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Abstract. The traditional Hessian-related vessel filters often suffer from
the problem of handling non-cylindrical objects. To remedy the short-
coming, we present a shape-tuned strain energy density function to mea-
sure vessel likelihood in 3D images. Based on the tensor invariants and
stress-strain principle in mechanics, a new shape discriminating and ves-
sel strength measure function is formulated. The synthetical and clinical
data experiments verify the performance of our method in enhancing
complex vascular structures including branches, bifurcations, and fea-
ture details.

1 Introduction

Pulmonary vessel detection plays an important role in computer analysis of lung
CT images. Evaluating vessels is of considerable value to diagnosing for exam-
ple pulmonary emboli and hypertension. Additionally, there is an interest in
identifying the vascular trees as landmarks for matching lungs across variety
[1]. However, accurate and robust detection of pulmonary vessels still remains
a problem because of the geometrical complexity and fine characteristics of de-
tails. Especially, with non-contrast-enhanced images being widely used in CT
densitometry, the vascular detection becomes even more challenging.

In this paper, we present a 3D vessel enhancing filter with the main pur-
pose to break the cylinder limits of traditional Hessian filters [2,3,4,5], improve
their ability in preserving more general vascular structures like bifurcations. The
method is initially motivated by a recent achievement of stress and strain theory
in solid mechanics [6], which was introduced previously to fMRI imaging by En-
nis et al. [7]. We establish the idea basically on a link between image structures
and locally compressed states of material, due to the mathematical equivalence
between the image Hessian matrix and the mechanical stress or strain tensor.

2 Theoretical Background

The Hessian matrix H is equivalent to the stress tensor in solid mechanics in that
it is also a second-order symmetrical tensor. Then, H can be decomposed into
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an eigensystem of three real eigenvalues λi and three orthogonal eigenvectors ei

(i = 1, 2, 3).
A common decomposition of stress tensor is H = H̄+ ˜H , where H̄ corresponds

to the so-called “isotropic” or spherical component. ˜H indicates the “deviatoric”
or anisotropic component, and contains the directional inequality information.
They are calculated as

H̄ = 1
3 tr(H)1 = 1

3 (H : 1)1, ˜H = H − 1
3 tr(H)1 = H − 1

3 (H : 1)1, (1)

where 1 is the identity matrix and the colon (:) denotes the tensor contraction
operator. According to the stress principle, only the isotropic component causes
volume changes, while the deviatoric one exclusively accounts for the distortion
or shear without volume changes. Since H̄ : ˜H = 0, the two components are
mutually orthogonal. From this, Criscione et al. [6] introduced a set of tensor
invariants Ki :

K1 = tr(H), K2 = ‖ ˜H‖F , and K3 = 3
√

6 det( ˜H/‖ ˜H‖F ), (2)

where det() is the determinant operator. Due to orthogonal decomposition, the
three invariants reflect mutually independent properties of local deformation.
The intuitive physical meaning behind them is that K1 represents the amount
of dilatation (with a negative value corresponding to compression), K2 the mag-
nitude of distortion, and K3 the mode or type of distortion.

3 Method

The development of our vessel filter mainly originates from the above stress
tensor invariants, and is divided into five parts:

3.1 Measure of Brightness Contrast

We first develop a contrast term from the invariance K1. Since K1 is a measure
of local volume change, it indirectly reflects the density variation inside an in-
finitesimal element of material by the mass conservation law. If the density is
assumed to be the image intensity, K1 will be an indicator of relative intensity
change, i.e. brightness contrast.

Generally, we only need to confine the sign of K1, with negative (positive)
values corresponding to bright (dark) objects. For pulmonary CT images, we
add a relative threshold in proportion to the maximum magnitude of eigenvalues
(λm) to ensure noise immunity, i.e.

|K1| = |λ1 + λ2 + λ3| > 3αλm. (3)

Here, the parameter α > 0 is used to adjust sensitivity.



A Strain Energy Filter for 3D Vessel Enhancement 369

3.2 Measure of Structure Strength

In mechanics, the strain energy density is a term to quantify the local energy
stored in solids due to stress effects after mechanical loading. Since the proce-
dure simultaneously results in an uneven mass distribution, the strain energy
also indirectly reflects the material density inhomogeneity. Based on the similar-
ity of density variation to intensity concentration around image structures, we
introduce an strain energy density term to measure structure strength.

Consider an isotropic and linear elastic material, the strain energy density is
defined as U = 1

2

∑3
i=1

∑3
j=1 σijηij , with σij and ηij the elements of stress and

strain tensors. We rewrite it in the form of orthogonal components of the stress
tensor: U(H) = 1−2ν

2ε (H̄ : H̄) + 1+ν
2ε ( ˜H : ˜H). Here, ε and ν are Young’s modulus

and Poisson’s ratio, respectively. Thus, the energy density function is divided
into two independent parts: volume changing (isotropic) energy and distortion
deforming (anisotropic) energy. We further omit the fixed ε, and adopt the square
root to keep the same power order of the original intensity, i.e.

ρ(H) =
√

(1 − 2ν)(H̄ : H̄) + (1 + ν)( ˜H : ˜H). (4)

(a) ν= -1.0 (b) ν= 0.0 (c) ν= 0.5

Fig. 1. Vascular structure strength measure, see eq.(7), with varying parameter ν

Notice the Poisson’s ratio ν ∈ [−1, 0.5] essentially describes the mutual influ-
ence between deformations in different directions. For image processing, if ν < 0,
the intensity concentrating in one direction will cause the relative intensity to
increase in the perpendicular directions, which is known to generate isotropic
“blob” structures. Inversely, ν > 0 will adversely affect the intensity concentra-
tion in orthogonal directions, and then encourages anisotropy. If ν = 0, we have
ρ(H) =

√

λ2
1 + λ2

2 + λ2
3, which corresponds to the “second order structureness”

used by Frangi et al. [4]. We verified the effect of ν through a real image experi-
ment in Fig.1. It can be found that a low ν tends to develop smooth surfaces, the
anisotropic structures (labeled with “green” circles) and feature details (“blue”
circle) are gradually enhanced with increasing ν. However, a very large ν is at
the risk of exaggerating blob-like deformations (“red” circle).
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3.3 Intensity Continuity Constraint

To understand the Hessian eigenvalue distribution of general vascular shape, we
introduce an intensity continuity constraint. As observed, most vessel structures
including the branch and junction, share one common characteristic of intensity
continuity, i.e. there exists at least one direction in which the intensity variation
is very small. The intensity continuity at pixel x0 in direction r is equivalent
to Iσ(x0 + hr) − Iσ(x0) ≈ 0, with σ the observing scale, r a unit vector and
h the magnitude. Then, the corresponding Taylor expansion is ∇Iσ(x0) · r +
h
2 rtHσ(x0)r ≈ 0. If the first-order derivative is negligible, the Hessian term will
mainly account for the intensity variation, i.e. rtHσ(x0)r ≈ 0.

To ensure the dominance of the Hessian term, we additionally define a relative
Hessian strength function

Grel(x) = exp
(

−β ‖∇I‖
λm

)

. (5)

Here, β > 0 is used to adjust the sensitivity of response. Grel(x) will tend to 1
(or 0), while the gradient (or Hessian) term is negligible. This relative strength
function is useful in suppressing step edges, which also responds strongly to
eigenvalue detection like the second-order structures, but takes a strong gradient.

Based on the continuity constraint, the Hessian eigenvalue relation can be
formulated as c2

1λ1 + c2
2λ2 + c2

3λ3 = 0, where ci indicate the coefficients of r
under the eigen-system. The potential meaning is not only to explain the eigen-
value distribution of traditional line and sheet shapes, but also understand more
general vascular structures like bifurcations and stenoses. The latter are then
verified to have non-zero and differently signed eigenvalues.

3.4 Vessel Shape Discrimination

A vascular shape discriminating function can be formulated by combining the
above tensor invariants. The mode of distortion (invariant K3) provides a nat-
ural measure of shape anisotropy. But its discriminating ability will gradually
decrease when the anisotropic extent becomes weaker. To remedy this draw-

back, we introduce the fractional anisotropy FA =
√

3( ˜H : ˜H)/(H : H), which
is actually a ratio of invariant K1 and K2, as an additional indicator. Here, a
constant 3 is added to ensure that FA = 1 for an ideal vessel branch (|λ1| ≈ 0
and λ2 ≈ λ3 � 0 or � 0).

Generally, FA and mode both measure the shape variety, but have different
sensitivity as a function of anisotropy. Based on their response curves, we merge
them in the final vessel shape discriminating function:

V (x) =

{√
FA, FA < 1

1
2 [mode(x) + 1] , otherwise

. (6)

It can be verified that V (x) approaches 0 for blob (λ1 ≈ λ2 ≈ λ3 � 0 or � 0) and
sheet shapes (λ1 ≈ λ2 ≈ 0 and λ3 � 0 or � 0), whereas it takes 1 for line shapes
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corresponding to vascular branches. The most attractive property is that V (x)
also responds with high values to locally deformed structures like junctions and
stenoses, which for example may have one positive and two negative eigenvalues.

3.5 Multi-scale Vesselness Measure

To generate a shape-tuned strain energy function, we combine the previous vas-
cular structure related terms as

ϕ(σ, x) =

{

0, if 1
3 (λ1 + λ2 + λ3) > −αλm

exp
(

−β ‖∇I‖
λm

)

V κ(x)ρ(H, ν), else.
(7)

The power coefficient κ ∈ [0, 1] of V (x) is added to adjust the sharpness of shape
selectivity. The details of multi-scale integration can be referred to [3,4]. We
also adopt the γ-normalization and rescaling operation to compensate intensity
changing across scales.

4 Experimental Results

The proposed method is validated by using synthetical and clinical datasets. The
filtering results were compared with three traditional Hessian-based filters [3,4,8].
The quantitative evaluation is conducted by calculating the precision − recall
(PR) curves after binarizing the filtered images with different global thresholds.
Two versions of recall (sensitivity) are defined, namely in terms of volume and
skeleton of true vessels. The latter is specifically designed to emphasize the pres-
ence of vessels and neglecting its radial size, which is uncertain for a vessel with
a Gaussian profile. The free parameters of all methods are optimized, based on
the area under curve (AUC) of the PR curves.

4.1 Synthetic Data

As shown in Fig. 2(a), a digital phantom was generated with six objects to
simulate different kinds of vessel structures, which resemble stenoses, varying
diameters, bifurcations, and curved or touching branches.

We compared the four methods on the synthetic image with 16% variance
noise in Fig. 2(b). The scale range used in this experiment is 1 − 6 pixels, and
is further divided logarithmically into 10 steps. The parameters of our proposed
method were optimized to α = 0.2, β = 0.02, κ = 0.4, ν was set to 0 without
priority to specific structures. The filtering results are given in Fig. 2(c)−(f).
As expected, the traditional Hessian filters were not good in preserving the
junctions and local deformations, where disconnections in varying degrees can be
observed. The proposed method enjoyed more merits in enhancing both vascular
branches and bifurcations. Additionally, detailed features like thin vessels and
local diameter variety are well preserved. For quantitative evaluation, we refer
to Fig. 3. The performance of our method belongs to the best two with Frangi’s
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(a) (b) (c)

(d) (e) (f)

Fig. 2. Synthetic dataset experiment. (a) Original image, (b) synthetic image, enhanced
images from (c) the proposed method, (d) Frangi [4] ,(e) Li [9], and (f) Sato [3] filters
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Fig. 3. PR curves of filtered synthetic images. (a) and (b) respectively correspond to
the volume- and skeleton-based recall, where the numbers in legends are AUCs.

filter on the volume-based PR measure, while our advantage is dominant on the
skeleton-based one. It can be understood from the distribution and AUCs of PR
curves that our result takes higher completeness (recall) under the majority of
volume fidelity (precision) levels compared with the other three methods. This
just reflected the merit of our method in preserving thin vessels and connectivity
of vascular networks.
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(a) (b) (c)

(d) (e) (f)

Fig. 4. Non-contrast enhanced pulmonary CT dataset experiment. (a) original image;
(b) manually segmented “ground truth”; (c)-(f) give in order the filtered images from
the proposed, Frangi[4], Li[8] and Sato[3] methods

4.2 Clinical Data

Our method was further validated by using a cropped clinical pulmonary CT
dataset. The images were acquired without contrast media injection, and the
resolution was 0.7 × 0.7 × 0.5 mm. The parameters of our filter were optimized
to α = 0.1, β = 0.06 and κ = 0.5, and a positive ν = 0.10 was used to enhance
junctions. The selected vascular scales were 0.5-3.0 mm, and 10 steps were used.

For better observation of details, a region of interest was extracted and shown
in Fig. 4(a), together with a manually segmented “ground truth” by experts in
Fig. 4(b) for reference. The extraction was drawn first by a radiologist, then a
pulmonologist and a surgeon were asked to verify it. Fig. 4(c)-(f) are the corre-
sponding results of the four filters. It is clear that the traditional filters improve
the visualization of main vascular branches at the cost of weakening junctions
and details. Our method keeps most vascular structures while suppressing the
unwanted noise. Both branches and bifurcations are enhanced without distortion.
In particular, thin vessels and details are clearly preserved with the continuity to
main vessels. The merits can be further verified by the quantitative evaluation
in Fig. 5.
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Fig. 5. PR curves of filtered clinical images. (a) and (b) respectively correspond to the
volume- and skeleton-based recall with AUCs shown in the legends

5 Conclusions

In this paper, we have presented a 3D vessel enhancing filter based on the tensor
invariants and strain energy density theory. The main feature is that we di-
rectly generalized the Hessian-based vesselness filters to non-tubular shapes and
realized the enhancement of anisotropic vascular structures like junctions. The
preliminary results verified the performance of our model in preserving locally
deformed vessels and detailed features.
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