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Purpose: Thoracic computed tomography �CT� scans provide information about cardiovascular risk
status. These scans are non-ECG synchronized, thus precise quantification of coronary calcifica-
tions is difficult. Aortic calcium scoring is less sensitive to cardiac motion, so it is an alternative to
coronary calcium scoring as an indicator of cardiovascular risk. The authors developed and evalu-
ated a computer-aided system for automatic detection and quantification of aortic calcifications in
low-dose noncontrast-enhanced chest CT.
Methods: The system was trained and tested on scans from participants of a lung cancer screening
trial. A total of 433 low-dose, non-ECG-synchronized, noncontrast-enhanced 16 detector row ex-
aminations of the chest was randomly divided into 340 training and 93 test data sets. A first
observer manually identified aortic calcifications on training and test scans. A second observer did
the same on the test scans only. First, a multiatlas-based segmentation method was developed to
delineate the aorta. Segmented volume was thresholded and potential calcifications �candidate
objects� were extracted by three-dimensional connected component labeling. Due to image reso-
lution and noise, in rare cases extracted candidate objects were connected to the spine. They were
separated into a part outside and parts inside the aorta, and only the latter was further analyzed. All
candidate objects were represented by 63 features describing their size, position, and texture.
Subsequently, a two-stage classification with a selection of features and k-nearest neighbor classi-
fiers was performed. Based on the detected aortic calcifications, total calcium volume score was
determined for each subject.
Results: The computer system correctly detected, on the average, 945 mm3 out of 965 mm3

�97.9%� calcified plaque volume in the aorta with an average of 64 mm3 of false positive volume
per scan. Spearman rank correlation coefficient was �=0.960 between the system and the first
observer compared to �=0.961 between the two observers.
Conclusions: Automatic calcium scoring in the aorta thus appears feasible with good correlation
between manual and automatic scoring. © 2010 American Association of Physicists in Medicine.
�DOI: 10.1118/1.3284211�
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I. INTRODUCTION

Lung cancer screening programs with computed tomography
�CT� mainly focus on lung cancer detection, although cardio-
vascular risk in the typical screening population of smokers
or former smokers is substantially increased as well.1 CT
scans of the thorax also provide information about the pres-
ence and the extent of atherosclerotic disease, a fact that only
recently has led to efforts to quantify these changes in lung
cancer screening scans.2

The presence of coronary calcifications is a strong predic-
tor of cardiovascular risk.3,4 Coronary calcium scoring is
typically performed on a noncontrast-enhanced cardiac CT
scan acquired with ECG synchronization. However, scans

from lung cancer screening programs are not ECG triggered,
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and therefore a substantial amount of cardiac motion may be
present in the images. Pulsation-induced errors can be
significant5 and make it difficult to determine the amount of
coronary calcium in these scans with high precision.6 Ath-
erosclerosis, however, is a generalized process, which makes
it possible to use calcifications in the aorta as a marker of
cardiovascular disease. Many studies have investigated the
relationship and prognostic value of aortic calcium and car-
diovascular disease, e.g., Refs. 7–12. Association between
aortic calcification and other diseases has been studied as
well.13,14 Moreover, preoperative quantification of athero-
sclerotic burden may be a predictor for the occurrence of
aortic emboli during surgery.15 The advantage of quantifying
aortic calcium is the fact that pulsation affects the aorta much

less than the coronaries.
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In the aforementioned studies, calcified lesions in the
aorta were identified manually. In manual calcium scoring, a
region of interest in a scan is selected and all clusters of
voxels above a certain threshold are considered. Usually, the
threshold value of 130 Hounsfield units �HU� is used. The
clusters representing arterial calcifications are manually iden-
tified. The calcium is then quantified and expressed in terms
of calcium scores.16,17

The amount of aortic calcium in scans from smokers can
be considerable and the scoring procedure will therefore re-
quire a lot of user interaction. Manual scoring is further de-
manding because in lung cancer screening the scans are ac-
quired with low dose. This means that the amount of noise
that exceeds the threshold for calcification extraction is high.
Moreover, screening programs include large cohorts, which
makes it costly to include labor-intensive manual calcium
scoring in the routine evaluation of these scans.

Only a few methods for automatic arterial calcification
detection have been developed, and commercial software
packages do not provide it. We previously presented an au-
tomatic method for the detection of the aortic calcifications
in computed tomography angiography �CTA� scans of the
abdomen,18 and an automatic method for the detection of
coronary calcifications in noncontrast-enhanced, prospec-
tively ECG-triggered cardiac CT scans.19 Both methods con-
sidered all high density areas in the complete scan as poten-
tial calcifications. Because of the contrast present in the CTA
images, these areas were extracted using a high threshold
value of 220 HU. Subsequently, object-based classification
methods were employed to separate true aortic or cardiac
calcifications from other high density areas based on features
derived from the potential calcifications and their contextual
information. Saur et al.20 proposed a method for both coro-
nary and aortic calcium scoring, where a combination of
noncontrast- and contrast-enhanced data was used. Coronary
arteries and the aorta were segmented in contrast-enhanced
data, and both scans were used for calcium detection. Brun-
ner et al.21 utilized unsupervised classification for the detec-
tion of arterial calcifications in cardiac CT scans. de
Bruijne22 presented a pixel classification-based method for
automated detection of calcifications in the lumbar aorta in
projection radiographs.

In this work, we present a system for automatic detection
and quantification of aortic calcifications in low-dose, non-
contrast, non-ECG-triggered CT scans of the chest. This
method does not analyze all potential calcifications in the
complete scan, but first segments the aorta and considers
only high density areas extracted within the segmented vol-
ume. Both the ascending and the descending aorta and the
aortic arch are analyzed. Because of the low dose used at
acquisition and the standard threshold level for calcification
extraction, the level of noise in the images is very high.
Pattern recognition-based analysis is employed to identify
true aortic calcifications from other high density objects
based on the features describing the potential calcifications
and their contextual information. The system is evaluated
with data from a lung cancer screening cohort.
This paper is organized as follows. Section II describes
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the data and the reference standard. Section III gives a de-
tailed overview of the method. Next, the results are presented
in Sec. IV. Section V provides a discussion and Sec. VI con-
cludes.

II. MATERIALS

II.A. Data

In this study, low-dose, non-ECG-synchronized,
noncontrast-enhanced CT scans of the chest were used. They
were acquired during a population-based randomized lung
cancer screening trial.23 The study was approved by the Min-
istry of Health and by the Ethics Committee of each partici-
pating hospital.

The scans were acquired on a 16 detector-row scanner
�Mx8000 IDT or Brilliance 16P, Philips Medical Systems,
Cleveland, OH�. All scans were realized in about 12 s in
spiral mode with 16�0.75 mm2 collimation. Axial images
1.0 mm thick at 0.7 mm increment were reconstructed with a
moderately soft kernel �Philips “B”� using the smallest field
of view to include the outer rib margins at the widest dimen-
sion of the thorax. The peak voltage was 120–140 kVp de-
pending on the patient weight, with tube current of 30 mA s.
The pitch was 1.3. Scans were performed in inspiration after
appropriate instruction of the subjects, without spirometric
control or respiratory belt. No intravenous contrast injection
was induced. A detailed description of the inclusion criteria
and scanning protocol is provided elsewhere.24

Between April 2004 and March 2005, 1684 male subjects
received baseline screening with low-dose CT. From these
participants, we randomly selected 436 subjects for calcium
scoring in the aorta. Two scans with metal implants and one
scan with extreme amounts of noise were excluded, thus 433
scans could be used in the experiments. The age of the sub-
jects included in our study was 60.8�6.2 yr.

To control image noise and to obtain data comparable
with the previously published results,4,25 scans were sub-
sampled to 3.1 mm thick sections by averaging four con-
secutive sections.

II.B. Reference standard

Identification of aortic calcium is usually a relatively
simple task. Potential problems may occur when the noise
level in the scan is high, or in areas where arteries are
branching off the aortic arch. Therefore, the following ap-
proach was chosen: Two medical students �first and second
observer� were trained by a medical investigator with cal-
cium scoring experience in more than 500 scans, laying spe-
cial emphasis on the above mentioned critical factors. The
students used a software tool developed specifically for this
purpose that automatically marked all voxels with a CT num-
ber above 130 HU using a color overlay. The students were
instructed to select calcifications in the ascending aorta, aor-
tic arch, and the descending aorta not lower than the level of

the apex of the heart. By clicking on one of the voxels of
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such a calcification, all voxels that were spatially connected
to it were automatically identified and indicated by a color
change.

The descending aorta and the spine can be in very close
proximity. Because of the limited image resolution and noise
in the scans, calcifications in the descending aorta occasion-
ally appeared connected to the spine. When such a calcifica-
tion was identified, the color overlay would spread into the
adjacent bony structures. In such a situation, the observers
were instructed to outline the area containing the aortic cal-
cification using a circle tool: The center of the circle was
determined by a mouse click and the appropriate radius was
determined by dragging the mouse away from the center.
After the circle was drawn, the area above the threshold of
130 HU was shown in a color overlay �aortic calcification�.
This was performed on a per section basis.

The scans were randomly divided into a training set of
340 scans and a test set of 93 scans. The training set was
used to develop and train our computer system. The test set
was used for testing the system’s performance.

Calcifications in the training set were identified by the
first observer only. For the test set, calcifications were inde-
pendently identified by the first and second observers. The
results of the first observer were used as a reference in this
study. The scores of the second observer were used to esti-
mate interobserver variability, which was compared to the
results of the automatic system.

In this work results are expressed in terms of calcium
volume scores following the algorithm described by Ohne-
sorge et al.26

III. METHODS

The detection and quantification of aortic calcifications
started with the automatic segmentation of the aorta. Subse-
quently, calcifications in the aortic wall were detected within
the segmented volume. Finally, a calcium volume score was
computed for each subject. A flow diagram of the proposed
method is shown in Fig. 1.

III.A. Aortic segmentation

Automatic delineation of the aorta in a noncontrast-
enhanced CT scans is a very complex task due to the absence
of sharp edges �gradient information� between different ana-
tomical structures adjacent to the aorta. This is especially the
case in the ascending aorta. Our previous work19 utilized a
Hough transform-based segmentation method applied to the
aorta, but although this provides an estimate of its location, it
does not yield an accurate segmentation. Kurkure et al.27

presented a method for segmentation of the ascending and
descending aorta based on the Hough transform. Recently,
Feuerstein et al.28 presented a method for the segmentation
of the aortic arch and its branches in the thoracic CT scans.
Their method is based on Hough and Euclidean distance
transforms, followed by probability weighting. Kitasaka et
al.29 and Taeprasartsit and Higgins30 presented a model

based segmentations of the aorta. We have developed a
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multiatlas-based segmentation method.31 This method was
employed here for the aortic segmentation and here we pro-
vide a short description.

In registration, the spatial correspondence between voxels
in two images, the fixed and the moving image, is deter-
mined. The moving image is warped so that it appears to be
as similar as possible to the fixed image. The similarity be-
tween the fixed image U and moving image A is maximized
with respect to the transformation u,

û = arg min
u

C�u;U�p�,A�p�� , �1�

where û is the optimal transformation making A�u�p�� spa-
tially aligned to U�p�, p= �x ,y ,z� denotes a voxel in the im-
age, and C is an appropriate cost function. Extensive reviews
on the subject of image registration are given in Refs. 32–36.

In this work, we used negative mutual information as the
cost function.37 The fixed and moving images were first
roughly aligned by an affine registration, compensating for
differences in global translation, rotation, and scaling. To
achieve a fine alignment, nonrigid �elastic� registration was
subsequently applied. The registrations were performed us-
ing an open source software package, called ELASTIX
�http://elastix.isi.uu.nl�. The registration framework is largely
based on the papers by Rueckert et al.38 and Mattes et al.39

ELASTIX optimizes the cost function by iterative sto-
chastic gradient descent: In each iteration a step is taken
toward the minimum and the direction of this step is based

Training scanswith manually
labeled aortic calcifications

Multi-atlas based
segmentation of the aorta

Computation of features for
each candidate

Extraction of the candidates
inside the aorta

Trained classifiers

New image

Multi-atlas based
segmentation of the aorta

Extraction of the candidates
inside the aorta

Computation of selected
features for each candidate

Classification of the
candidates

Quantification of the
detected aortic calcifications

Training the classifiers,
including feature selection

List of selected features

A. B.

FIG. 1. Flowchart of the system for the automatic detection and quantifica-
tion of aortic calcifications. �A� Training phase. �B� Testing phase.
on the derivative of the cost function to the transformation
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parameters. The derivative is calculated based on a small
subset of the image samples, randomly chosen every itera-
tion, in order to speed up the registration. A multiresolution
strategy was taken to avoid local minima in the cost function.
A Gaussian pyramid was employed using a subsampling fac-
tor of 2 in each dimension. Also, a multigrid approach was
used for the nonrigid registration: The registration started
with a coarse B-spline control point grid, which was refined
in subsequent resolutions.40 The experiments were performed
using the following settings: For the affine registration four
resolutions were used, in each of which 512 iterations of the
stochastic gradient descent optimizer were performed. The
derivative of the mutual information was calculated based on
2048 image samples, randomly chosen every iteration. For
the nonrigid B-spline registration five resolutions were used.
The B-spline grid spacings used in these resolutions were 64,
64, 32, 16, and 8 voxels, respectively. The optimizer per-
formed 256 iterations in each resolution. To estimate the de-
rivative of the mutual information, 4096 image samples were
used, again randomly chosen every iteration. For both affine
and nonrigid registration, 32 histogram bins were used.

In the remainder of the text, we will refer to an image data

FIG. 2. Multiatlas segmentation with weighted decision fusion algorithm. N a
Subsequently, the atlases and their manual segmentations are transformed us
manual segmentations are combined by local decision fusion based on the
probabilistic segmentation in the target image is obtained. Finally, threshold
set in which the aorta has been manually delineated as an
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atlas, and to an image data set that needs automatic delinea-
tion of the aorta as a target image. In atlas segmentation
approaches an atlas is always chosen to be the moving im-
age. This means that it is deformed in such a way that it
aligns with the target image. Because the segmentation of the
object of interest �the aorta in our case� is known for the atlas
the segmentation of the target image can be obtained by ap-
plying the transformation obtained when aligning atlas and
the target image to the atlas segmentation. This process is
called label propagation.41 Our method utilizes a multiatlas-
based segmentation approach illustrated in Fig. 2. Each atlas
provided an estimation of the position of the aorta in the
target image. In our experiments eight atlas images were
used, and they were not contained in the training nor in the
test set of this study. These multiple aortic segmentations of
the target image were combined to obtain a probabilistic seg-
mentation of the aorta. This was performed using a weighted
averaging to account for the differences in how well the de-
formed atlas matched the target image. The quality of the
registration was evaluated from a absolute difference image
Di between the ith transformed moving image and the target.

s �images with their manual segmentations� are matched to the target image.
he corresponding transformations obtained by registration. The transformed
rence images between each deformed atlas and the target. In this way, a
e probabilistic segmentation results in a binary segmentation of the target.
tlase
ing t
diffe
Local weight at point p was determined according to
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�i�p� =
1

Di�p� � g�1
�p� + �

, �2�

∀i, where � is a small value to avoid division by zero, here
set to 0.001, and �g�1

denotes convolution with a Gaussian
of scale �1 here set to 1 voxel. In this way we obtain a
smoothed local estimate of the registration success. The
weight image �i was inversely proportional to a value in the
absolute difference image.

The probabilistic segmentation of the aorta Sp was deter-
mined by a weighted average of the transformed manual seg-
mentations Si�u�,

Sp�p� =
1

�
i=1

N

�i�p�
�
i=1

N

�i�p�Si�ui�p�� . �3�

The resulting probabilistic segmentation was thresholded
at 0.3 to obtain the final aortic segmentation result. The
threshold was deliberately chosen conservatively so that not
only the aorta but possibly also a small amount of surround-
ing tissue in the target image was included. This made sure
that the complete aorta was included in the subsequent analy-
sis.

III.B. Candidate extraction

In clinical practice, calcifications are extracted by thresh-
olding. Various threshold values can be applied, but most
commonly a threshold of 130 HU is used. In this work, a
thresholding at 130 HU was employed within the segmented
aortic volume to extract candidate voxels that might repre-
sent aortic calcifications. To enable analysis of objects �po-
tential aortic calcifications� connected voxels were clustered
using three-dimensional connected component labeling with
26 connectivity. The algorithm used in this work is a
straightforward three-dimensional extension of the algorithm
for two-dimensional images described in Ref. 42 �Chap. 6.1,
Algorithm 6.1.�

Connected components located inside the aortic volume
were further considered and are referred to as candidate ob-
jects. In other words, all connected components which had at
least 1 voxel contained in the binary segmentation were con-
sidered candidate objects for aortic calcifications. The ex-
tracted candidate objects not only represented calcifications
in the wall of the aorta, but also noise, motion artifacts, ar-
tifacts coming from metal implants, pieces of spine, and vari-
ous types of calcifications located in the vicinity of the aorta
�e.g., in the aortic valve or in the coronary arteries� that were
extracted due to a somewhat erroneous segmentation result.

Because of noise and limited image resolution, the de-
scending aorta and the spine may appear connected in some
situations. Therefore, at such a location, aortic calcification
can appear spatially connected to the spine. To resolve this,
we considered all candidate objects with a volume larger
than 5000 mm3. Calcification cannot be so large so these
objects can safely be assumed to contain bony anatomy. All

voxels that were part of such a candidate object and that
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were not contained in the aortic segmentation were removed
from that candidate. This procedure may result in several
remaining clusters of voxels �instead of a single connected
component as previously extracted�. Therefore, connected
component labeling was repeated to obtain candidate objects
for further analysis. An example of such a case is illustrated
in Fig. 3.

III.C. Feature computation

Each candidate object was represented by a number of
numerical characteristics �features�. Generally, there are
many features that can be computed and in computer-aided
detection systems it has been shown that a certain combina-
tion of for example size, appearance, or position characteris-
tics can distinguish between positive and negative candidate
objects. Based on our experience and previous works18,19 we
have computed the following features: Volume of the candi-
date object expressed in mm3; average and maximum gray
value within the candidate object; the ten Gaussian
derivatives43 through second order �L, Lx, Ly, Lz, Lxx, Lyy, Lzz,
Lxy, Lxz, and Lyz� at scales �=1, 2, 4, 8, 16 voxels calculated
in the x, y, and z directions at the center of mass in the
candidate object; x, y, and z coordinates of the center of mass
of the candidate object; average probability that the candi-
date object belongs to the segmented volume; the percentage
of the candidate object’s volume within the binary aortic
segmentation; the value in a three-dimensional signed dis-
tance transform42 of the aortic segmentation at the center of
mass of the candidate object; the minimum value in the dis-
tance transform within the candidate object; the distance in
the z direction from the candidate object to the lowest point
of the segmented part of the descending aorta; the distance in
the z direction from the candidate object to the top of the
aortic arch; and the minimum of the previous two values.
This resulted in a total of 63 features, they are listed in Table

FIG. 3. An example of aortic calcification that appears to be connected to
the spine: Original image �top, left�. An overlay shows the candidate object
exceeding the maximum allowed volume of 5000 mm3 �top, right�. The
segmentation of the aorta �bottom, left�. Final candidate object after remov-
ing parts outside the aorta segmentation �bottom, right�.
I.
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III.D. Classification

Statistical classifiers were used to separate the candidate
objects. In our experiments, a two-stage classification was
performed. In the first stage, the most obvious negatives
were discarded and in the subsequent stages the remaining
candidate objects were separated. This gave better perfor-
mance than a single classification step.

Before classification, all features were scaled to zero
mean and unit variance to account for differences in the
ranges of values for different features. In both stages sequen-
tial forward floating selection of features was employed to
select the best features for the task.44,45 This feature selection
method uses a given classifier to select a subset of features
giving the best classification result. The algorithm is based
on a “plus 1, take away r” strategy. At each iteration, the
algorithm adds the best single feature to an initially empty
feature set and then removes features as long as that im-
proves performance. In this way, nested groups of good fea-
tures could be found. Classification performance was evalu-
ated by accuracy over all candidate objects. The feature
selection was performed on the training set only. Pilot ex-
periments, using only the training set, were performed to
select classifiers and find appropriate settings for parameters.
It is not feasible to test all possible combinations of settings,
but we experimented with the following. Three supervised
classifiers were tested: Linear discriminant, quadratic dis-

46

TABLE I. List of features describing candidate objects.

Feature Description

1 Volume
2 Average gray value within the candidate object
3 Maximum gray value within the candidate object
4–8 L at scales �=1,2 ,4 ,8 ,16 voxels
9–13 Lx at scales �=1,2 ,4 ,8 ,16 voxels
14–18 Ly at scales �=1,2 ,4 ,8 ,16 voxels
19–23 Lz at scales �=1,2 ,4 ,8 ,16 voxels
24–28 Lxx at scales �=1,2 ,4 ,8 ,16 voxels
29–33 Lyy at scales �=1,2 ,4 ,8 ,16 voxels
34–38 Lzz at scales �=1,2 ,4 ,8 ,16 voxels
39–43 Lxy at scales �=1,2 ,4 ,8 ,16 voxels
44–48 Lxz at scales �=1,2 ,4 ,8 ,16 voxels
49–53 Lyz at scales �=1,2 ,4 ,8 ,16 voxels
54–56 x-, y-, and z-coordinates of the center of mass

of the candidate object
57 Average probability that the candidate object belongs

to the aorta
58 Percentage of candidate objects within the aortic

segmentation
59 Distance from the center of mass of the candidate object

to the aortic border
60 Minimum distance from the candidate object

to the aortic border
61 Distance from the candidate object to the lowest point

of the descending aorta
62 Distance from the candidate object to the top of the arch
63 Minimum of features 61 and 62
criminant, and k-nearest neighbor �kNN� classifier. The
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best results were obtained with the kNN classifier. Therefore,
in both classification stages a kNN classifier with Euclidean
metric was employed. The performance of the kNN classifier
was tested with the number of neighbors k ranging from 1 to
15 �odd values only� in both classification stages. In each of
these experiments, a feature selection was performed. The
maximum number of features to be selected was set to 3, 5,
15, 25, and 35. Once the best k and the maximum number of
features were chosen for the first classification stage, an op-
timal threshold on the posterior probability was investigated.
Because the goal was to discard only candidate objects
which had a very high probability for being negative, tested
values were 0.75, 0.85, and 0.95. The performance was
evaluated based on the final classification �object-based� ac-
curacy of the system. The settings that gave the best results
were used for evaluation.

In the first classification stage, the number of neighbors’ k
was set to 10. The maximum number of features to be se-
lected was set to 25. All objects with a posterior probability
for a negative class larger than 0.85 were discarded. This
means that at least nine out of the ten nearest neighbors from
the training set of the sample at hand must have been nega-
tives. Such candidate objects were removed from both train-
ing and test set. The remaining objects were further classi-
fied. In the second stage, the number of neighbors was set to
11, and the maximum number of features to be selected was
set to 25. The threshold on the posterior probability was set
to 0.5. This means that all objects with a posterior probability
for a positive class larger than or equal to 0.5 were classified
as aortic calcifications and others as noncalcifications.

III.E. Calcium score

After calcifications in the aorta had been identified, the
detected amount of calcification was quantified. A standard
for quantification of calcified lesions in the aorta is lacking.
In previous studies different approaches have been used and
they are described by Jayalath et al.47 Our choice was to
compute the volume of the detected calcifications imple-
mented as described in Ref. 26.

III.F. Evaluation

Descriptive statistics was used to summarize the number
of aortic calcifications and the corresponding volume scores.
The numbers of calcifications and their volumes were calcu-
lated per scan and in total for both observers and the auto-
mated system. Medians, 25th and 75th percentiles, and the
total range are presented since the results did not show a
normal distribution. For the automated system also the num-
ber of detected objects other than aortic calcifications �“non-
aortic calcifications”� and their volume score in the seg-
mented volume was determined to allow for an analysis of
the performance of the system. The number and volume of
true positive �identified as aortic calcification by reference
observer and automated system�, true negative �identified as
nonaortic calcification by the automated system and by the
reference observer�, false positive �identified as aortic calci-

fication by the automated system, but not by the reference
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observer�, and false negative �identified as nonaortic calcifi-
cation by the automated system, but selected as aortic calci-
fication by the reference observer� calcifications were calcu-
lated.

To evaluate the performance of the system relative to the
performance of human observers, we plotted the volume
scores from the system against the volume scores of the first
observer �reference� and the volume scores from both ob-
servers against each other. We used Spearman rank correla-
tion to assess the degree of correlation.

IV. RESULTS

In 93 test scans the first observer selected 1036 aortic
calcifications �positives�. Distribution per scan was median
=7; 25th percentile=3; 75th percentile=14; and range: 0–51.
In terms of volume, these scans contained 89 750 mm3 of
aortic calcium �per scan median=308 mm3; 25th percentile
=62 mm3; 75th percentile=1121 mm3; and range:
0–9481 mm3�.

The automatic method extracted all these calcifications as
candidate objects and 1239 other candidate objects �nega-
tives�. The distribution of the negatives per scan was
median=15; 25th percentile=6; 75th percentile=28; and
range of 0–312. In terms of volume, this corresponded to
36 940 mm3 �per scan: median=54 mm3; 25th percentile
=10 mm3; 75th percentile=363 mm3; and range:
0–8 037 mm3� of negatives.

By discarding large candidate objects, one object �on the
average, 0.01 objects per scan� was eliminated from the test
set without removing any calcifications in the aorta. This
candidate object was a large piece of spine which occurred
due to erroneous aortic segmentation. In total, 1238
�29 885 mm3� negatives remained.

In the first classification stage 22 out of the maximum 25
features were selected. According to the ordering in Table I
those were 6, 58, 3, 56, 15, 30, 4, 2, 5, 60, 10, 12, 63, 25, 7,
39, 61, 9, 40, 14, 55, and 34. In the second classification
stage 23 out of the maximum 25 features were selected.
Those were features numbered as 30, 1, 3, 58, 6, 10, 27, 2,
29, 34, 25, 60, 59, 61, 13, 48, 24, 21, 4, 12, 5, 63, and 40.

The computer system correctly identified 85.3% of all
aortic calcifications and 97.9% of the calcified aortic plaque
volume. For an average number of 9.5 �945 mm3� true posi-
tive calcifications, an average of 1.3 �64 mm3� false positive
calcifications per scan were detected. Also, on the average
there were 1.6 �20 mm3� false negative objects.

The system assigned a zero score to 3 /4 subjects �75%�
where in both observers assigned a zero calcium score. Thus,
the system assigned a positive score to 1 /4 subjects �25%�
where in both observers assigned a zero score. The two ob-
servers did not agree about zero scores in three subjects.

The detailed numbers for false positive and false negative
errors are given in Table II. The main causes of false posi-
tives were noise and motion artifacts �62%�, calcifications
detected in the descending aorta below the level of the apex

of the heart �15%�, calcifications in the arteries branching out
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of the aortic arch �8%�. Figure 4 shows examples of false
positive errors, and Fig. 5 examples of false negative errors.

Figure 6 �a� correlates the volume scores assigned to each
subject by the automatic system with that of the first ob-
server. Figure 6 �b� correlates the scores of the first and sec-
ond observers. Spearman rank correlation demonstrated ex-
cellent agreement with a correlation coefficient �=0.960
between automatic system and reference, and �=0.961 be-
tween the observers. Identical calcium scores for the com-
puter system and the first observer were found in 25 �27%�
scans. Identical calcium scores for the first and the second
observers were obtained in 23 �25%� scans.

TABLE II. The number and volume of all candidate objects averaged over 93
test scans. The candidates are divided into true negatives, false positives,
true positives, and false negatives as detected by the computer system. False
positive and false negative errors of the system are divided in subcategories.

Category Objects/scan
Volume

�mm3�/scan

True negatives 12.0 333
False positives

Noise and artifacts �motion, swallowing� 0.8 12
Spine 0.05 8
Calcium in

descending aorta below the heart 0.2 13
arteries above the arch 0.1 11
coronary arteries 0.06 9
mediastinum 0.05 6
aortic valve 0.04 5

Total 1.3 64
Total negatives 13.3 397

True positives 9.5 945
False negatives

Descending aorta 0.8 6
Ascending aorta 0.5 12
Aortic arch 0.3 2

Total 1.6 20
Total positives �reference standard� 11.1 965

FIG. 4. Examples of false positive objects. Swallowing artifact around the
esophagus identified as aortic calcium by the computer system �a�. Left
main coronary artery calcification selected as aortic calcification by the

computer system �b�. Both objects are blurred due to motion artifacts.
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V. DISCUSSION

The presented system automatically segmented the aorta
and correctly identified the vast majority of aortic calcifica-
tions. The results from the computer system correlated only
slightly less with the results of a human reference standard
��=0.960� than two human observers with each other ��
=0.961�. Even for the presence or total absence of calcium in
the aorta, the system performed well. There was only one
subject to which both observers assigned a zero score, and
the system assigned a positive score. The observers dis-
agreed on a zero score in three cases.

The majority �62%� of false positive objects represented
noise. Such objects are difficult to discriminate from small
calcifications in the aortic wall. Although these errors oc-
curred frequently, they were small in size and only caused a
minor volume error. Most remaining errors can be attributed
to problems at the aortic root, the branching vessels in the
aortic arch, and the definition of the distal cutoff point in the
descending aorta. Note that these errors could occur even

FIG. 5. Examples of false negative objects. Calcification in the ascending
aorta �a�. Because of the motion, this lesion seems positioned inside the
aortic lumen. Calcification in the aortic arch at the point where an artery is
branching off the aorta �b�.
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with a slight oversegmentation of the aorta: The required
overlap between the extracted connected component and the
aortic segmentation was 1 voxel. Some of these errors are a
question of judgment �e.g., calcification located in the aortic
root or in the proximal coronary �see Fig. 4 �b�� or precise
definition of the aortic contour �calcification located in the
aortic arch or extending into a branching vessel�. No general
agreement exists where to place a distal cutoff point in the
thoracic aorta. If a cardiovascular risk is evaluated across a
population, calcium scores need to be determined in the
same anatomical range. We have chosen the apex of the heart
as the reference. By using a different reference point, e.g.,
the renal arteries, or the celiac artery, some of this variability
might be reduced. However, in practice, this is not feasible
because those arteries are not always included in the scan
range of a thoracic CT scan.

False negative objects appeared in various loci within the
aorta. Some of them might have been caused by the fact that
aortic calcifications distal to the cutoff point were counted as
nonaortic calcifications for the purpose of our score. How-
ever, these calcifications had similar features to aortic calci-
fications located just above the cutoff point, which may have
contributed to excluding such calcifications from the score.
This hypothesis is supported by the relatively high number of
false negatives in the distal descending aorta.

Inspection of the errors per scan showed the following. In
the three scans marked in Fig. 6 �a�, where the disagreement
between the automatic and reference calcium score was the
largest, the results were dominated by �1� a calcification in
mediastinum, �2� part of the spine adjacent to the descending
aorta, and �3� a false positive in the left main coronary artery.
Furthermore, the zero scan to which the computer system
assigned a positive score was caused by a calcification in the
descending aorta below the apex of the heart. The disagree-
ment on zero score scans between the observers was caused
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by calcifications in the ascending aorta and the aortic arch.
Only in one case the appearance of the calcification in the
ascending aorta was influenced by cardiac motion.

In some cases candidate objects appeared connected to the
spine. They were separated into parts outside and parts inside
the aorta. Only the latter was further analyzed. This separa-
tion was performed using the automatically obtained aortic
segmentation. If the aortic segmentation was not very accu-
rate, the candidate object might not completely overlap with
its manual segmentation �reference standard�. The difference
in segmentation would reflect the volume score. We in-
spected these candidates in the training set and no major
errors were found.

The system presented here bears some similarities with
our method for the detection of coronary calcifications.19

However, there are several important differences. First, the
scans were acquired with different protocols. Images used in
this work were acquired with low dose and without ECG
synchronization. This means that the presented system had to
deal with high noise level and artifacts originating from the
cardiac motion. Second, the method presented in Ref. 19
analyzed candidates for coronary calcifications in the com-
plete scan. The system presented here employs a precise
multiatlas aortic segmentation which allowed for an analysis
of the segmented volume only. Last, a dedicated set of posi-
tion features was created using the results of the aortic seg-
mentation.

Aortic calcifications have not widely been used as a car-
diovascular risk marker, but a recent publication suggests
that they are a strong independent risk marker for cardiovas-
cular mortality.12 There are large patient cohorts being
screened for lung cancer now, and assessment of their car-
diovascular risk has just been started. Coronary calcium
scoring on such nongated scans is less precise because of
cardiac motion artifacts. Aortic calcium may therefore be a
marker for cardiovascular risk that can more readily be ac-
cessed in these patients. Since scoring is time consuming, an
automated technique would be very welcome and could
make cardiovascular risk assessment an integrated part of
such screening studies. Our system has the potential to be
adapted to standard-dose scans but would require slightly
bigger adjustments to accommodate contrast-enhanced scans
as well.

In this study the manual segmentations were performed
by medical students without previous experience in calcium
scoring. We compensated their inexperience by providing
them intensive training for this study. The high correlation
between the scores of the two observers reflects that this
approach was reasonable.

Future research should focus on the definition of the vol-
ume in which the calcium scoring is performed. As already
discussed, our analysis of the results showed that major false
positive and false negative errors occurred around the cutoff
points in the descending aorta and the aortic arch.

Future research could also investigate if the presented
method could be applied to calcium scoring in the aorta in
different types of CT scans in which the aorta is visible, like

scans of the abdomen or cardiac scans, either with or without
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contrast enhancement. The segmentation method for the de-
lineation of the aorta is general, but it is likely that different
atlas sets would need to be provided. The registration of atlas
scans to the target scans needs to be successful, but both CT
and CTA scans are normally of high enough quality. In CTA
scans the segmentation result might even be better. Once the
aorta is segmented, candidate objects can be extracted fol-
lowing the same approach, but in the case of CTA data the
threshold value would need to be increased, as was done in
Ref. 18. All features used in the presented method for the
candidate objects description can be computed. We do ex-
pect, however, that the pattern recognition system would
need a new training data set.

It would also be interesting to investigate the effect of the
position of the calcifications within the artery. Once the aorta
is segmented, it would be possible to automatically separate
the ascending aorta, the descending aorta and the aortic arch.
This would enable investigation of the risks depending on
the loci of calcifications.

VI. CONCLUSION

A method for automatic detection and quantification of
calcifications in low-dose, non-ECG-synchronized,
noncontrast-enhanced CT scans of the chest has been pre-
sented. The system correctly detected 85.3% of all aortic
calcifications with, on the average, 1.3 false positive calcifi-
cations per scan. Correlation with a human observer was
very high ��=0.960�. By providing automatic quantification
of calcium burden in the aorta from thoracic CT scans, a risk
marker for cardiovascular disease becomes available in these
subjects at no additional radiation burden to the patient and
no additional work for the radiologist.
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