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Atlas-based segmentation is a powerful generic technique for automatic delineation of structures in vol-
umetric images. Several studies have shown that multi-atlas segmentation methods outperform schemes
that use only a single atlas, but running multiple registrations on volumetric data is time-consuming.
Moreover, for many scans or regions within scans, a large number of atlases may not be required to
achieve good segmentation performance and may even deteriorate the results. It would therefore be
worthwhile to include the decision which and how many atlases to use for a particular target scan in

g(zyzvjc;;tﬁ on the segmentation process. To this end, we propose two generally applicable multi-atlas segmentation
Mflti—atlas methods, adaptive multi-atlas segmentation (AMAS) and adaptive local multi-atlas segmentation

Atlas selection (ALMAS). AMAS automatically selects the most appropriate atlases for a target image and automatically

Local stops registering atlases when no further improvement is expected. ALMAS takes this concept one step

Stopping criterion further by locally deciding how many and which atlases are needed to segment a target image. The meth-
ods employ a computationally cheap atlas selection strategy, an automatic stopping criterion, and a tech-
nique to locally inspect registration results and determine how much improvement can be expected from
further registrations.

AMAS and ALMAS were applied to segmentation of the heart in computed tomography scans of the
chest and compared to a conventional multi-atlas method (MAS). The results show that ALMAS achieves
the same performance as MAS at a much lower computational cost. When the available segmentation
time is fixed, both AMAS and ALMAS perform significantly better than MAS. In addition, AMAS was
applied to an online segmentation challenge for delineation of the caudate nucleus in brain MRI scans
where it achieved the best score of all results submitted to date.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Atlas-based segmentation uses registration to achieve segmen-
tation and this has proven to be a powerful and successful concept
(Rohlfing et al., 2005). Atlas-based methods start by registering an
anatomical image from an atlas® with a target image to be seg-
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mented. To obtain a segmentation of the target image, the manual
labeling of the atlas is transformed using the mapping determined
during the registration; this process is called label propagation.
The approach has several major advantages compared to other gen-
eric segmentation techniques. First of all, simplicity: only a registra-
tion method and a number of pre-segmented data sets are required.
There is no need for landmarking and complex training procedures.
Secondly, its general applicability: a wide range of segmentation
tasks can be solved by this method. Thirdly, for several registration
methods software is freely available.

Atlas-based segmentation is essentially a prototype based
method. A critical underlying assumption is that it is possible to
find a deformation that aligns the atlas with the target in such a
way that label propagation lines up the objects of interest. Clearly
this will not always be possible. Insufficient similarity between the
atlas and the target image often results in local mismatches, which
in turn leads to segmentation errors (Crum et al., 2003). Success
therefore depends on the choice of a prototype: some atlases will
work better than others. Two classical ways to address this funda-
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mental problem are blending the results obtained by different pro-
totypes and prototype selection. Typically a combination of both is
used. Several groups have attempted to improve upon single atlas-
based segmentation by registering multiple atlases and blending
the propagated labels, for example by averaging (Rohlfing et al.,
2005, 2004; Heckemann et al., 2006). This prevents errors, as long
as the majority of the labels is correct. This concept is similar to
classifier combination strategies as often applied in pattern recog-
nition methods (Jain et al., 2000). Several studies have shown that
multi-atlas segmentation outperforms methods that use a single
atlas (Rohlfing et al., 2005, 2004; Heckemann et al., 2006).

Although better than single atlas methods, blindly applying the
same set of atlases to every target image (that is, prototype blend-
ing, but no selection) has several drawbacks. The main drawback is
the computational complexity. Since atlases and target images are
taken from different patients, an affine transformation is usually
not sufficient and non-rigid registration is needed. Non-rigid regis-
tration of high resolution images is time-consuming. In practice a
large set of atlases is needed to represent the variety of data
encountered in a real application, which makes the method unsuit-
able for routine clinical use. The second drawback is that if the im-
age to be segmented shows substantial local deviations from the
majority of atlases (and many images will show such deviations
in at least some locations), the method will still produce errors,
i.e. the majority is not always right. Related to this second draw-
back is the fact that registering an inappropriate atlas (whether
the atlas is fundamentally different from a target image or the reg-
istration method is not able to find a good transformation is not
relevant to the argument) can thus make the final segmentation
worse. The effect is seen when segmentation performance is plot-
ted as a function of the number of atlases used when the atlases are
ordered, on, for example, segmentation similarity (see e.g. Fig. 4 in
Aljabar et al. (2007)). Initially, adding atlases improves perfor-
mance but at some point, adding more atlases can deteriorate
the result, albeit usually very slowly. The same phenomenon is
well known from feature selection in pattern recognition (Jain
and Zongker, 1997).

Based on those drawbacks three improvements for multi-atlas
segmentation methods can be identified. The first improvement
is to automatically select appropriate atlases for the image to be
segmented (prototype selection). Secondly, when an algorithm
for selecting appropriate atlases is available, a stopping criterion
can be introduced to automatically stop registering scans when
no further improvement is expected. Introducing an automatic
stopping criterion can substantially speed up the segmentation
and make multi-atlas segmentation suitable for clinical use. A third
possibility to improve the segmentation results is to inspect the
segmentation results locally. Since the atlas and target images usu-
ally show local deviations, it might be advantageous to select the
most appropriate atlas locally instead of for the whole image. Local
inspection and local registration have two positive effects: if the
segmentation of the target image is correct except for a small part
it is more efficient to only register a small part of an additional at-
las image to that part. Secondly, an atlas might be locally similar to
the target image but not to other parts of the image. Registering
the complete atlas in this case would give local improvements
but might deteriorate the results elsewhere in the image.

We integrate these improvements in a new framework for mul-
ti-atlas segmentation. Two new methods are introduced. The first
one is adaptive multi-atlas segmentation (AMAS). Instead of regis-
tering all atlases to the target image, as is done in a conventional
multi-atlas method (MAS), AMAS automatically selects the most
appropriate atlases for a target image and automatically stops reg-
istering atlases when no further improvement is expected. The
second method we propose takes this concept one step further
by performing registration updates locally. We propose a frame-

work that starts with a single atlas registration and subsequently
locally inspects the likelihood that the segmentation is correct. If
not, blocks from additional atlases are selected that are expected
to be locally similar to the target and thus may improve the seg-
mentation most. The process is iterative and uses different atlas
blocks for different locations. Updating stops automatically when
no further improvement for a block is expected. We have named
this method adaptive local multi-atlas segmentation (ALMAS).
Fig. 1 illustrates the ALMAS algorithm with a synthetic data
example.

To illustrate the effectiveness and general applicability of AMAS
and ALMAS, we applied it to two segmentation tasks. The first one
is the segmentation of the heart from non-contrast, non ECG gated
volumetric chest computed tomography (CT) scans, which are of-
ten performed in for example screening trials. Segmentation of
the heart in such scans is challenging due to the lack of contrast be-
tween the heart and surrounding tissues along large parts of the
heart border. Segmentation of the heart in such scans allows for
automated assessment of cardiac abnormalities such as coronary
calcification. The results will be compared to a standard multi-atlas
segmentation method. The second task is the segmentation of the
caudate nucleus from magnetic resonance (MR) brain images. The
caudate nucleus is a periventricular gray matter structure that is
involved in sensory-motor control, cognition, language, emotion
and other important brain functions. It has a rather homogeneous
intensity in T1-weighted MR images and it is difficult to segment
because it is attached to other structures with similar intensities
at multiple locations. Atlases and test data were taken from an
ongoing online contest for caudate segmentation (van Ginneken
et al.,, 2007) which allows us to compare our performance to a large
number of other state-of-the-art methods, including other atlas-
based schemes.

This paper is organized as follows: Section 2 provides an over-
view of previous work on atlas-based segmentation. In Section 3
AMAS and ALMAS will be detailed. Section 4 describes the experi-
ments that were performed for the heart and caudate segmenta-
tion. Next, Section 5 provides the results of those experiments.
Finally, Section 6 discusses the results and draws conclusions.

2. Atlas-based segmentation: previous work

Atlas-based segmentation has been successfully applied to a
number of applications. For example, Heckemann et al. (2006) seg-
mented 67 brain structures using a non-rigid registration approach
and label fusion of 29 atlases. Rohlfing et al. (2004) compared sev-
eral atlas-based segmentation techniques for the segmentation of
structures in bee brains, and Klein et al. (2008) applied a non-rigid
registration approach to segment the prostate in 3D MR images. In
this section we will first briefly discuss the literature that shows
the superiority of a multi-atlas approach to a single atlas approach.
Then we will discuss previous work on atlas selection strategies
and motivate our choice for local registrations and a stopping cri-
terion, based on findings in the literature.

Several studies have shown that multi-atlas segmentation out-
performs methods that use a single atlas. For example, Rohlfing et
al. (2004) compared four approaches for atlas-based segmentation:
registration of an individual atlas, registration of an average-shape
atlas image, registration of the most similar image from the data-
base of individual atlases, and registration of all atlases in the data-
base. The multi-atlas approach was significantly better than the
other approaches.

Heckemann et al. (2006) compared three atlas-based ap-
proaches for the segmentation of brain structures using non-rigid
registrations. They showed that registering all atlases and fusing
the labels performed better than registering an individual atlas
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Fig. 1. Illustration of the concept of ALMAS on synthetic data. The results shown are generated by the actual algorithm. In this example there are (a) two target images to be
segmented: a circle and a circle with a large and a small protuberance. (b) Shows the five atlases (A ...E). Note that there is no single atlas that resembles the second target
image. (c) With multi-atlas segmentation, all atlases are registered and the propagated labels are averaged. This leads to a probabilistic segmentation that is similar for both
target images, in which the circle has a probability of 1 and the two protuberances have a probability of 0.4. As a result, thresholding this segmentation would either resemble
the second target image (if a low threshold were used) or the first (when the usual threshold of 0.5 would be used). (d) Results of ALMAS. For both target images, the central
circle has a probability of 1. For the second target image, the two protuberances each have a probability of 0.67. Thresholding at 0.5 would give a correct segmentation for
both target images. ALMAS achieves this by first determining the optimal reference image among the atlases. This is determined to be the first atlas image. This atlas is
registered to each target image. This reference atlas is subdivided in parts, 4 blocks in this case. Next, parts of atlases are registered to parts of the target image. At each step,
ALMAS identifies the part in the target image that is expected to benefit most from an additional registration and it identifies the most appropriate atlas part to use. (e)
Illustrates the sequence of updates for the second target image. Probabilistic output after every iteration is shown, the updated block is indicated with an asterisk and the
atlas used for updating. First the circle atlas is registered. Next, blocks are updated separately. Steps three and four are performed since the stopping criterion of ALMAS is only
applicable when at least 2 atlases have been registered, see equation 3. After 6 blocks ALMAS terminates automatically because further updates are not considered necessary.

or indirectly propagating a single source through the remaining
atlases.

Wu et al. (2007), Klein et al. (2008), Rohlfing et al. (2004), and
Aljabar et al. (2007) have investigated strategies for atlas selection
which we will discuss below. To our knowledge, no previous work
is available on automatically setting a stopping criterion and lo-
cally registering different atlases when more information is
deemed beneficial.

Wu et al. (2007) designed an optimum template selection
method for atlas-based segmentation for several regions of interest
in brain images. The rationale behind their approach is that atlas-
based segmentation methods of MR brain images typically use a
single atlas. Anatomical variations in the images makes this a sub-
optimal method, therefore they proposed to register a set of atlases
(templates) and for defined ROIs select the most optimal atlas,
based on normalized mutual information (NMI) non-rigid registra-
tion. This approach showed significantly better results than using a
single atlas for the complete brain. The main difference from the
approach presented in this paper is that the selection is performed
after non-rigidly registering each atlas to the target image, so an
improvement in performance is accomplished but no improve-
ment in speed. Moreover, only a single atlas is selected for each
region.

Klein et al. (2008) applied a similar approach as Wu et al. (2007)
for the segmentation of the prostate in MR images. After register-
ing all atlases, a selection of atlases was made using similarity after
registration based on the NMI measure. The results showed that
selecting around 50% of all available atlases gave the best results
for several experiments.

Rohlfing et al. (2004) presented four approaches to select the
most similar atlas from the database of atlases for the segmenta-
tion of 22 brain structures in confocal microscopy of bee brains.
The first approach is the NMI between the target image and the at-

las image after affine registration. The atlas image with the highest
NMI after affine registration is selected to be the most similar atlas.
This approach is considerably less time-consuming than the ap-
proaches applied by Wu et al. (2007) and Klein et al. (2008). The
second approach they applied is the same as Wu et al. (2007)
and Klein et al. (2008), the value of NMI after non-rigid registra-
tion. The last two approaches were based on the magnitude of
the deformations after non-rigid registration; the atlas with the
smallest average or maximum deformation is selected to be most
similar. Rohlfing et al. (2004) showed that selection of the best at-
las using the NMI after non-rigid registration performed best.
However, the results were still significantly worse than the results
of a multi-atlas strategy. Note that the goal was to select only one
best atlas, and atlas selection was not applied in a multi-atlas
setting.

Aljabar et al. (2007) applied four methods for atlas selection
based on similarity of atlas and target image for the segmentation
of brain structures in MR images. The similarity measures used
were sum of squared differences, cross correlation, mutual infor-
mation and NMI The similarity was calculated in an ROI that
was defined after registering all atlases to a single subject simu-
lated image. The authors showed that all selection methods except
using the sum of squared differences performed better than a nor-
mal multi-atlas approach in which random atlases were selected.
The main difference with the approach presented in this paper is
that all images were first registered to a single subject where the
ROIs were defined, and next, all operations were performed in this
space.

No previous work is available on using an automatic stopping
criterion for multi-atlas segmentation. However, there are studies
that indicate this would be helpful. For example, Hammers et al.
(2003) developed a model for the asymptotic level of accuracy that
can be achieved as the number of atlases increases. They showed,
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for the application of segmenting structures in the brain, that when
using more than fifteen atlases the improvement in accuracy when
adding more atlases was very limited. Aljabar et al. (2007) showed
that in an atlas selection scheme, the overlap values increase rap-
idly for the first ten to twenty most similar atlases. Using more at-
lases slightly deteriorated results. This indicates that when using
an atlas selection scheme, the best result can be obtained by auto-
matically stopping when no more appropriate atlases are available.
A stopping criterion could simply be determined by setting a fixed
number of scans to be registered. However, the optimum number
of atlases differed per scan and therefore a stopping criterion that
is specific for a target scan can be expected to yield better results.
The only previous work that touches upon the concept of local
registrations is the approach by Wu et al. (2007) in which a differ-
ent atlas was used for different regions of interest. Their results
showed that this yields better results than using one complete sin-
gle atlas. This suggests that locally choosing different atlases can
improve the results of a segmentation by registration approach.

3. Method

This section describes three automatic segmentation methods:
MAS, AMAS, and ALMAS. The goal of these methods is to produce
a segmentation S for a given target image T that accurately defines
the object to be segmented. All methods are capable of producing
probabilistic segmentations that can be thresholded to produce
binary segmentations (1 inside the object, 0 in the background).
For all methods it is assumed that a set of n atlases A;,i=1,...,n
with corresponding manually segmented binary images S; is
available.

3.1. Registration

In registration, an atlas image is transformed to the target im-
age. The methods we propose are generally applicable and any reg-
istration method can be plugged in. AMAS and ALMAS require two
registration methods to be available: a fast (computationally
cheap) method which is used in atlas selection, and an accurate
(computationally expensive) method which transforms an atlas
image to a target image with high accuracy. Details about the spe-
cific registration methods we used in our experiments are given in
Section 4. Throughout this section we will refer to these two regis-
tration methods as ‘fast registration’ and ‘accurate registration’.

3.2. Multi-atlas segmentation (MAS)

We first formulate standard multi-atlas segmentation (MAS) as
a reference method. This method was used in e.g. Rohlfing et al.
(2004, 2006). In MAS, all n atlases are registered to T using the
accurate registration resulting in n transformations u; from A; to
T. u; is used to transform S; to T. We denote the transformed image
as u;(S;). As a result, for each voxel in T, n opinions exist about its
label. The labels are combined by averaging all opinions for each
voxel. After n registered atlases, S is defined as:

sz%gui(si) (1)
To obtain a binary segmentation S is thresholded, typically at 0.5.
3.3. Atlas selection

Atlas selection is needed for AMAS and ALMAS. During the
registration, a spatial mapping is determined which transforms

the atlas image to the target image. In the ideal case the trans-
formed atlas image would be equal to the target image and the

difference between them would be a zero image. In reality, reg-
istration does not perfectly align the two images and local mis-
alignment occurs. Based on this observation, we propose to
employ difference images to decide which atlas image is most
similar to the target image.

The rationale behind our approach for atlas selection is that
the atlas image that is most similar to the target image is ex-
pected to provide the best segmentation accuracy. The optimal
way to determine this is after applying the accurate registration.
However, this would lead to a framework that has computation
times comparable to MAS. Therefore we quantify the similarity
between each atlas image and the target image by the difference
image after fast registration. The atlas image selected to be most
similar is the image with the lowest mean absolute difference to
the target image.

Formally the atlas selection is described as follows. Let w; be
the transformation from the fast registration between A; and T.
We define D(w;i(A;),T) as the absolute voxelwise difference im-
age between w;(A;) and T. The atlas selection function f is de-
fined as:

f = argminmean(D(i(4;).T)) ()

where Q2 indicates the set of previously selected atlases.
3.4. Stopping criterion

As explained in Section 1, avoiding unnecessary registrations
speeds up multi-atlas segmentation and may increase perfor-
mance. However, it is not obvious when the optimal performance
has been achieved for a certain image. Therefore we use a replace-
ment criterion: we quantify, per voxel, the disagreement between
the available propagated labels. After every accurate registration,
we compute the percentage p of voxels that may change segmen-
tation label when one additional set of propagated labels were
available. When p is low, the segmentation result will not change
substantially by adding additional information and therefore no
further improvement is expected. Although this approach does
not guarantee that the best possible segmentation result is ob-
tained, previous work has shown that when plotting segmentation
accuracy as a function of the number of atlases, this curve tends to
be flat around the optimum. So, a stable segmentation (low p)
equals a flat curve, which typically indicates an optimal accuracy.
This complies with the intuitive notion that when experts disagree,
it makes sense to obtain advice from additional experts; when ex-
perts agree this is not necessary.

We define voxels for which disagreement exists as voxels
where % out of m propagated labels agree. If m is odd we aver-
age the number of voxels where floor(%) and ceil () labels agree.
For example, if the number of available labels is five, 2 equals
2.5, therefore, we average the number of voxels where two
and three labels agree. For these voxels adding one more opinion
can change the segmentation label, assuming a threshold of 0.5
to convert probabilities into binary labels. The stopping criterion
is now defined as a threshold 0 on p. For a multi-label segmen-
tation problem, p is defined as a threshold on the percentages of
voxels that can flip label, either to the background or to another
structure.

In Fig. 2a the segmentation accuracy in terms of overlap for the
segmentation of the heart using MAS is plotted against the number
of atlases used. In Fig. 2b the corresponding values of p are shown
for each number of atlases used. It can be seen that the segmenta-
tion accuracy does not improve much after using approximately
eight atlases. Similarly, p declines steeply until approximately
eight atlases have been used, after that, p stabilizes, although a
small decline is still present when the number of atlases is
increased.



E.M. van Rikxoort et al./Medical Image Analysis 14 (2010) 39-49 43

0.78

1 2 383 4 5 6 7 8 9 10 11 12 13 14 15
number of atlases

b 0.18
0.16
0.14
0.12

0.1

o
0.08
0.06
0.04
0.02

0

3 4 5 6 7 8 9 10 11 12 13 14 15
number of atlases

Fig. 2. This figure illustrates the stopping criterion p for segmentation of the heart in chest CT scans. In (a), the overlap as a function of the number of registered atlases is
plotted when MAS is used for segmentation. (b) shows the corresponding values of p for each number of atlases used.

3.5. Adaptive multi-atlas-based segmentation (AMAS)

Based on the atlas selection and stopping criterion as defined
above an adaptive multi-atlas segmentation strategy (AMAS) can
be defined. In AMAS, instead of registering all available atlases as
in MAS, only the most similar atlases are registered until the stop-
ping criterion is reached. This results in fewer atlases being regis-
tered, and therefore a decrease in computational complexity. In
addition, by automatically selecting the most appropriate atlases
from a database better segmentation accuracy can be obtained.
Let m be a counter for the number of accurate registrations that
have been performed, and let S™ indicate the segmentation after
m registrations. AMAS can now be stated as follows:

Input: T,A;, S; fori=1,...,n
Parameter: 0
Fori=1,...,ncalculate w;. Setp=1,m=0.
While (p > 0 and m < n) {
Select Ajusing f
Compute U;
Increment m, update S™ with u;(S;)
Compute p

}

S is now given by S™
3.6. Adaptive local multi-atlas-based segmentation (ALMAS)

Registration usually does not perfectly align two images and lo-
cal misalignment occurs. Based on this observation we propose to
decide locally how many and which atlases to use. This strategy
was implemented as follows. ALMAS starts with a preparation
phase that only needs to be performed once. In this preparation
phase, from the total set of n atlases, one reference atlas A, is se-
lected as the atlas that gives the best segmentation accuracy on
the other n — 1 atlases in a single atlas setting. Next, A, is subdi-
vided into z parts. We indicate these parts with a subscript j. A,
is registered to every A; and the parts A; are propagated to define
A; in every atlas. In this way each set of parts j corresponds to
roughly the same anatomy. To prevent inconsistencies in the final
segmentation around the border of two parts, slight overlap be-
tween the parts is used. This overlap is an extra insurance that
approximately the same anatomy is present in the different
images. The overlapping part is only used during registration, for
updating the segmentation result after an additional block has
been registered, only the actual block is used.

When the preparation phase is finished, target images can be
segmented. The segmentation of T starts by computing u, and
u-(S;). Based on u,(S,) the parts T; are defined in T by propagation.
s! is initialized by u.(S;). Next, an iterative process is started that
updates the different parts of T;, S; separately.

Since we are now using parts, we need to determine at any
stage of the algorithm which part to update. The number of voxels
in a part about which disagreement exist, p;, is a natural candidate
for this purpose, but initially the p; values for every part T; are
equal. Therefore, initially a different block update selection rule
is used. This alternative rule is in effect as long as there are still
parts for which m =1 (i.e. only the reference atlas segmentation
is available for that part). If that is the case, the part j to be updated
is selected as the part with the largest average difference between
block j of the reference atlas (A,j) and block j in the target image
(T;) : D(uj(Ay), T;). Once for all parts m is at least 2, the part with
the highest p; is selected to be updated. In summary, a combined
rule g is defined as:

arg max mean(D(u;(A;),T;)), if m=1 for any part

J
= 3
g argmaxp;, otherwise )
J

Once the part to be updated has been determined, the most
suitable part for updating it must be determined, and we can use
the atlas selection criterion (now applied part-wise) for this pur-
pose. The stopping criterion is also applied per part. So applying
ALMAS to an unseen target image involves the following steps:

Input: T, A, Ay, Sj fori=1,....,n,j=1,...,z
Parameters: 0
Compute U, set st = ur(Sy)
Forj=1,...,z compute Tj, Sj and set p; =1, m; = 1
Fori=1,...,n
Forj=1,...,z
Compute @y
While (3j for which p; >0 and m; <n;) {
Select jusing g
Select Aj using f
Compute Uj
Increment mj, update SJ’-" with u(Sy)
Compute p;
}

S is now determined by combining all 5}” forj=1,...,z

4. Experiments
4.1. Registration

In all experiments presented here, elastix® version 3.9 was
used for registration. This framework formulates the registration

problem as an optimization problem in which the similarity between

5 elastix can be downloaded from http://elastix.isi.uu.nl.
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the target and atlas image is maximized. The framework is largely
based on techniques described in Thévenaz et al. (2000), Rueckert
et al. (1999) and Mattes et al. (2003). Many parameters in the algo-
rithm can be chosen. For the cost function the negative Mutual Infor-
mation was used, which is implemented in elastix according to
Thévenaz et al. (2000). First, images were roughly aligned with an af-
fine transformation. This step comprised the fast registration algo-
rithm. After that a non-rigid registration modeled by B-splines was
performed, and this constituted the accurate registration algorithm.
For the optimization of the cost function, an iterative stochastic gra-
dient descent optimizer Klein et al. (2007) was used. In each itera-
tion a step towards the minimum is taken, and this direction is
based on the derivative of the cost function to the transformation
parameters. To speed up the registration, the derivative is calculated
on a small randomly chosen subset of samples in each iteration. To
avoid local minima, a multi-resolution strategy was taken. Detailed
parameter settings vary per application and are given below.

4.2. Heart segmentation in thoracic CT scans

Twenty-nine CT scans of the thorax were randomly taken from
a lung cancer screening trial with low dose CT (30 mAs at 120 kV
for patients weighing <80kg and 30 mAs at 140 kV for those
weighing over 80kg). Data was acquired in spiral mode with
16 x 0.75 mm collimation. No contrast material was injected. Axial
images of 1.0 mm thickness at 0.7 mm increment were recon-
structed. All scans were reconstructed with a 512 x 512 matrix,
yielding an axial resolution between 0.6 and 0.8 mm. The scans
were randomly divided into two sets, a set of 15 atlases and a
set of 14 target images. The heart was segmented by a medical stu-
dent who was trained and supervised by a radiologist. Manual
delineation of the heart was performed in axial slices by clicking
points on the border; between two points a straight line was auto-
matically drawn. This straight line could be changed by adding
more points, or moving existing points. In addition, scrolling
through the whole scan in all directions was possible while seg-
menting a slice. Complete segmentation of the heart in a single
scan took about 90 min.

All 29 images were down-sampled by a factor of two in each
dimension in order to reduce computation time of registration. Pi-
lot experiments showed that using the full resolution data in-
creased computation times by an order of six and hardly
improved the results. For MAS and AMAS the settings of the regis-
tration parameters were as follows. For the affine registration four
resolutions were used, in each of which 1000 iterations of the sto-
chastic gradient descent optimizer were performed. For the non-ri-
gid B-spline registration six resolutions were used. The B-spline
grid spacing used in these resolutions was 128, 64, 32, 16, 8 and
4 voxels, respectively. The optimizer performed 256 iterations in
the first three resolutions, 512 iterations in the fourth and fifth res-
olution and 1024 iterations in the last resolution. In each iteration,
3000 random samples were used to calculate the derivative of the
cost function. For both affine and non-rigid registration, 32 histo-
gram bins were used. For the other settings the default values of
the registration program were applied. With these settings, one
accurate registration takes about fifteen minutes on a standard
high-end PC (Intel Core (TM)2, 2.40 GHz). A fast registration takes
25 s. For ALMAS, the registration parameters were altered based on
the size of the parts. The number of samples to calculate the deriv-
ative of the cost function was scaled proportionally to the size of
the part that was registered. The scaling was performed in such a
way that the accurate registration of all parts separately took about
fifteen minutes on a standard high-end PC.

Ten experiments were performed on the 14 target images
applying different settings for MAS, AMAS and ALMAS. MAS was
applied using all atlas images. In addition, three different settings

were applied for ALMAS, AMAS and MAS, resulting in nine experi-
ments. Since a setting in which all atlases are used is computation-
ally expensive, three experiments were performed in which the
segmentation times allowed were limited to 30 min, 45 min, and
1 h, respectively. To accomplish this for MAS, two, three and four
atlases were used. For AMAS and ALMAS, the value for 0 was
manipulated to accomplish this. For AMAS 0 was set 15%, 12%,
and 10%, respectively, and for ALMAS 6 was set to 25%, 20%, and
8% for each block. Since in MAS random atlases are selected, the
algorithm was run 20 times randomly selecting the atlases that
were used. All results reported for MAS with a limited number of
atlases were averaged over 20 runs. For ALMAS, after registration
of A, and propagation of its labels, eight blocks were defined by
dividing the volume of the resulting segmentation in two in each
direction, so that each block contained exactly { volume of the
heart, and was guaranteed to contain the border of the heart. An
overlap of 14 mm was taken into account for neighboring blocks.
To obtain segmentation of the images in their original size, the seg-
mentation results were super-sampled to the original resolution.

4.3. Caudate nucleus segmentation in brain MR images

Thirty-nine MRI images of the brain were downloaded from
http://www.cause07.org. This web site provides the online con-
tinuation of a segmentation contest held at the 2007 conference on
Medical Image Computing and Computer Assisted Intervention
(van Ginneken et al., 2007). The site provides a set of training
images with manual segmentations of the caudate nucleus as well
as a set of target images for which no manual segmentations are
provided. The performance on this test data can be obtained by
submitting the results to the same web site. This way it is ensured
that all submitted results are evaluated in exactly the same way
and can therefore be directly compared.

All MRI images were scanned with an Inversion Recovery
Prepped Spoiled Grass sequence on a variety of scanners (GE, Sie-
mens, Phillips, mostly 1.5 Tesla). Some scans were acquired in axial
direction, whereas others in coronal direction. All scans were re-
oriented to axial RAI-orientation, but had not been aligned in any
fashion.

The test data came from three sources:

e 14 MRI images from the Psychiatry Neuro imaging Laboratory at
the Brigham and Women'’s Hospital Boston (BWH).

e Five pediatric (no older than two years) MRI images acquired at
the UNC Neuro Image Analysis Laboratory, Chapel Hill (UNC
Ped).

e Five MRI images from a Parkinson Disease study at the UNC
Neuro Image Analysis Laboratory, Chapel Hill (UNC Eld).

The resolution of the data sets was 0.9375 x 0.9375 x 1.5 mm
for the BWH data, 1 x 1 x 1 mm for the UNC Eld data sets, and
1.01562 x 1.01562 x 1.01562 mm for the UNC Ped data. The diver-
sity of the data allows an evaluation of the algorithms with respect
to flexibility to pathology, age group, and signal-to-noise ratio.

For training, 15 additional BWH data sets with manual delinea-
tions of the caudate nucleus were made available, these scans were
used as atlases. Since there was no pediatric and elderly data avail-
able for training, we used the test data as atlases in a leave-one-out
fashion; the scan that was used as a target image was removed
from the set of atlases. We used the manual segmentation of the
UNC data from a radiological expert to be able to use these scans
as atlas. So, for the caudate segmentation in total we have 24 target
images (14 +5 +5), 24 atlases (15+5+5 — 1) for the UNC data
and 25 atlases (15+ 5+ 5) for the BWH data. Note that we did
not use a different set of atlases to segment the adult (BWH), pedi-
atric, and elderly cases; there are 24 atlases available for every tar-
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Table 1

Results for the heart segmentation for the different atlas-based methods in terms of overlap. Mean overlap and standard deviation (SD) between the reference standard and the
automatic methods are provided. The numbers behind MAS refer to the number of atlases used, the numbers behind ALMAS and AMAS refer to the setting of 0.

225 min 60 min 45 min 30 min
Method Mean SD Method Mean SD Method Mean SD Method Mean SD
MAS 0.8793 0.0307 ALMAS8 0.8757 0.0249 ALMAS20 0.8727 0.02441 ALMAS25 0.8715 0.0231
AMAS10 0.8694 0.0332 AMAS12 0.8694 0.0336 AMAS15 0.8671 0.0312
MAS4 0.8680 0.0292 MAS3 0.8613 0.0283 MAS2 0.8320 0.0512
Table 2

Results for the heart segmentation for the different atlas-based methods in terms of average surface distance. Mean and standard deviation (SD) between the reference standard
and the automatic methods are provided. The numbers behind MAS refer to the number of atlases used, the numbers behind ALMAS and AMAS refer to the setting of 0.

225 min 60 min 45 min 30 min

Method Mean SD Method Mean SD Method Mean SD Method Mean SD

MAS 2.1796 0.6044 ALMASS8 2.2265 0.5323 ALMAS20 2.2736 0.4454 ALMAS25 2.2950 0.4737
AMAS10 2.3202 0.6138 AMAS12 2.3236 0.6407 AMAS15 2.5084 0.4454
MAS4 2.3709 0.5650 MAS3 2.4717 0.5822 MAS2 2.9285 0.7687

get image from the UNC data and 25 atlases for every target image
from the BWH data.

Before processing the images, the voxel intensities in all scans
were normalized. In this paper, a simple intensity normalization
was applied to assure images from different scanners get a similar
intensity distribution. The method was implemented as follows:
The intensities of all voxels within the brain were ordered. Only
90% of the voxels in the brain were used to compute the mean
and standard deviation, leaving out 5% of the highest and lowest
intensity voxels to be robust against outliers. Next, the image
intensities were translated and scaled to have zero mean and unit
standard deviation on those 90% of the voxels.

Due to the different nature and size of the MRI images as com-
pared to the CT images used for the heart segmentation task,
slightly different registration settings were applied. For the affine
registration five resolutions were used, in each of which 600 itera-
tions of the stochastic gradient descent optimizer were performed.
For the non-rigid B-spline registration six resolutions were used.

The B-spline grid spacing used in these resolutions was 128, 64,
32,16, 8 and 4 voxels, respectively. In each iteration, 2000 samples
were used to calculate the derivative of the cost function. The opti-
mizer performed 300 iterations in the first three resolutions, 400
iterations in the fourth and fifth resolution and 600 iterations in
the last resolution. For both affine and non-rigid registrations 32
histogram bins were used. With these settings, one accurate regis-
tration takes about seven minutes on a standard high-end PC, and a
fast registration takes 15 s.

AMAS was applied to the 24 target images. The rationale be-
hind ALMAS is that the atlas and target image will show local
deviations around the border of the structure to segment. How-
ever, when the structure is very small, like the caudate nucleus,
this is not applicable: any local deviation is a total deviation.
Therefore, ALMAS was not expected to yield better results than
AMAS and was not applied. AMAS was applied with the segmen-
tation time limited to around 30 min, and to achieve this, 6 was
set to 20%.

Fig. 3. Number of updates performed by ALMAS (0 = 8%) per block for each of the 14 test images. The top two rows show the blocks in the upper part of the heart for each
test image, the last two rows show the blocks in the lower part of the heart. The color coding indicates how often each block was updated.
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Fig. 4. Example of the results of segmentation of the heart for a slice of one scan. In (a) the original slice is shown, (b) shows the reference standard, in (c) the result of
ALMASS (60 min) is shown, (d) shows the result of ALMAS20 (45 min), and (e) shows the result of ALMAS25 (30 min). In the second row difference images between the
segmentations are shown, yellow indicates voxels that are in the first image but not in the second, red indicates the other way around. In (f) the difference image between
ALMASS (60 min) and ALMAS20 (45 min) is shown. (g) shows the difference image between ALMASS8 (60 min) and ALMAS25 (30 min). (h), (i), and (j) show the difference
images between the reference standard and ALMAS8 (60 min), ALMAS20 (45 min), and ALMAS25 (30 min), respectively. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Setting 6 to 8%, ALMAS performed on average four updates per
block (ranging from three to six average updates per block), which
in terms of computation time is the same as performing four com-
plete atlas registrations. Fig. 3 shows for each of the 14 target
images the number of updates performed for each block by ALMAS
with 0 set to 8%. It can be seen that in each image, different blocks

5. Results
5.1. Heart segmentation in chest CT scans

The performance of the different methods was evaluated by
computing the volumetric overlap which is defined as the number

of voxels in the intersection of automatic segmentation and refer-
ence standard divided by the number of voxels in the union. Table
1 gives for each method, grouped by required computation time,
the average overlap on the target images and the standard devia-
tion. In Table 2 for each method, the average surface distance

receive a different number of updates. In addition, Fig. 3 shows that
each block gets different numbers of updates in different target
images. From Fig. 3 it can be seen how often each version of g
(Eq. 3) was applied: for each block that only received two updates,
only the first version of g was applied. For all other blocks, the first

and the standard deviation are provided. version was applied twice, followed by the second version for all

Table 3
p-Values for the significance of the differences in overlap for the segmentation of the heart for the various methods. The p-values are from a two-tailed paired t-test. The numbers
behind MAS refer to the number of atlases used, the numbers behind ALMAS and AMAS refer to the setting of 0.

225 min 60 min 45 min 30 min
MAS ALMAS8 AMAS10 MAS4 ALMAS20 AMAS12 MAS3 ALMAS25 AMAS15 MAS2
ALMAS8 0.15
AMAS10 p <0.01 0.05
MAS4 p <0.01 p <0.01 0.7
ALMAS20 0.1 0.2 0.5 0.42
AMAS12 p <0.01 0.07 0.82 0.97 0.46
MAS3 p <0.01 p <0.01 0.1 p <0.01 p < 0.05 0.11
ALMAS25 0.14 0.27 0.69 0.61 0.79 0.61 0.17
AMAS15 p < 0.05 0.1 0.81 0.86 0.31 0.86 0.54 0.42
MAS2 p <0.01 p <0.01 p <0.05 p <0.01 p <0.01 p <0.05 p <0.05 p <0.01 p <0.01
Table 4

Results of AMAS and the other three best ranked atlas-based segmentation methods; average overlap (OV) and the total score (TS) are provided for each method for each data set
as well as in total. The names of the methods are taken from the segmentation competition website; I3A (UZ) provides no reference to a publication, Uath-UNC refers to (Gouttard
et al., 2007) and ISICAD refers to (van Rikxoort et al., 2007).

Method AMAS I3A(UZ) Uath-UNC ISICAD

ov TS ov TS ov TS ov TS
UNC Ped 0.7462 84.14 0.6366 82.09 0.6286 74.00 0.4747 54.24
UNC Eld 0.6685 81.87 0.5740 73.27 0.5814 65.97 0.5041 66.61
BWH 0.6761 76.41 0.6359 71.51 0.7037 72.02 0.6979 78.28
Total 0.6891 79.16 0.6440 74.08 0.6626 71.17 0.6110 70.84
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other updates. Fig. 4 shows an example output of ALMAS for all set- all settings of 0, ALMAS is not significantly different from MAS
tings of 0 for a slice of one target image. using 15 complete atlas scans, which requires 225 min per target

To compare the performance of the different methods, two- scan. When segmentation time is limited to 60, 45 or 30 min, AL-
tailed paired t-tests were performed. Table 3 lists the results. For MAS performs significantly better than MAS. When segmentation

Table 5
Selected atlas images, in each iteration, for each target image in the caudate segmentation task.
Target Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5
UNC Ped 10 UNC Ped 14 UNC Ped 30 UNC Ped 15
UNC Ped 14 UNC Ped 15 UNC Ped 30 UNC Ped 19 UNC Ped 10
UNC Ped 15 UNC Ped 30 UNC Ped 14 UNC Ped 19
UNC Ped 19 UNC Ped 14 UNC Ped 15 UNC Ped 30 UNC Ped 10
UNC Ped 30 UNC Ped 15 UNC Ped 14 UNC Ped 10 UNC Ped 19
UNC Eld 01 UNC Eld 26 UNC Eld 13 UNC Eld 12 UNC Eld 20
UNC Eld 12 UNC Eld 13 UNC Eld 01 UNC Eld 26 UNC Eld 20
UNC Eld 13 UNC Eld 01 UNC Eld 26 UNC Eld 12 UNC Eld 20
UNC Eld 20 UNC Eld 12 UNC Eld 13 UNC Eld 26 UNC Eld 01
UNC Eld 26 UNC Eld 13 UNC Eld 01 UNC Eld 12 UNC Eld 20
BWH 16 BWH 13 BWH 04 BWH 11 BWH 06
BWH 17 BWH 14 BWH 02 BWH 13 BWH 09
BWH 18 BWH 13 BWH 14 BWH 08 BWH 12
BWH 19 BWH 08 BWH 02 BWH 14 BWH 09
BWH 20 BWH 13 BWH 14 BWH 04 BWH 10 BWH 09
BWH 21 BWH 13 BWH 11 BWH 04 BWH 02
BWH 22 BWH 03 BWH 12 BWH 11 BWH 13 BWH 14
BWH 23 BWH 14 BWH 02 BWH 05 BWH 08
BWH 24 BWH 01 BWH 05 BWH 09 BWH 02
BWH 25 BWH 02 BWH 08 BWH 04 BWH 09
BWH 26 BWH 02 BWH 09 BWH 05 BWH 08
BWH 27 BWH 14 BWH 13 BWH 08 BWH 02
BWH 28 BWH 14 BWH 02 BWH 05 BWH 13
BWH 29 BWH 02 BWH 08 BWH 09 BWH 14

Fig. 5. Example output of AMAS and the three other highest ranked atlas-based segmentation methods for the caudate segmentation competition on (a) a scan from the UNC
Ped data set; (b) a scan from the UNC Eld data set; (c) a scan from the BWH data set. The output of the automatic methods is given in red, the ground truth is in blue. Images
were taken from http://www.cause07.org. The first column provides the original slice, the second column shows the result of AMAS, the third column shows the result
produced by I3A(UZ), in the fourth column the result produced by Gouttard et al. (2007) is given, the last column shows the result of van Rikxoort et al. (2007). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Table 6

Results of AMAS, MAS, and ISICAD (28-10-2007).
Method AMAS MAS ISICAD

oV TS oV TS oV TS

UNC Ped 0.7462 84.14 0.5574 63.07 0.4747 54.24
UNC Eld 0.6685 81.87 0.5680 70.66 0.5041 66.61
BWH 0.6761 76.41 0.5860 61.35 0.6979 78.28
Total 0.6891 79.16 0.5763 63.65 0.6110 70.84

time is restricted to 30 min AMAS also performs significantly bet-
ter than MAS.

5.2. Caudate nucleus segmentation in brain MR images

The results reported here were obtained by submitting our seg-
mentations to the web site of the segmentation contest (http://
www.cause07.org) on October 07, 2008 under the team name ISI-
CAD. The results are listed online with team name and date and it
can be seen that the results of our method are substantially better
than those of all previously submitted methods.

The segmentation contest uses five performance measures, and
these are combined into a single overall score. This score is related
to the result that could be expected if an independent human ob-
server would perform the segmentation manually; a score of 100
points indicates a perfect result, a score of 90 points is typical for
an independent human observer (van Ginneken et al., 2007). The
overlap value, as used for the heart segmentation task, is one of
the five measures. Table 4 lists the results (overlap and score) of
AMAS as well as the results of the other three best ranked atlas-
based methods from http://www.cause07.org.

Note that one of the atlas-based submissions is our original sub-
mission (van Rikxoort et al., 2007) to the segmentation contest
workshop. In this case MAS was applied with the appropriate at-
lases manually selected for each data set.

Setting 0 to 20%, AMAS performed on average 4 updates per
scan. Table 5 lists the selected atlases for each target image. It
can be seen that for each target image only atlases from the same
group (adults in the BWH data, pediatrics and elderly) were se-
lected by the automatic atlas selection strategy.

Fig. 5 illustrates the results of the four best atlas-based methods
currently submitted to the segmentation competition for one scan
of each source. AMAS performs consistently on the scans from all
three sources, where the other methods show deviations from
the reference in at least one of the data sets.

6. Discussion and conclusion

Medical imaging data exhibits tremendous variation. Patient
data often contains abnormalities but even healthy, normal anat-
omy differs widely in young and old, male and female, slim and ob-
ese individuals. Moreover, imaging protocols and scanner
characteristics vary between and even within institutions. This
poses major challenges for developers of segmentation algorithms.
It is common practice to develop and test methods on data from a
single source. This leads to results that look good on paper (i.e.
when tested on data from the same distribution from which the
training data originated) but disappoint in practice. This is one of
the main reasons why so few published methods make the transi-
tion from the research lab to the clinic.

The caudate segmentation task addressed in this work is a good
example. In practice, most labs still manually segment brain struc-
tures, despite a plethora of published algorithms. Many of these
publications acknowledge the limitation of their proposed method
and even remark that a method could be applied to, say, pediatric

scans, if retrained with suitable training data. The problem is that
even if different training data, and thus multiple systems, were
available, it is not trivial to decide for a particular target scan which
version of the method to apply. In fact, a close look at the descrip-
tions of some of the methods that participated in the online seg-
mentation contest at http://www.cause07.org reveals that
several of them, including our original contribution van Rikxoort
et al. (2007), while claiming to be fully automatic, actually manu-
ally select different training sets to segment the different groups of
test data. This makes them semi-automatic.

The AMAS framework proposed in this study has been designed
to overcome the atlas selection problem. During the segmentation
process, the atlases most suitable to segment the target image un-
der consideration are automatically selected. Atlases that are dif-
ferent from the target image are not taken into account, but are
still available for segmenting other test scans: AMAS adapts to each
target scan individually. Although the technique we use to let
AMAS make these decisions is fairly simple, results listed in Table
5 show that the system behaves as would be expected: only adult
datasets were used to segment adult scans, pediatrics were used
for pediatrics and elderly atlases for elderly target scans. Some
scans, such as UNC Ped 14, were apparently representative of the
test data and were selected often whereas others, such as BWH
06, were only chosen once, in a final iteration. So, by design, AMAS
can deal with test data of a different nature, as long as the training
data contains some scans representative of each test scan. AMAS
vastly outperforms our previous multi-atlas segmentation scheme
(van Rikxoort et al., 2007), that used the same registration frame-
work, and does so at a substantially lower computational cost
(30 min). The method in van Rikxoort et al. (2007) is the only
one among the atlas-based methods listed in Table 4 that achieves
a higher score on one of the three subgroups, namely the adult
(BWH) cases. The reason for this is that van Rikxoort et al. (2007)
used all 15 BWH training cases to segment the test cases, whereas
ALMAS used at most five (Table 5). The results listed at http://
www.cause07.org show that AMAS also outperforms a wide vari-
ety of other state-of-the-art techniques for brain structure segmen-
tation, such as voxel classification, m-reps and active appearance
models. An interesting topic for further research is to apply AMAS
to other brain structures.

To show that the improved results of AMAS as compared to our
previous method van Rikxoort et al. (2007) are not due to the addi-
tion of the training data for UNC Ped and UNC Eld, we generated
the results of MAS using all 25 atlases used in this paper. The re-
sults are listed in Table 6. It can be seen that for the elderly and
pediatric data, the results of the old method improve, but for the
BWH data the results decline.

Just as there is no reason to assume that a particular training
scan would be optimal for segmenting any test scan, there is no
reason to believe that a scan that lines up well with a particular
part of a test scan, would do so everywhere, throughout the com-
plete volume. This led us to develop ALMAS, where the choice
how many and which atlases to use is made locally. Although the
differences in performance between AMAS and ALMAS for the
heart segmentation task are not big, ALMAS seems to have a com-
petitive advantage, especially when more updates are allowed
(p = 0.05 for ALMASS8 versus AMAS10 in Table 3).

The idea behind ALMAS is that ‘difficult’ parts of the image will
get more attention than ‘easier’ parts. For segmentation of the
heart, the average number of updates per block ranged from three
to six, with the lowest number of updates being two and the high-
est nine. This indicates that the hypothesis behind ALMAS works
out in practice. This is illustrated in Fig. 3 which shows that in each
target image for the segmentation of the heart, the number of up-
dates differs per block, in addition, the number of updates for each
block in the different images varies.
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Lower computational costs to achieve the same performance is
a reason to prefer AMAS and ALMAS over MAS. The experiments
performed for the segmentation of the heart clearly showed that
when segmentation time is limited, ALMAS is preferable to MAS.
In addition, when segmentation time was not limited, MAS was
not significantly better than ALMAS, where MAS takes 225 min
per scan and ALMAS 60, 45 or 30 min. Note that AMAS and ALMAS
register the most promising scans first, therefore they could be
stopped at any moment to produce an optimal result for the allo-
cated amount of computation time. The lower computational cost
of AMAS and ALMAS as compared to MAS are based on sequential
processing. In the case of parallel processing, computational com-
plexity is a different issue. In MAS, atlases can be registered in par-
allel. One could parallelize AMAS and ALMAS to a certain extent by
first registering x selected atlases in parallel, where x is the number
of cores available.

AMAS and ALMAS should be interpreted as frameworks to apply
atlas-based segmentation. Any registration method, atlas selection
method, stopping criterion and strategy for dividing a scan into
smaller blocks can be plugged in. The atlas selection as applied
for heart and caudate segmentation is monomodal; only target
images from the same image modality as the atlases can be used
since otherwise the difference image is meaningless. For a multi-
modal application, the atlas selection could for example be based
on NMI after affine registration. In our experiments for heart seg-
mentation, a straightforward division of the heart into eight blocks
of equal size was used. It might be better for certain applications to
base the subdivision on anatomy. The number and size of the
blocks is clearly an interesting variable in the framework. When
very small blocks are defined, a locally affine registration might
be sufficient which will further speed up the algorithm. On the
other hand, blocks probably require some overlap to avoid visible
transitions in the segmentation result and this will slow down
the algorithm when very small blocks are used. When small blocks
are defined, registration becomes more difficult since less informa-
tion is available; the estimation of the mutual information using
histograms might not be valid anymore. In those cases, another
similarity measure, for example SSD, could be preferable.

Another open question is how AMAS and ALMAS will behave
when the number of atlas scans is very large. We hypothesize that
ALMAS will prove especially useful for tasks where target scans
contain anatomical variations or pathologic abnormalities. For
such tasks, many more atlases than were used here might be
needed, to ensure that for each location in each target image, a
few similar atlas blocks exist. Note that in this scenario, the com-
putational requirements of MAS are prohibitive. But also AMAS
and ALMAS may need computationally less expensive ways to se-
lect promising atlases. For example, a greedy selection scheme,
that would avoid having to register every atlas to the target, which
took around 25 s for the fast registration in the heart application.

In summary, a new adaptive local multi-atlas segmentation
framework was proposed that selects optimal atlases and can do
that locally if desired. In an experiment on heart segmentation in

CT data, the method performed as well as a standard multi-atlas
method that was computationally much more expensive. In an
additional experiment on brain MRI data it was shown that the at-
las selection method was able to automatically select the most
appropriate atlas scans to segment data from children, adults and
elderly. The method achieved better results than many other seg-
mentation techniques.
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