and not for ground-glass or part solid nodules.

The prognostic significance of these so-called ground-glass opacities (GGOs) is not yet
fully understood. They often represent atypical adenomatous hyperplasia, bronchoalve-
olar carcinoma (BAC), or minimally invasive adenocarcinoma [72–74]. The Early Lung
Cancer Action Project (ELCAP) group reported a malignancy rate of 34% in nonsolid le-
sions and a 63% malignancy rate in part-solid nodules during their lung cancer screening
trial [75]. The malignancy type in the part-solid or nonsolid nodules was predominantly
BAC or adenocarcinoma with bronchoalveolar features [75].

The decision to treat a patient with a GGO depends on the level of suspicion for
malignancy. Current ACCP guidelines [76] recommend that a surgical biopsy is used
to establish a histopathologic diagnosis in all patients with suspected bronchoalveolar
carcinoma (BAC), a carcinoma known to frequently present as a GGO or part-solid
nodule. The two most important criteria for increasing suspicion and further invasive
work-up are change in size, and appearance of a solid component. In case of a BAC,
the solid part visible on CT represents the collapse of the alveoli, subsequent formation
of fibrotic focus and proliferation of tumor cells. Therefore, the presence of a solid part
within the nodule on CT generally indicates invasive growth [77]. Consequently, the
early detection of size and density change of a GGO may result in an early detection of
cancer, and is commonly taken as an indication for surgical resection [77–79]. Nakamura
et al. reported that early detection and treatment of GGOs improves the prognosis of
lung cancer [80].

Detection of growth or density change of GGOs, however, is frequently difficult, es-
pecially when the lesion has a complex shape or when the position of the lesion varies
between scans due to different levels of inspiration. While techniques for automated vol-
ume measurements have been extensively studied for solid nodules [81–84], such routines
are just emerging for nonsolid GGOs [85]. The current clinical practice to detect change
of GGOs is a side-by-side visual comparison of follow-up scans, aided by manual diameter
measurements.

In this chapter we study an alternative approach that provides a subtraction image
along with the original images to more readily appreciate changes. To reduce artifacts
in the subtraction image due to motion, and to get a meaningful subtraction image, the
scans were registered before subtraction.

The goal of this study was to investigate whether subtraction of registered images
improves detection of subtle changes in pulmonary ground-glass opacities.
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5.2 Materials and Methods

5.2.1 Study Participants

A cohort of 33 individuals (25 men, 8 women; age range 51 - 75 years; mean 59 years) with
37 focal ground-glass lesions (29 participants with 1 nodule, 4 with 2; 24 nonsolid and 13
part-solid nodules) were recruited from a lung cancer screening study (the NELSON study
[41,86]). The trial was approved by the Dutch Ministry of Health and by the institutional
review board of each participating center. Written informed consent had been obtained
from each participant. All participants smoked a minimum of 16 cigarettes/day for 25
years or 11 cigarettes/day for 30 years. Participants that were scanned between April
2004 and February 2007, with a GGO visible in at least two consecutive scans, were
included in our study. A ground-glass opacity was defined as a focal area of increased
lung opacity that did not distort or obscure the underlying lung markings (bronchi and
lung vasculature). The nodule locations were determined in the NELSON study, and were
available for this study. Following these criteria we included 16 patients with 2 scans, 14
with 3, and 3 with 4 scans; a total of 86 scans. The time between the follow-ups was
typically 3 or 9 months (mean: 6 months), with a minimum of 2 and a maximum of 13
months.

Mean initial nodule size as determined by manually measuring the maximum nodule
diameter in sagittal, coronal or transversal direction was 14 mm (standard deviation: 6.7
mm; range: 6-34 mm; 11 in the range 5-10 mm, 21 in 10-20 mm, 5 nodules ¿ 20 mm.

5.2.2 CT Imaging

Imaging data were acquired with low-dose CT, using 16-detector-row spiral CT scanners
(Mx8000 IDT or Brilliance 16P, Philips Medical Systems, Cleveland, OH). Data were
acquired in approximately 12 seconds in helical mode with 16×0.75 mm collimation and
15 mm table feed per rotation (pitch 1.3). A caudo-cranial scan direction was chosen
to minimize breathing artifacts. Participants were asked to take a deep breath and to
hold their breath. No intravenous contrast material was injected. Exposure settings
were 30 mAs at 120 kVp for patients weighting less than 80 kg (15/33), and 30 mAs
at 140 kVp for those weighting more than 80 kg (18/33), without dose modulation. All
participants received the same radiation dose for all follow-up scans. The in-plane voxel
size ranged from 0.53×0.53 mm to 0.84×0.84 mm. Transverse images were reconstructed
at a thickness of 1.0 mm and a 0.7 mm increment All scans were reconstructed with a
512 × 512 matrix and a moderately soft filter (Philips B).

5.2.3 Registration

Image registration is the process of spatially aligning two images, so that corresponding
structures overlap. The CT scans were registered using the mutual information measure
[30]. Details of the registration method are provided by Staring et al. [3] (see Chapter
4). The follow-up scan was deformed to match the image acquired at an earlier date. For
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(a) (b) (c) (d)

Figure 5.1: Example of a GGO that grew on an eight-month follow-up scan. The ob-
servers compared baseline (a) to follow-up (b). In one test set, no subtraction image was
provided, in the other test set the subtraction image (c) was available. For the standard
of reference, a registered follow-up data set (d) was also available in addition to data sets
(a) - (c). Note that the nodule is not displayed exactly identical on (a) and (b), because
of small differences in inspirational depth. Also note the white rim on (c), indicative of
tumour growth.

improved registration performance, only the lungs were registered. The lungs were auto-
matically segmented using an algorithm described by Sluimer et al. [59]. The resulting
lung segmentation was used as a mask during the registration. To prevent the nodules
from deforming in a nonrigid fashion, which would effectively conceal nodule growth, a
local rigidity penalty term was employed [3] (see Chapter 4). This method allows the
scans to be registered nonrigidly, while the nodule is not compressed or enlarged. The
region that has to be kept rigid needs to be defined, but only roughly. Therefore, an
ellipsoid is manually placed on the ground-glass opacity. The subtraction image is con-
structed by subtracting the baseline image from the deformed follow-up image. This way,
growth is observed as a white rim, shrinkage as a dark rim. Density increase is observed
in the subtraction image as a white color, density decrease as dark. The region outside
the lungs was hidden on the subtraction image, to focus observer attention on the lungs.

5.2.4 Observer Study

Pairs of scans of the same GGO were presented on a computer screen, with or without an
additional subtraction image. Figure 5.1 shows an example of the data. To optimise the
display, the 3D CT data were cropped to a region of 80×80×80 mm around the nodule,
ensuring that the observers did not have to locate the nodule. A subtraction image was
created after registering the image pairs using the method described above.

Observers were asked to independently rate volume and density change of the ground-
glass opacity, and to rate the confidence in their decision. Volume changes were rated
on a three point scale as either shrinkage, no change or growth. Density changes were
also evaluated on a three point scale as either less dense, no change or more dense.
Confidence was rated on a five-point scale, from highly unconfident to highly confident.
A user interface was developed to perform the observer study (see Figure 5.2). As in
a clinical situation, the observer could also make manual diameter measurements of the
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Figure 5.2: A screen shot of the interface. The middle image is a follow-up of the data
set on the left. In this case, the observer is also provided with the subtraction image
after registration.

GGO, if warranted. Before the start of the study a short (10-15 minute) training session
was performed on solid nodule data to familiarise the observer with the software.

Per patient all combinations of image pairs of the same nodule, not counting dupli-
cates, were shown to the observers. For instance, if three time points were available, the
pairs (t0, t1), (t0, t2) and (t1, t2) were evaluated. This resulted in one pair of scans for 18
nodules, three pairs of scans for 16 nodules, and 6 pairs of scans for 3 nodules, a total
of 84 combinations. Each pair was shown once without the subtraction image and once
with. The second scan of the pair was shown in its original format, i.e. not registered to
the first scan, as in current clinical practice.

The 84 image pairs were shown to observers in random order, determined by a com-
puter program. The observers were blinded to all patient information, it was unknown
to the observers which pairs corresponded to the same nodule. All image pairs were
scored twice by each observer, once with and once without the subtraction image. Each
observer scored in two reading sessions, which were at least four weeks apart. Per session,
all image pairs were scored, half of them with subtraction image and half without. In the
second session, all image pairs that had been evaluated without subtraction image in the
first session were now presented with subtraction image and vice versa. Per image pair
the reading time was measured automatically, a fact the observer was informed of.

Four observers with a broad range of experience performed in the study: a radiology
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resident with 3 years of experience in lung cancer screening in CT (> 2000 scans), a
pulmonologist with more than 15 years of experience with chest CT, a chest radiologist
with more than 15 years of experience in CT, and a CT technician with special training
in evaluating and reporting cancer screening CTs (> 3000 scans in 2 years).

Lesions were included from a still ongoing screening trial. For most of these lesions,
histopathological standard is not (yet) available. The standard of reference was therefore
established by an independent chest radiologist with more than 15 years of experience,
who did not participate in the observer study. He was provided with all available in-
formation: in addition to the original data and the subtraction images, he was given a
follow-up scan registered to the baseline scan to better appreciate subtle changes. He
had access to the anonymous opinions of all observers, to take into account the consensus
of the observers. He knew the order in time of the scans and did not have to evaluate
nodule pairs in random order. This way he could more easily compare multiple scans of
the same nodule, and follow disease progress. This reference observer also had to indicate
his confidence.

Despite availability of all this information, the reference observer was not able to con-
fidently establish the presence of changes in all cases. To minimize impact of uncertainty
on data analysis, only cases for which the standard of reference could be established with
the highest confidence (rating 5) were included for further data analysis. Consequently,
59 out of 84 nodule pairs were eligible for evaluation of size change and 58 pairs were
eligible for evaluation of density change. This final group consisted of 30 nodules (20
GGO and 10 part-solid).

5.2.5 Statistical Analysis

Agreement with the standard of reference and between observers was analysed with the
weighted kappa statistic κw [87, 88]. Weights are taken inversely proportional to the
difference in ratings, see [87–89]. To statistically compare κw with a value , the kappa z-
test was employed. Note, that this test is not paired and that it is therefore conservative.
A paired test, if it would be available, could indicate statistical significance sooner.

Besides measuring the overall effect of image subtraction, we also investigated the
effect for difficult and least difficult cases separately, as indicated by observer confidence.
Cases for which an observer was highly confident (marked 5) are subgroup 1, cases marked
as 4 or lower are subgroup 2. For each observer, the agreement with the standard of
reference was calculated for both subgroups separately.

Differences in confidence between the two methods were assessed by a two-sided paired
Wilcoxon test.

A value of p < 0.05 was considered to indicate a statistically significant difference.
Statistical analyses were performed with Microsoft Office Excel 2003 software (Microsoft,
Redmond, WA).
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Table 5.1: Overall agreement with the standard of reference. Agreement κw with the
standard of reference for 59 and 58 cases for size and density assessment, respectively.
Between brackets the significance is given: * (p < 0.05) and ** (p < 0.001) indicate a
significant difference in agreement κw of the subtraction method compared to the standard
method. ns indicates no significant difference (p = 0.05).

observer 1 observer 2 observer 3 observer 4 mean

size standard 0.64 0.61 0.58 0.60 0.61
subtraction 0.72 (ns) 0.70 (ns) 0.87 (**) 0.74 (*) 0.76

density standard 0.57 0.52 0.52 0.51 0.53
subtraction 0.68 (ns) 0.60 (ns) 0.74 (*) 0.54 (ns) 0.64

5.3 Results

According to the reference standard, 5/30 (17%) GGOs showed regression over time and
no change was detected in 10/30 (33%) GGOs. Fifteen nodules (50%) showed an increase
in size, while 8 of these GGOs (53%) additionally showed an increase in density. The
observers needed on average 75s to score a case, both with and without subtraction.

The four observers made 14, 48, 4 and 16 (on average 21) diameter measurements,
respectively, in all 84 image pairs when no subtraction image was provided. With a
subtraction image, these numbers changed to 0, 0, 6 and 10 (on average 4), respectively.

The average observer confidence ratings for growth detection were 4.3 (out of 5) for the
standard technique and 4.4 with the subtraction image available (significant increase for
two observers: p = 0.79, 0.028, 0.79, 0.011). For detection of density change the average
confidence was 4.5 for both methods (no significant differences).

5.3.1 Agreement with the Standard of Reference

The observers’ scores never differed more than one category from the standard of refer-
ence, with respect to changes of density and size of the GGOs; in other words it never
occurred that observer and standard of reference stated the opposite (e.g., density increase
and decrease, shrinkage and growth, respectively). The agreement of the individual ob-
servers with the standard of reference is reported in Table 5.1. Following the terminology
of Landis and Koch [89] (0.4 < κw = 0.6: moderate agreement; 0.6 < κw = 0.8: sub-
stantial agreement; κw > 0.8: almost perfect agreement), the mean agreement with the
standard of reference was substantial for size change detection, and moderate for density
change detection with the standard method. The agreement increased with the use of a
subtraction image, on average from 0.61 to 0.76 for size change detection, and from 0.53
to 0.64 for density change detection. For size change detection the increase is significant
for two raters (p = 0.33, 0.29, < 0.001, 0.029); for density change detection the increase is
significant for one observer (p = 0.20, 0.44, 0.009, 0.78).

Table 5.2 lists the impact of image subtraction for the two subsets of nodules depen-
dant on the readers’ confidence. For subgroup 1 lesions, on average, the agreement only
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Table 5.2: Agreement with the standard of reference, differentiation. Agreement κw

with the standard of reference. Subgroup 1 are those cases with observer confidence 5.
Subgroup 2 are the cases with confidence 1 - 4. Between brackets the significance is
given: * (p < 0.05) and ** (p < 0.001) indicate a significant difference in agreement κw

of the subtraction method compared to the standard method. ns indicates no significant
difference (p = 0.05).

subgroup 1
observer 1 observer 2 observer 3 observer 4 mean

size standard 0.92 0.87 0.79 0.88 0.86
subtraction 0.85 (ns) 0.87 (ns) 0.93 (*) 1.00 (ns) 0.91

density standard 0.72 0.72 0.75 0.83 0.76
subtraction 0.68 (ns) 0.83 (ns) 0.81 (ns) 0.79 (ns) 0.78

subgroup 2
observer 1 observer 2 observer 3 observer 4 mean

size standard 0.14 0.46 0.09 0.33 0.26
subtraction 0.50 (*) 0.59 (ns) 0.70 (**) 0.51 (*) 0.57

density standard 0.20 0.41 -0.11 0.28 0.19
subtraction 0.61 (*) 0.47 (ns) 0.50 (*) 0.32 (ns) 0.47

marginally increased from 0.86 to 0.91 for size change and from 0.76 to 0.78 for density
change detection. One of the observers achieved a significantly higher agreement with the
reference standard with the subtraction image for the detection of size change (p = 0.004).
For all other readers, we did not find significant differences (p = 0.31, 0.97, 1.00, respec-
tively, for size change and p = 0.73, 0.38, 0.51, 0.69, respectively, for density change).

For subgroup 2 lesions, agreement with the standard of reference improved substan-
tially with the availability of the subtraction image. On average, the agreement increased
from 0.26 to 0.57 and from 0.19 to 0.47 with the use of image subtraction. The improve-
ments were significant for three of the four observers for the detection of size change
(p = 0.010, 0.25, < 0.001, 0.046), and for two of the four observers for the detection of
density change (p = 0.002, 0.67, 0.001, 0.67).

5.3.2 Inter-Observer Agreement

We calculated inter-observer agreement separately for both reading conditions, i.e. with
and without availability of the subtraction image. Results are listed in Figure 5.3. With
four readers, there were six combinations of reader pairs, for each of the two reading
conditions. For the detection of size change, five of the six reader combinations showed
an increase in agreement with the availability of subtraction image, differences were
significant for three reader pairs (p = 0.027∗, 0.099, < 0.001∗, 0.43, 0.001∗, 0.40). For
the detection of density change, also five of the six reader pairs showed an increase
in agreement with the availability of the subtraction image, differences were significant
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Figure 5.3: Inter-observer agreement for 59 and 58 cases for size and density assessment,
respectively. OiOj indicates the agreement between observer i and j when using a sub-
traction image (WS, gray bar), and separately, without using the subtraction image (NS,
white bar). At the top, p-values are given. Statistically significant improvement of κw is
denoted by an asterisk.

for two reader pairs (p = 0.003∗, 0.060, 0.040∗, 0.14, 0.24, 0.41). Both for size and density
assessment the mean agreement between observers is higher with the subtraction method,
compared to the standard visual comparison method.

5.4 Discussion

While for the evaluation of solid nodules, automatic volumetry represents an established
and accepted tool for lesion characterization, these software tools are only under devel-
opment for semi-solid and ground glass lesions. Current clinical practice is side-by-side
comparison of follow-up scans, assisted by diameter measurements, each coming with its
own constraints as is known from multiple studies with solid nodules.

This chapter presents the results of a study on the impact of a subtraction image on
observer performance for the detection of change of GGOs on chest CT scans. The use
of image subtraction was compared to the current clinical practice.

Since in most of these lesions no absolute standard of reference in terms of histology
or verified volumetry was available, we used the judgment of an experienced radiologist
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who had all clinical, reading and imaging data available, as a standard of reference.
This standard has of course its limitations but represented - in our opinion - a sufficient
superiority compared to the individual readings. Lesion pairs that could not be classified
with high confidence even with all information available, were excluded from further
data analysis. This was done to minimize the uncertainty on the data analysis, which is
inevitably introduced by a non-perfect standard. Exclusion of nodules may lead to a bias
because difficult nodules are omitted from evaluation. Separate analysis of these cases,
however, showed that it was virtually impossible for observers to determine size change,
indicated by very low weighted kappa values (≤ 0.19), both for inter-observer variability
and for agreement with the observer that established the standard of reference. This
indicates that the establishment of a meaningful standard of reference for these difficult
nodules may not be possible, if histology is not available.

We found that the use of a subtraction image improves the detection of changes.
When observers had a high level of confidence even without image subtraction, the agree-
ment with the standard of reference was high, both with and without subtraction. For
a lower level of confidence, image subtraction improved observer performance substan-
tially. Taking inter-observer agreement and agreement with the standard of reference as
performance measures, we found that image subtraction gives a more reproducible and
accurate method to detect change in size and density of a GGO.

Diameter measurements of lung tumor size on CT scans are often inconsistent [90–
92]. In our study, the perceived need to perform diameter measurements varied strongly
between observers: some used diameter measurements in 57% (48/84), others in only 5%
(4/84) of images pairs. When the subtraction image was supplied, the number of diameter
measurements dropped substantially, indicating that the subtraction image replaced the
perceived need for diameter measurements. Reading of the additional subtraction image
had no impact on reading time.

Automatic or semi-automatic volumetric or densitometric tools are also under devel-
opment for GGOs. So far they suffer especially from insufficient automatic segmentation.
Manual segmentation is an option but may suffer from reproducibility problems and is
labor-intensive. Saito et al. [93] used density slicing (the selection of voxels with values
in a range of intensities) to segment a GGO. Sumikawa et al. [94] employed a combina-
tion of adaptive thresholding and morphological pruning. A more sophisticated method
based on voxel classification together with a vessel suppression technique was proposed
by Zhou et al. [85]. Our technique provides an alternative that is based on visual image
evaluation, and uses subtraction to enhance subtle differences.

Application of the subtraction method in clinical practice currently requires manual
placement of an ellipsoid around the nodule. However, the only conditions are that the
ellipsoid contains the nodule and excludes most of the surrounding parenchyma; thus, a
rough delineation will suffice. After placement of the ellipsoid the scans need to be regis-
tered and subtracted, which requires about 10 minutes with the current implementation.

We conclude that image subtraction after registration for the follow-up of ground-
glass opacities improves observer performance for the detection of nodule size and density
change on chest CT, especially when the level of confidence of observers is low without
the subtraction image, and decreases inter-observer variability.
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Abstract

Radiation therapy for cervical cancer can benefit from image registra-
tion in several ways, for example by studying the motion of organs, or
by (partially) automating the delineation of the target volume and other
structures of interest. In this chapter, the registration of cervical data is
addressed using mutual information (MI) of not only image intensity, but also
features that describe local image structure. Three aspects of the registration
are addressed to make this approach feasible. Firstly, instead of relying on
a histogram-based estimation of mutual information, which poses problems
for a larger number of features, a graph-based implementation of α-mutual
information (α-MI) is employed. Secondly, the analytical derivative of α-MI
is derived. This makes it possible to use a stochastic gradient descent
method to solve the registration problem, which is substantially faster than
non-derivative-based methods. Thirdly, the feature space is reduced by means
of a principal component analysis, which also decreases the registration time.
The proposed technique is compared to a standard approach, based on the
mutual information of image intensity only. Experiments are performed
on 93 T2-weighted MR clinical data sets acquired from 19 patients with
cervical cancer. Several characteristics of the proposed algorithm are studied
on a subset of 19 image pairs (one pair per patient). On the remaining
data (36 image pairs, one or two pairs per patient) the median overlap is
shown to improve significantly compared to standard MI from 0.75 to 0.81
for the bladder (p = 2·10−5) and from 0.76 to 0.77 for the rectum (p = 9·10−5).

Based upon: M. Staring, U.A. van der Heide, S. Klein, M.A. Viergever,
and J.P.W. Pluim, Registration of Cervical MRI Using Multifeature Mutual
Information, submitted.
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6.1 Introduction

Cervical cancer is a common type of cancer in women, with 493,000 incidences
and 274,000 deaths worldwide in 2002 [95]. If surgery is not possible, external-

beam radiation therapy is the treatment of choice [96], in combination with chemotherapy
[97]. During therapy, a patient is irradiated several times in succession. In our hospital,
a patient is irradiated 5 times a week for a duration of 5 weeks. Several factors are
important for the success of radiotherapy. The first factor concerns the dose targeting.
The region that should receive a high dose is the clinical target volume (CTV), which
includes the gross tumour volume (GTV) and a region around the GTV with suspicion
of micro-metastases. Neighbouring tissue such as the bladder and rectum should receive
a dose as low as possible, to reduce complications during and after therapy. Therefore,
accurate localisation of the cervix and surrounding structures is needed to effectively aim
the dose delivery. A second factor is the ability to detect whether treatment plans need
to be adapted to changes in the anatomy, for example due to response of the tumour to
treatment. Adaptation of the treatment plans can improve sparing of bowel and rectum
[98]. Pötter et al. [97] expect that replanning can have a minimising effect on treatment
related morbidity. A third important factor in radiation therapy concerns the treatment
margins used to accommodate uncertainties in the position of the target volumes [99].
The uncertainty can be high due to the large movement of the bladder, rectum and
intestines. Quantification of the geometrical changes of these structures may help to
reduce the treatment margin [6, 51,100,101].

Image registration can aid in all these cases. Segmentation of the relevant structures
can be achieved by an atlas-based registration approach, as has been done for the prostate
[9]. Another approach is to automatically update the manually created treatment plan
of the first day, to that of the current day, instead of creating new manual segmentations.
Automatic updates can be realised by performing a nonrigid intrasubject registration,
and propagating the segmentation of the first day to the current day. Even if the quality
of these automatic segmentations is not sufficient for direct clinical use, it can be used as
an initialisation for annotators, which can save time and reduce observer variability [102].
To detect the need for adapting the radiotherapy treatment plans, one can register the
current image with the baseline image. The volume of the GTV in combination with its
motion are indicators for the necessity to update the treatment plans [103]. Geometrical
changes can be quantified by the transformation resulting from image registration.

While traditionally CT images are used for radiotherapy, MRI is increasingly added,
since it is superior to CT for staging, delineation of the relevant organs, and for measuring
cervical carcinoma size and uterine extension, see [104–106]. Factors that hinder the
success of image registration are MR imaging artifacts, the highly anisotropic voxels, and
the large interfraction variability of the position, shape and size of the bladder, rectum
and intestines in particular. In Figure 6.1 examples of these limiting factors are given.

In this chapter, we present an intensity-based nonrigid registration method to auto-
matically align intrapatient MR images of the cervix, for the purposes mentioned above.
A standard approach, based on the mutual information of the intensity of the MR images
only, may not be sufficient to overcome all of the limiting factors. Therefore, we propose
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to use an algorithm that additionally incorporates features, in our case features that de-
scribe local image structure. The feature information is utilised by a multidimensional
α-mutual information measure (α-MI), and is shown to improve the registration quality.

In order to make α-MI feasible for a large number of features, we address several
aspects of the method:

• Multidimensional α-mutual information is implemented by computing the length of
entropic graphs [107–110]. Commonly, mutual information is implemented by the
estimation of a joint histogram. The joint histogram is of dimension 2d, with d the
number of features. Therefore, it suffers from the so-called curse of dimensionality:
more and more samples are needed to fill the joint histogram up to a sufficient level,
so that MI can be reliably estimated. The need to estimate the joint histogram can
be eliminated, by directly relating entropy to the data, without estimating the
probability density function. The choice for the entropic graphs implementation
makes it possible to use multidimensional mutual information for a larger number
of features.

• The analytical derivative of α-MI with respect to the transformation parameters
is derived. With the analytical derivative the registration problem can be solved
using a stochastic gradient descent method. This is much faster, compared to a
finite difference optimisation routine or a non-derivative-based optimiser.

• The feature space is reduced by employing a principal component analysis (PCA)
on the total set of features. This also decreases the registration time substantially.

α-Mutual information for image registration was introduced by Hero et al. [107,108].
It has been used on 2D data [109,111], sometimes using a non-derivative-based optimiser
[112]. In [113] a descent direction for a Euclidean minimal spanning tree is derived, and
some results for rigid registration are given. Oubel et al. [114] apply α-joint entropy to 3D
tagged MR sequences of the heart, for which they also introduce an analytical derivative.
The method was evaluated on five sequences, using only two features: the intensity from
two different viewing directions.

In Section 6.2 details about the registration framework are given, α-MI is explained,
and the analytical derivative is deduced. The features used for the registration of the
cervical data are discussed in Section 6.3. For tuning and evaluation, T2-weighted MR
data sets are available for 19 patients. Registration parameters are tuned on a subset of
19 image pairs. Evaluation is performed on the remaining 36 image pairs by comparing
automatic segmentations with a manually established ground truth, see Section 6.4 and
6.5.
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(a) (b) (c)

(d) (e) (f)

Figure 6.1: Examples of limiting factors for image registration. Figures (a) and (b) show
two scans of the same patient, intensity windowed for optimal display of the bladder.
(b) demonstrates an intensity inhomogeneity over the bladder. (c) shows a slice in the
x direction to illustrate data anisotropy. In (d) - (f) three scans of another patient are
shown, exhibiting large variations in bladder filling (compare (d) with (e)) and rectum
filling (compare (d,e) with (f)).

6.2 Method

6.2.1 Registration Framework

Registration of a q-dimensional moving image IM : ΩM ⊂ R
q → R to a fixed image

IF : ΩF ⊂ R
q → R can be formulated as an optimisation problem:

µ̂ = arg min
µ

S(Tµ; IF , IM , ΩF ), (6.1)

with Tµ : ΩF → ΩM the transformation modelled by the vector of parameters µ ∈ R
M ,

and S a suitable cost function (similarity measure) that is minimal when IF (x) and
IM(Tµ(x)) are aligned.

6.2.2 Mutual Information

The mutual information [21,115] of image intensities is defined as: MI = H(IF )+H(IM)−
H(IF , IM), with H(I) = −∑

pi log pi the entropy of the intensities of image I, H(IF , IM)
the joint entropy, and pi the intensity probabilities. It is usually implemented by con-
structing a joint histogram, which estimates the joint intensity probabilities. Details
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about the specific implementation used in this chapter can be found in [30], in which the
analytical derivative of MI can also be found.

6.2.3 Entropy, Entropic Graphs and α-Mutual Information

Mutual information is commonly calculated on the intensities only, i.e. on one-dimensional
signals, by estimation of a joint histogram. For higher-dimensional signals, however, this
computation method poses problems, as outlined in the Introduction. Therefore, we opt
for an implementation of α-mutual information introduced by Hero et al. [107,108], based
on entropic graphs.

Define z(xi) = [z1(xi), . . . , zd(xi)] to be a vector of dimension d containing all feature
values at point xi. For example, the first index z1 is the intensity of the image, and
z2, z3 and z4 contain the values of the spatial derivatives of that image. It was shown
by Beardwood et al. [116] (see also [117]) that the length of the graph that connects
the feature points {zi}, is related to the Rényi α-entropy [118]. It can be shown, using
l’Hôpital’s rule, that the limit α → 1 of α-entropy equals the Shannon entropy. Not
all graphs are suited to compute α-entropy, but for example the minimal spanning tree
and the k-Nearest Neighbour (kNN) graph are [108]. We choose to use the kNN graph,
because of its computational attractiveness [108].

Let zf (xi) be the feature vector of the fixed image at a point xi, and zm(Tµ(xi)) that
of the moving image at the transformed point Tµ(xi). Let Zf = {zf (x1), . . . ,z

f (xN)}
be the collection of N feature vectors drawn from the fixed image, and Zm that of the
moving feature vectors. Let zfm(xi,Tµ(xi)) be the concatenation of the two feature
vectors: [zf (xi),z

m(Tµ(xi))], with corresponding collection Zfm . Three kNN graphs can
be constructed on the three collections, where the total distance of a feature vector z to
its k nearest neighbours is given by:

Γf
i =

k∑
p=1

∥∥zf (xi) − zf (xip)
∥∥ , (6.2)

Γm
i (µ) =

k∑
p=1

‖zm(Tµ(xi)) − zm(Tµ(xip))‖ , (6.3)

Γfm
i (µ)=

k∑
p=1

∥∥zfm(xi,Tµ(xi)) −zfm(xip,Tµ(xip))
∥∥, (6.4)

with zf (xip), zm(Tµ(xip)) and zfm(xip,Tµ(xip)) the p-th nearest neighbour of zf (xi),
zm(Tµ(xi)) and zfm(xi,Tµ(xi)), respectively. Note that the neighbours of the three
graphs in general do not correspond. A graph-based estimator for α-MI is defined as
[108]:

α-M̂I(µ;Zf ,Zm,Zfm) =
1

α − 1
log

1

Nα

N∑
i=1

⎛⎝ Γfm
i (µ)√

Γf
i Γ

m
i (µ)

⎞⎠2γ

, (6.5)

with γ = d(1 − α), and 0 < α < 1 a user-defined constant.
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6.2.4 Optimisation

To solve the minimisation problem (6.1), an iterative stochastic gradient descent optimi-
sation strategy is employed [19]:

µt+1 = µt + atg̃t, (6.6)

with g̃t an approximation of the exact derivative of the similarity measure evaluated at
iteration t: ∂S

∂µ
(µt). The derivative is approximated by computing it over a subset of

N points x ∈ ΩF of the total number of points, randomly chosen in every iteration.
This was shown to substantially accelerate the registration, while retaining convergence
properties [19]. Samples that are not in the overlap of the fixed and deformed moving
image domain are excluded. For the step size at a decaying function of the iteration
number is used: at = a/(A+ t)τ , with a > 0, A ≥ 1 and 0 < τ ≤ 1 user-defined constants
[19].

6.2.5 Derivative of α-Mutual Information

For the multidimensional case, registration is written as:

µ̂ = arg min
µ

α-M̂I(µ;Zf ,Zm,Zfm). (6.7)

In order to apply the stochastic gradient descent method given by Equation (6.6), the

derivative ∂
∂µj

α-M̂I(µ;Zf ,Zm,Zfm) is required. Since computing the derivative using

finite differences is extremely slow for a large number of transformation parameters M ,
we derive an analytical expression for it. The expression we derive is valid as long as
graph topology does not change for small changes of µ.

For compact notation, define

Gi(µ) = Γfm
i (µ)/

√
Γf

i Γ
m
i (µ) and (6.8)

dfm
ip (µ) = zfm(xi,Tµ(xi)) − zfm(xip,Tµ(xip)), (6.9)

then the derivative of α-M̂I equals:

∂

∂µj

α-M̂I (µ;Zf ,Zm, ΩF ) =
−2d∑n

i=1 Gi(µ)2γ

n∑
i=1

Gi(µ)2γ−1 ∂

∂µj

Gi(µ). (6.10)

The derivative of Gi(µ) is written as:

∂

∂µj

Gi(µ) =

∂
∂µj

Γfm
i (µ) − 1

2
Γfm

i (µ)Γm
i (µ)−1 ∂

∂µj
Γm

i (µ)√
Γf

i Γ
m
i (µ)

. (6.11)
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From (6.11) we expand the derivative of Γfm
i (µ):

∂

∂µj

Γfm
i (µ) =

k∑
p=1

∂

∂µj

√
dfm

ip (µ)T dfm
ip (µ) (6.12)

=
k∑

p=1

1

2
‖dfm

ip (µ)‖−1 ∂

∂µj

(
dfm

ip (µ)T dfm
ip (µ)

)
(6.13)

=
k∑

p=1

dfm
ip (µ)T

‖dfm
ip (µ)‖ · ∂

∂µj

dfm
ip (µ), (6.14)

where we used the Euclidean distance metric in (6.12). Only the derivative to the moving
image features matter, since ∂

∂µj
dfm

ip (µ) = [0, ∂
∂µj

dm
ip(µ)]T . So,

∂

∂µj

Γfm
i (µ) =

k∑
p=1

dm
ip(µ)T

‖dfm
ip (µ)‖×[

∂zm

∂x
(Tµ(xi)) · ∂Tµ

∂µj

(xi) − ∂zm

∂x
(Tµ(xip))

∂Tµ

∂µj

(xip)

]
.

(6.15)

The derivative ∂
∂µj

Γm
i (µ) can be derived similarly. Summarising, the derivative of α-M̂I

can be expressed in terms of the spatial derivative of the moving (feature) images ∂zm/∂x,
the Jacobian of the transformation ∂Tµ/∂µj, the differences dfm

ip and dm
ip, and the graph

distances Γf
i , Γm

i (µ) and Γfm
i (µ). Derivation of the analytical derivative is similar to that

of Oubel et al. [114], who did the analysis for α-joint entropy. Note that, in contrast with
Oubel, we also take the derivative to the nearest neighbours into account in Equation
(6.15).

6.3 Features

Now that the registration framework for multidimensional mutual information has been
defined, features need to be chosen. From the vast amount of choices, features that de-
scribe the local structure of images supply supplementary knowledge, which may improve
the registration. We choose the set of Cartesian image structure features up to the sec-
ond order derivatives [119], listed in Table 6.1. Here, L denotes luminance or intensity,
g = (∂L/∂x) the spatial derivative, H is the Hessian of L, and tr(·) denotes the matrix
trace. Note that LiLi is the gradient magnitude, and Lii the Laplacian. All features are
invariant to rotation and translation. Additionally, this set is irreducible: other structure
invariants of order up to two can be expressed in terms of features in this set, and the
set is minimal. The invariants are computed using Gaussian derivatives at scale σ. Fea-
tures at scale σ = 1 and 2 were included. The additional use of σ = 4 did not improve
results, see Section 6.5.1. In total we have 15 features: 14 features that describe local
structure1, and the original intensity data. In Figure 6.2(a)-(f) some examples are given.

1Note that also L can be computed at scale σ, by Gaussian filtering of the original intensity data.
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Table 6.1: The irreducible set of second order Cartesian image structure invariants for
3D.

Einstein notation matrix notation

L L
LiLi gT g
LiLijLj gT Hg
LiLijLjkLk gT HHg
Lii tr(H)
LijLji tr(HH)
LijLjkLki tr(HHH)

Note that all features are derived from the original image data, and can be computed
before registration.

Since the computational complexity of (6.5) and (6.10) increases with the number of
features d, and since not all features may have an equal contribution to the registration
quality, it could be beneficial to select a subset of the total feature set for inclusion in the
registration. We opt to perform a Principal Component Analysis (PCA) on the complete
feature set, and select only the first P ≤ d principal components for inclusion in the
registration.

The features are normalised to have zero mean and unit variance. The PCA is per-
formed on the concatenation of the fixed and moving images, resulting in the (NF +NM)×
d matrix [zf (x1), . . . ,z

f (xNF
),zm(y1), . . . ,z

m(yNM
)]T , with NF = |ΩF | and NM = |ΩM |.

By performing the PCA on the concatenation, rather than on the separate images IF and
IM , an identical linear combination is used for the feature images of the fixed and the
moving set. The PCA algorithm returns the principal components (a linear combination
of the input), together with the explained variance λ2

i , i = 1, . . . , d, of each component.
The percentage of total explained variance is given by

∑P
i=1 λ2

i /
∑d

i=1 λ2
i . In Figure 6.2(g)-

(l) the first 6 principal components, derived from the total feature set of the image in
Figure 6.2(a), are shown.

6.4 Experiments

The graph-based α-mutual information measure was implemented in the registration
package elastix, developed by the authors. It is publicly available from http://elastix.isi.uu.nl.
This package is largely based on the Insight Toolkit (ITK) [33]. The implementation of
the kNN graph is based on the Approximate Nearest Neighbour (ANN) library, freely
available from http://www.cs.umd.edu/~mount/ANN/.

http://elastix.isi.uu.nl
http://www.cs.umd.edu/~mount/ANN/
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 6.2: Examples of the image structure features. (a) original image, (b) - (f) are
the features that describe local structure (σ = 1), with (b) LiLi, (c) LiLijLj, (d) Lii, (e)
LijLji, (f) LijLjkLki. The first 6 principal components of the PCA are shown in (g)-(l).
For this particular example the total explained variance for increasing P from 1 to 6 was
57%, 79%, 88%, 93%, 96%, and 98%. The images were windowed for optimal display.
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6.4.1 Data

The MR data were acquired with a Philips 1.5T scanner (Gyroscan NT Intera; Philips
Medical Systems, Best, The Netherlands), using a T2-weighted sequence taken in the
transversal direction. Nineteen patients were scanned. Each patient was scanned 5
times, one scan each week, except for two patients who were scanned 4 times.

The image dimensions were 512× 512× 30 voxels of size 0.625× 0.625× 4.5 mm. The
data were cropped before registration to a size of 210 × 250 × 30 voxels such that the
data included the relevant structures. Manual segmentations of the GTV, CTV, bladder
and rectum were available for each image. They were created by a radiation oncologist
and approved by a radiologist. The segmentations were made with the clinical purpose
in mind, and not for evaluation of registration quality specifically.

The data were divided into two sets. The first set contains the images at week 1 and
2 (19 image pairs), and is used for selection of the parameters. The second set consists of
the remaining 55 images: 19 pairs of weeks 3 and 4, and 17 pairs of weeks 4 and 5; a total
of 36 image pairs. The second set is used for comparing MI and α-MI with parameters
tuned on the first set. With this division evaluation of the method could be performed
on all available patients.

6.4.2 Registration Settings

The registration parameters were chosen by trial-and-error on the first data set. Images
at one week were registered to that of the next week. A rigid registration based on the
mutual information of intensities only, was performed prior to nonrigid registration, to get
a rough alignment. For the nonrigid registration, the transformation was parameterised
with B-splines [4]. We employ a multiresolution scheme with three resolution levels
on all feature images. Gaussian smoothing was applied, but no downsampling. Scales
σ = 4.0, 2.0 and 1.0 voxels were used in the x and y directions. For the z direction,
σ = 2.0, 1.0 and 0.5 voxel was used, because of the voxel anisotropy. A multigrid approach
was used with a spacing of 80, 40 and 20 mm between the B-spline control points for the
first, second, and final resolution, respectively. This yielded M = 3300 parameters in the
final resolution. For the optimisation procedure, A = 50, τ = 0.6, and a = 2000 were
set. During the parameter selection stage, 300 iterations were used. MI and α-MI were
compared on the second data set with 600 iterations. The number of samples, randomly
selected in every iteration was set to N = 5000. To be comparable to MI, α was set to
0.99. For the kNN graph implementation the ANN package was used. We selected kD
trees, a standard splitting rule, and a bucket size of 50. The parameter ε that defines the
amount of error that is acceptable when computing the nearest neighbours was set to 10.
The k = 20 nearest neighbours were used to compute the derivative of α-M̂I.

6.4.3 Evaluation Measure

To evaluate the registration quality, manual segmentations of the CTV, bladder and
rectum were used. Automatic segmentations were generated by transforming the manual
segmentation of the moving image to the fixed image domain, using the transformation
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Figure 6.3: The effect of feature selection and the number of principal components P . For
each anatomical structure, the leftmost column shows the result for MI, the right-most
for α-MI without PCA (d = 15), and the columns in between for α-MI with PCA. The
number below the graph refers to P . A star indicates a statistical significant difference
of the median overlap compared to the previous column, starting from P = 2.

Tµ̂ found by the registration. This transformed segmentation A was compared to the
manual segmentation B of the fixed image, using the Dice similarity coefficient (DSC) as
a measure of overlap [40]:

DSC(A,B) =
2|A ∩ B|
|A| + |B| , (6.16)

where | · | denotes the number of voxels within the segmentation. A value of 0 indicates
that A and B are disjoint, 1 indicates perfect agreement. The DSCs are presented by
box-and-whisker plots.

Paired, two-sided Wilcoxon tests were performed on the overlap values of two experi-
ments. A value of p < 0.05 was considered to indicate a statistically significant difference.

6.5 Results

6.5.1 Results: Data Set 1 (Parameter Selection)

Several aspects of the proposed algorithm were investigated. All experiments described
in this section were performed on the first data set.

The selection of the scales of the features was addressed in a first experiment. Com-
pared to using only σ = 1, including features at scale σ = 1 and 2 gave slightly better
results. The effect was most noticeable for the bladder, where the median overlap in-
creased from 0.76 to 0.79. The additional use of σ = 4 did not improve the results.
Therefore, for α-MI, scales σ = 1 and 2 were chosen.

In a second experiment, the effect of the number of principal components P that is
used during the registration, was investigated. The results are shown in Figure 6.3. If
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Table 6.2: Runtime for the various registration experiments. The experiments were per-
formed on a standard pc (AMD Opteron 250 running at 2.4 GHz.), using 300 iterations.

method time (min.)

MI 1.2

α-MI P = 1 32
P = 2 42
P = 4 57
P = 6 73
P = 8 90
d = 15 162

only one principal component was taken into account, most of the registrations failed; the
result was worse than MI. Results similar to P = 1 were obtained when using the original
intensity images as the single feature in α-MI. A possible explanation for this behaviour
can be found by closer inspection of the definition of α-MI in (6.5). The expression
contains the division by Γf

i . In the case d = 1 this can be a very small number when
k out of the N samples have similar intensity. Division by a small number can make
the estimation of α-MI unstable. For d > 1 the probability that samples have a small
distance to their nearest neighbours is in general reduced, except in the unlikely event
that the second feature is constant. This observation coincides with our experience that
the problem is reduced for larger k. The median total explained variance resulting from
the PCA analysis was 0.57, 0.80, 0.93, 0.98, and 0.99 for P = 1, 2, 4, 6, and 8, respectively.
Increasing P improved the results up to approximately P = 6 or P = 8.

In a third experiment the influence of the use of PCA was examined. α-MI was
performed without the feature space reduction, i.e. with all local image structure features
at scale 1 and 2 and the original intensity data (in total 15 features). For each anatomical
structure, the right-most column of Figure 6.3 shows the result for this experiment.
Inclusion of all features did not improve registration performance considerably, except
for the rectum where the difference with PCA (P = 8) is significant. The best trade-off
of computation time and registration accuracy was with the use of PCA with P = 6.
With this setting the registration time was 73 minutes, a reduction with a factor of 2.2
compared to using the full feature set, see Table 6.2.

6.5.2 Results: Data Set 2 (Evaluation)

MI is compared to α-MI (PCA, P = 6) on data set 2. For each of the two similarity
measures, 36 registrations are performed. The results are shown in Figure 6.4. Not much
difference between the two methods is seen at the CTV. At the bladder and the rectum,
however, the median overlap increases significantly from 0.75 to 0.81 (p = 2 · 10−5) and
from 0.76 to 0.77 (p = 9 · 10−5), respectively. Also note the increase of the first quartile,
meaning that if the technique were to be used in the clinic, less manual correction of the
treatment plans is needed when using α-MI.
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Figure 6.4: MI versus α-MI. For each anatomical structure, the leftmost column shows
the result for MI. The second column shows the result for α-MI (P = 6). A star indicates
a statistical significant difference of the median overlaps of the two methods.

In Figure 6.5 a typical example of the result of registration is given, for MI (a) and
α-MI (b). Much less deformation is expected at fatty tissue and near bony anatomy, see
for example the bottom and right side of Figure 6.5 (a) and (b). The examples show
accurate registrations at those positions, both for MI and α-MI. A large difference in
bladder filling is hard to recover for MI. Although the bladders are not perfectly aligned
by α-MI, the result is better. Registration problems sometimes also occur at the GTV,
where the tissue changes due to irradiation. Figures 6.5(c) and (d) show an example of
such a tissue change, which is difficult to handle for the registration.

6.6 Discussion and Conclusion

In this chapter we have introduced a registration method for cervical MR images capa-
ble of taking into account multiple image features. Three aspects were addressed to be
able to use the method in practice, also for nonrigid registration. Firstly, a graph-based
implementation of α-mutual information was chosen, instead of a histogram-based im-
plementation. Histogram-based approaches are currently not able to cope with a larger
number of features, although efforts to do so have been undertaken [120–122]. The
graph-based implementation makes it possible to take into account an enlarged feature
space. Secondly, an analytical derivative was constructed, which enables the use of a
fast stochastic gradient descent optimisation routine. A finite difference gradient descent
approach would require 2M evaluations of the cost function per iteration, which results
in a runtime of 153 h., compared to 162 min. when the analytical derivative is employed.
Finally, the feature space was reduced by means of a PCA algorithm. This reduces the
number of features from 15 to 6, which leads to another reduction in registration time
by a factor of ≈ 2. This work is the first to report feasible registration times for multi-
dimensional mutual information with the number of parameters of the transformation in
the thousands (M = 3300).
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(a) MI (b) α-MI

(c) scan at week i (d) scan at week i + 1

Figure 6.5: Example results. The bladder filling of the fixed and moving image is very
different; a large deformation is required at that position. The fixed image is combined
with the deformed moving image, using a checkerboard pattern. (a) The result of MI
clearly is not well aligned at the bladder. (b) α-MI performs much better for this large
deformation. (c) and (d) show the GTV (delineated) at two subsequent weeks. Note the
change of the tissue around the GTV.

It was shown on clinical data of patients with cervical cancer that the proposed method
outperforms a standard approach based on the mutual information of intensity only. For
use in the clinic, further improvements are still required. One option is the use of a
localised version of mutual information [9]. On MR images acquired for the radiation
therapy of the prostate this was shown to improve the registration, at no additional
computational cost. Another possibility with α-MI is the inclusion of other imaging
data, acquired at the same time point, such as an MR image acquired in another scanning
direction, or acquired with a different protocol. For the purpose of updating treatment
plans, it is possible to use a multi-atlas matching approach [8], once two or more previous
scans are available. Rohlfing et al. [8] reported improved results for this technique,
compared to using a single atlas image.

Propagation of the GTV segmentation is probably not possible with a registration
approach only. Even if anatomical correspondence is found, tumourous tissue may dis-
appear in time, due to successful treatment. In this case it might be necessary to employ
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a tissue classification technique, after the registration.
Although registration using multiple image features is feasible with the proposed

method, in our implementation it still requires much more time than the histogram-
based approach. For clinical use the computational burden of α-MI probably needs to
be decreased, depending on the specific application. From Equation (6.5) it is clear that
the major part of the computation can be parallelised by distributing the summation
over multiple processors. Another interesting approach is to use a Minimal Spanning
Tree (MST) instead of a kNN graph. With the MST, α-MI is computed as a sum over
N − 1 edges; with the kNN graph it is a sum over kN edges, see (6.5). During the
experiments we noticed that most of the computation time is spend in calculating (6.15).
The construction of the graph and searching for the k nearest neighbours appeared to be
of minor influence. Therefore, although it takes more time to construct the MST, it is
probably faster to compute the analytical derivative with it. The influence of this change
on the rate of convergence of the registration remains to be investigated.

In conclusion, compared to a standard approach, the proposed method accomplishes
improved nonrigid registration for a challenging registration problem, by inclusion of
multiple features in the registration cost function.
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Summary 7
7.1 Summary

Image matching is important for the comparison of medical images. Comparison is
of clinical relevance for the analysis of differences due to changes in the health of a

patient. For example, when a disease is imaged at two time points, then one wants to
know if it is stable, has regressed, or progressed. Another example is when a patient
is imaged before and after treatment. In this case one wants to know to what extent
treatment was successful. The type of clinical action that is taken is dependent on the
outcome of this analysis.

This thesis addresses the analysis of change in medical images by means of image
registration. We distinguish three contributions of the work described in this thesis,
given in the next three sections.

7.1.1 elastix

Together with Stefan Klein software was developed that aids the research on image reg-
istration. The software package is called elastix and is described in Chapter 2. An
image registration algorithm consists of several parts, such as the cost function, the op-
timisation routine, and the transformation. For each part many choices are available,
but it is beforehand not known which selection is optimal for the problem at hand.
elastix contains a collection of the algorithms available in the literature, and allows
for easy selection, testing and comparison of the different methods. The command-line
interface enables automated processing of large numbers of data sets, by means of script-
ing. elastix is based on the Insight Toolkit and is open source (distributed under the
BSD license). The software was used for all experiments described in this thesis, and is
increasingly utilised, both within and outside the Image Sciences Institute.

7.1.2 Tissue-dependent Image Registration and Change Detec-
tion

Popular nonrigid image registration algorithms do not take the rigidity of different tissue
types into account. This can lead to undesired effects in three situations:

a. The image contains various tissue types, each with its own mechanical stiffness.

79
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b. Structural changes over time (e.g. tumour growth) need to be visualised.

c. The visibility of structures varies between acquisitions due to the use of contrast
material.

In all three situations the objects of interest should be considered as locally rigid by the
registration algorithm, to allow change analysis by image subtraction.

In Chapter 3 this problem is tackled by locally adapting the deformation field at
structures that must be kept rigid, using a tissue-dependent filtering technique. This
adaptive filtering of the deformation field results in locally linear transformations without
scaling or shearing. The degree of filtering is related to tissue stiffness: more filtering is
applied at stiff tissue locations, less at parts of the image containing nonrigid tissue.

Evaluation of the proposed tissue-dependent filtering was performed on 3D CT data
of the thorax and on 2D Digital Subtraction Angiography (DSA) images. It was shown
that the adaptive filter leads to improved registration results: tumour volumes and vessel
widths are preserved rather than affected. On average 99% of the tumour volume is
preserved, compared to 95% with a standard algorithm that does not take into account
rigidity of the tumour. For vessels 98% of the diameter is retained, compared to 85% of
a standard algorithm. The filter has as a downside that when it is applied strongly it
does not allow for rotations of rigid objects.

A rigidity penalty term does not have this downside. The construction of the term
is described in Chapter 4. It is derived from the definition of a rigid transformation,
and results in three distinct terms, related to affine-ness of the transformation, and
orthonormality and properness of the rotation matrix. The three conditions are combined
in one term. Locality is introduced by a weight function, dependent on the spatial
position. Local rigidity is included in the registration by including a penalty term in the
cost function. A fast algorithm is obtained by exploiting the B-spline parameterisation
of the transformation.

Evaluation was again performed on the 3D CT data of the thorax and the 2D angio
data. The tumour volume decreased on average to 78% of the original volume for a
standard algorithm; for the algorithm that included the rigidity penalty term 98% of the
volume was retained. For the vessels the diameter preservation improved from 84% to
99%. From these results we concluded that the rigidity penalty term is capable of keeping
user-defined structures locally rigid, while performing nonrigid registration.

Situation b. from the list above is analysed further in a clinical setting in Chapter
5. To improve patient prognosis it is important to determine at an early stage whether a
lung nodule is benign or malignant. Changes in size or density are two important criteria
for malignancy. Detection of growth or density change, however, is frequently difficult
for a specific type of nodules, ground-glass opacities, because of their appearance on CT.
In current clinical practice the nodules are compared visually, with the aid of manual
diameter measurements. We studied the impact of the additional use of a subtraction
image on the detection of changes for these nodules. The subtraction image was generated
by the registration algorithm described in Chapter 4.
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To this end we let four observers rate size and density change for approximately
60 pairs of images containing a ground-glass opacity, once with and once without the
subtraction image. Especially for nodules that had changed only in a subtle fashion, the
subtraction image improved observer performance substantially compared to the current
clinical practice. The agreement with the standard of reference, measured with a kappa
statistic, increased from κw = 0.26 to 0.57 for size change detection, and from 0.19 to 0.47
for density change detection, for these subtle cases. Also the inter-observer agreement
improved, indicating that the subtraction image supplies a more reproducible method.

7.1.3 Improved Registration Performance

In Chapter 6, the registration of cervical data was addressed using mutual information
of not only image intensity, but also features that describe local image structure. Sev-
eral technical aspects of the proposed cost function were addressed to obtain a feasible
registration time.

It was shown on challenging data (challenging due to image quality and large defor-
mations) from the Department of Radiotherapy (T2-weighted MR data of the cervix)
that, compared to a standard algorithm based on intensity only, the proposed algorithm
improves performance significantly. For structures that have very different size and shape
between the two images, the performance increase was most noticeable: the median over-
lap of the bladder after registration increased significantly from 0.75 to 0.81.

7.2 Clinical Relevance

The work described in this thesis enables nonrigid registration while keeping user-defined
structures locally rigid. As shown in Chapter 5, this can be used to visualise changes of
ground-glass opacities. The method enables early detection of change, which improves
the patient prognosis and may help to save lives.

Research is needed to further automate the algorithm, since currently a rough manual
segmentation of the region that is to be kept rigid (the nodule) is required. Since the
segmentation only needs to be rough, it is probably possible to automate this part,
using standard segmentation algorithms. Alternatively, one may focus research attention
on completely automatic and accurate segmentation of these ground-glass nodules, and
perform volumetry to detect changes. It would be interesting to see how that method
would compare to relying on the human eye by means of a subtraction image. For
solid nodules, tools for (semi)automatic volumetry already exist, since these nodules are
easier to segment. For these nodules, a comparison of both methods could be started
immediately.

The radiotherapy department of the University Medical Center Utrecht is developing
an integrated MRI-accelerator system. This system enables imaging of a target region
(e.g. the cervix), while at the same time irradiating it. A potential advantage of such
a system compared to the current methodology is that more accurate dose targeting is
possible. This enables the use of a higher dose for the target region, and the sparing
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of tissue near a tumour, thereby reducing patient complications. However, for the dose
targeting the relevant organs need to be segmented. Manual segmentation is not an
option, because of time constraints. Automation can be done by means of nonrigid
image registration, but currently these techniques lack accuracy. In Chapter 6 a step is
taken towards clinically acceptable registration accuracy.

In conclusion, although nonrigid image registration is not yet widely used in the clinic,
it can be of added value for the analysis of changes in medical images.
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Samenvatting

Beeldregistratie is belangrijk voor het vergelijken van medische beelden. Verge-
lijken is klinisch relevant voor de analyse van verschillen die ontstaan door veran-

deringen in de gezondheid van een patiënt. Bijvoorbeeld, wanneer een ziekte op twee
tijdpunten in beeld wordt gebracht, wil men weten of het stabiel is, of dat er regressie of
progressie is opgetreden. Een ander voorbeeld is het scannen van een patiënt voor en na
behandeling. In dat geval wil men weten in welke mate de behandeling succesvol was.
De klinische actie die genomen wordt, is afhankelijk van de uitkomst van de analyse van
de verschillen.

Dit proefschrift behandelt beeldregistratietechnieken ten behoeve van de analyse van
veranderingen in medische beelden. We onderscheiden drie bijdrages van het werk be-
schreven in dit proefschrift, die behandeld worden in de volgende drie paragrafen. Tot
slot bespreken we nog de klinische relevantie van het werk.

elastix

Samen met Stefan Klein is er software ontwikkeld dat het onderzoek naar beeldregistratie
ondersteunt. Het software pakket heet elastix en is beschreven in Hoofdstuk 2. Een
algoritme voor beeldregistratie bestaat uit verschillende delen, zoals de kostenfunctie, de
optimalisatieroutine en de transformatie. Voor ieder deel zijn er veel keuzes beschikbaar,
maar het is van tevoren niet bekend welke keuze optimaal is voor een bepaald probleem.
elastix is een verzameling van algoritmes die beschikbaar zijn in de literatuur. Het
vergemakkelijkt de selectie, het testen en het vergelijken van de verschillende methoden.
De command-line interface maakt het mogelijk om grote hoeveelheden data te verwerken,
door gebruik te maken van scripts. elastix is gebaseerd op de Insight Toolkit en is open
source (wordt verspreid onder the BSD licentie). De software werd gebruikt voor alle
experimenten die beschreven zijn in dit proefschrift en wordt steeds meer gebruikt, zowel
binnen als buiten het Image Sciences Institute.

Weefselafhankelijke Beeldregistratie en de Detectie van Veran-
deringen

De populaire, vaak gebruikte niet-rigide beeldregistratiealgoritmes houden geen rekening
met de stijfheid van verschillende weefseltypes. Dit kan tot ongewenste effecten leiden in
drie situaties:

a. Het beeld bevat verscheidene weefseltypes, ieder met zijn eigen mechanische stijf-
heid.

b. Veranderingen van structuren over de tijd moeten gevisualiseerd worden.
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c. Tussen acquisities verandert de zichtbaarheid van structuren doordat er contrast-
materiaal gebruikt wordt.

In alle drie de situaties moeten de objecten waar men gëıntereseerd in is door het
registratiealgoritme beschouwd worden als lokaal rigide, om zo de analyse van veran-
deringen mogelijk te maken door middel van beeldsubtractie.

In Hoofdstuk 3 wordt dit probleem aangepakt door het deformatieveld lokaal aan
te passen bij structuren die rigide moeten blijven. Dit wordt bereikt met een weefsel-
afhankelijke filtertechniek. Dit adaptieve filteren van het deformatieveld resulteert in
lokaal lineaire transformaties zonder schaling. De mate van filtering is gerelateerd aan de
stijfheid van het weefsel: er wordt meer gefilterd als het weefsel stijf is, minder in delen
van het beeld die zacht weefsel bevatten.

Evaluatie van de voorgestelde weefselafhankelijke filtering werd gedaan op 3D CT
data van de borstkas en op 2D Digitale Subtractie Angiografie (DSA) beelden. Er werd
aangetoond dat het adaptieve filter tot verbeterde registratieresultaten leidt: tumor-
volume en de wijdte van bloedvaten bleven behouden. Gemiddeld bleef 99% van het
tumorvolume behouden, vergeleken met 95% met een standaard methode die geen reke-
ning houdt met de rigiditeit van de tumor. Voor bloedvaten bleef 98% van de diameter
behouden, vergeleken met 85% met het standaard algoritme. Het filter heeft als nadeel
dat wanneer het te extreem wordt toegepast, rotaties van rigide objecten niet worden
toegestaan.

Een rigiditeitstrafterm heeft dit nadeel niet. De constructie van deze term wordt
beschreven in Hoofdstuk 4. De term is afgeleid van de definitie van een rigide transfor-
matie en bestaat uit drie verschillende termen die gerelateerd zijn aan het affien zijn van
de transformatie en de orthonormaliteit en “properness” van de rotatiematrix. De drie
voorwaarden zijn gecombineerd in één term. Plaatsafhankelijkheid wordt gëıntroduceerd
via een gewichtsfunctie, die afhankelijk is van de spatiële locatie. Lokale rigiditeit wordt
opgenomen in de registratie door de strafterm toe te voegen aan de kostenfunctie. Een
snel algoritme wordt verkregen door de B-spline parameterisatie van de transformatie uit
te buiten.

Evaluatie werd weer gedaan op de 3D CT data van de borstkas en de 2D angio
data. Het tumorvolume nam gemiddeld af tot 78% van het originele volume met een
standaard algoritme; voor het algoritme met de rigiditeitstrafterm bleef 98% van het
volume behouden. Voor de bloedvaten verbeterde het diameterbehoud van 84% tot 99%.
Uit deze resultaten concludeerden we dat de rigiditeitstrafterm in staat is om door de
gebruiker bepaalde structuren lokaal rigide te houden tijdens het uitvoeren van een niet-
rigide registratie.

Situatie b. van de lijst hierboven wordt in een klinisch kader verder geanalyseerd in
Hoofdstuk 5. Om de prognose van de patiënt te verbeteren is het belangrijk in een vroeg
stadium te weten of een long nodule goed- of kwaadaardig is. Veranderingen in grootte en
dichtheid zijn twee belangrijke criteria voor kwaadaardigheid. Detectie van veranderingen
in grootte of dichtheid is echter vaak moeilijk voor een specifiek type nodule, matglas no-
dules, door hun verschijningsvorm op CT. In de huidige klinische praktijk worden nodules
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visueel vergeleken, met behulp van handmatige diametermetingen. We bestudeerden het
effect van het toevoegen van een verschilbeeld aan de detectie van veranderingen van dit
type nodules. Het verschilbeeld was gemaakt met het registratiealgoritme beschreven in
Hoofdstuk 4.

Daartoe zijn vier waarnemers gevraagd de verandering van grootte en dichtheid te
scoren voor ongeveer 60 paren van beelden die een matglas nodule bevatten, een keer
met en een keer zonder het verschilbeeld. In het bijzonder voor nodules die subtiel ver-
anderd waren, verbeterde het verschilbeeld de prestatie van de waarnemers substantieel
vergeleken met de huidige klinische praktijk. Voor deze subtiele gevallen verbeterde de
overeenkomst met de gouden standaard, gemeten met de kappa statistiek, van κw = 0.26
tot 0.57 voor de detectie van veranderingen in grootte en van 0.19 tot 0.47 voor de detectie
van veranderingen in dichtheid. Ook de overeenkomst tussen waarnemers verbeterde, wat
er op wijst dat het verschilbeeld een beter reproduceerbare methode oplevert.

Verbeterde Registratie

In Hoofdstuk 6 behandelden we de registratie van cervix data met behulp van ‘wederzijdse
informatie’ van niet alleen de intensiteit, maar ook van kenmerken die de lokale struc-
tuur van een beeld beschrijven. Verschillende technische aspecten van de voorgestelde
kostenfunctie werden behandeld om een acceptabele registratietijd te verkrijgen.

We hebben op uitdagende data (uitdagend door de beeldkwaliteit en de grote de-
formaties) van de afdeling Radiotherapie laten zien dat, vergeleken met een standaard
algoritme gebaseerd op intensiteit alleen, het voorgestelde algoritme het significant beter
doet. De verbetering was het meest duidelijk voor structuren die verschillend van grootte
en vorm waren tussen de twee beelden: de mediaan van de overlap van de blaas na re-
gistratie nam toe van 0.75 tot 0.81.

Klinische Relevantie

Het werk beschreven in dit proefschrift maakt het mogelijk om niet-rigide registratie te
doen, terwijl door de gebruiker gedefinieerde structuren lokaal rigide gehouden worden.
Zoals Hoofdstuk 5 laat zien, kan dit gebruikt worden om veranderingen van matglas
nodules te visualiseren. De methode maakt het mogelijk om veranderingen in een vroeg
stadium op te sporen, wat de prognose voor de patiënt verbetert en zou kunnen helpen
om levens te redden.

Onderzoek is nodig om het algoritme verder te automatiseren, omdat nu een manuele
segmentatie van de regio die rigide gehouden moet worden (de nodule) nodig is. Omdat
alleen een ruwe segmentatie nodig is, is het waarschijnlijk wel mogelijk dit te automatis-
eren met behulp van standaard segmentatie algoritmes. Als alternatief zou het onderzoek
gericht kunnen worden op compleet automatische en accurate segmentatie van deze mat-
glas nodules, om vervolgens de volumes te gebruiken om veranderingen te detecteren. Het
zou interessant zijn om te zien hoe deze methode zich verhoudt tot de subtractiemethode
die vertrouwt op het menselijk oog. Voor sterk verdichte (solid) nodules bestaan er al
technieken voor (semi-)automatische volumemetingen, omdat deze nodules makkelijker te
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segmenteren zijn. Voor dit type nodules zou een vergelijkende studie van beide methodes
direct kunnen starten.

De afdeling Radiotherapie van het Universitair Medisch Centrum Utrecht ontwikkelt
een gëıntegreerde MRI-versneller. Dit systeem maakt het mogelijk om een doelgebied
(b.v. de cervix) te scannen en het tegelijkertijd te bestralen. Een potentieel voordeel van
een dergelijk systeem vergeleken met de huidige methodologie is dat het richten van de
dosis meer accuraat is. Dit maakt het mogelijk om een hogere dosis te gebruiken voor
het doelgebied en om weefsel in de nabijheid van de tumor te sparen, wat de complicaties
voor de patiënt vermindert. Voor het richten van de dosis zijn echter segmentaties van
de relevante organen nodig. Manuele segmentatie is geen optie, door tijdsrestricties.
Automatiseren kan door middel van niet-rigide beeldregistratie, maar deze technieken
zijn nog niet accuraat genoeg. In Hoofdstuk 6 wordt er een stap genomen in de richting
van klinisch acceptabele accuraatheid van registratie.

Concluderend, hoewel niet-rigide beeldregistratie nog niet wijd verspreid is in de kli-
niek, kan het van toegevoegde waarde zijn voor de analyse van veranderingen in medische
beelden.
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