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The traditional Hessian-related vessel filters often suffer from detecting complex structures like bifurca-
tions due to an over-simplified cylindrical model. To solve this problem, we present a shape-tuned strain
energy density function to measure vessel likelihood in 3D medical images. This method is initially
inspired by established stress–strain principles in mechanics. By considering the Hessian matrix as a
stress tensor, the three invariants from orthogonal tensor decomposition are used independently or com-
bined to formulate distinctive functions for vascular shape discrimination, brightness contrast and struc-
ture strength measuring. Moreover, a mathematical description of Hessian eigenvalues for general vessel
shapes is obtained, based on an intensity continuity assumption, and a relative Hessian strength term is
presented to ensure the dominance of second-order derivatives as well as suppress undesired step-edges.
Finally, we adopt the multi-scale scheme to find an optimal solution through scale space. The proposed
method is validated in experiments with a digital phantom and non-contrast-enhanced pulmonary CT
data. It is shown that our model performed more effectively in enhancing vessel bifurcations and preserv-
ing details, compared to three existing filters.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Pulmonary vessel detection plays an important role in com-
puter analysis of lung CT images. Evaluating the vessel is of consid-
erable value to diagnosing for example pulmonary emboli and
determining over-distention as an index of pulmonary hyperten-
sion. Additionally, there is a great interest in identifying the vascu-
lar trees as a set of landmarks, which would allow for matching
lungs across volume changes and over time (Hoffman et al.,
2003). Based on the anatomical fact that vascular trees usually
do not cross well-developed lobar boundaries, the vessel segmen-
tation can also be used to infer lobar location in the absence of fis-
sures (Kuhnigk et al., 2003; Sluimer et al., 2006; Ukil and
Reinhardt, 2009). However, accurate and robust detection of pul-
monary vessels still remains a problem because of the geometrical
complexity and fine characteristics of detailed vascular structures.
Especially, with non-contrast-enhanced images being widely used
in CT densitometry (Adams et al., 1991; Stoel and Stolk, 2004;
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Hoffman et al., 2006), the vascular detection becomes even more
challenging.
2. Related work

There has been a long history for usage of image intensity deriv-
atives in estimating object shape. Haralick et al. (1983) originally
proposed a scheme to describe the topographic primal sketch or
structure (e.g. ridge, valley, peak, plane, saddle and hillside) with
the first- and second-order directional derivatives.

Blood vessels in medical images can be referred as linear or
tubular structures since it can be locally approximated as a line
along the branch. The utilization of the second-order Hessian ma-
trix in vessel detection is ascribed to several seminal works (Koller
et al., 1995; Sato et al., 1997, 1998; Lorenz et al., 1997; Frangi et al.,
1998). From the Taylor expansion, the local intensity variation can
be expressed in terms of intensity derivatives. Usually, only the
first- and second-order derivatives, i.e. gradient and Hessian ma-
trix are considered. When the gradient is negligible, the Hessian
matrix is able to act as an indicator of local structures. As an ideal-
ized model, it is assumed that the image intensity in a vessel is
constant along the axial direction and takes a Gaussian-shaped
profile perpendicular to the central axis (see Krissian et al. (2000)
for accurate modeling). With this assumption, the Hessian matrix

http://dx.doi.org/10.1016/j.media.2010.08.003
mailto:xcy19722@hotmail.com
mailto:M.Staring@lumc.nl
mailto:D.P.Shamonin@lumc.nl
mailto:J.H.C.Reiber@lumc.nl
mailto:J.Stolk.long@lumc.nl
mailto:B.C.Stoel@lumc.nl
http://dx.doi.org/10.1016/j.media.2010.08.003
http://www.sciencedirect.com/science/journal/13618415
http://www.elsevier.com/locate/media


C. Xiao et al. / Medical Image Analysis 15 (2011) 112–124 113
would have one eigenvalue close to zero, and the remaining two
would have high magnitude with signs determined by object con-
trast. An elliptical representation was proposed by Frangi et al.
(1998), which gave an intuitively geometrical description about
the second derivative model. The application of Hessian-based fil-
ters varies from tissue visualization (Sato et al., 2000), vasculature
segmentation (Descoteaux et al., 2008), to stenosis quantification
(van Bemmel et al., 2004). In spite of the encouraging results in
vessel branch enhancement, the traditional multi-scale Hessian fil-
ters are limited in handling local deformations like vascular junc-
tions due to their essentially single cylinder assumption.

Many vessel extraction methods, e.g. matched filter (Sofka and
Stewart, 2006), model-based detection (Mahadevan et al., 2004),
suffer from the common problem of an over-simplified tube model.
Several efforts have been made to relax this strong shape con-
straint to accommodate more general vascular structures. The
‘‘shape prior” techniques (Nain et al., 2004; Manniesing et al.,
2007; Gooya et al., 2008) used certain prediction mechanism to ob-
tain the anisotropic information from previous iterations, which
forms a new speed term to guide current front evolution, under
the level-set framework. The vessel enhancing diffusion method
(Manniesing et al., 2006) integrated a smooth vesselness measure
with a non-linear anisotropic diffusion scheme. With diffusion
strength and orientation tuned by the local vessel likelihood, this
model can enhance vessel structures and tend to preserve intensity
homogeneity across non- and weak-vessel regions. A first-order
derivative correlation-based filter was proposed by Agam et al.
(2005) for vessel enhancement in thoracic CT scans. They adopted
an iterative selection scheme to find more than one principal com-
ponent directions, which are formulated explicitly to discriminate
vessel branches, bifurcations and nodules within an adaptive
neighborhood. In addition, the directional filter bank was also com-
bined with the Hessian-based filter (Truc et al., 2009). Based on
directional image decomposition, this method helps to avoid vessel
junction suppression and reveals more thin and continuous vessel
structures. Recently, Qian et al. (2009) presented a non-parametric
vessel detection method. It is motivated by the observation that
the change of intensities in at least one conical-shaped neighbor-
hood region (whose tip is at the voxel of interest) is very small if
this conical region lies inside a blood vessel, and high otherwise.
This assumption of intensity continuity made the technique adapt-
able to most vessel structures including ordinary vessel branch,
bifurcation and end points.

In this paper, we will present a 3D vessel enhancing model with
a main purpose to break the cylinder limits of traditional Hessian
filters and improve their ability in preserving more general vascu-
lar structures like bifurcations. The method is initially motivated
by a recent achievement of stress and strain theory in solid
mechanics (Criscione et al., 2000), which has been introduced pre-
viously to fMRI imaging by Ennis and Kindlmann (2006). We estab-
lish the idea basically on a link between image structures and local
loading states of material, due to the mathematical equivalence be-
tween image Hessian matrix and mechanical stress tensor. Our
main work comprises introducing strain energy density as a mea-
sure of structure strength, investigating the Hessian eigenvalue
distribution of general vascular shapes, and defining a flexible
shape discrimination function from orthogonal tensor decomposi-
tion. This model is called a strain energy filter since its response is
a weighted strain energy density tuned to specific vessel shapes. As
we also use the Hessian eigenvalues to formulate shape discrimi-
nation, the strain energy model can be considered a direct general-
ization of vesselness filters (Frangi et al., 1998).

The remaining paper is organized as follows. We first retrospect
the stress tensor decomposition and physical meaning of corre-
sponding invariants in Section 3. Section 4 elaborates on the devel-
opment of our method. Section 5 gives the experimental results on
digital phantom and clinical datasets. In Section 6, the conclusions
are discussed.

3. Theoretical background

The Hessian matrix Hr of a 3D image I at scale r is equivalent to
a stress tensor in solid mechanics (Bower, 2009) in that it is a sec-
ond-order symmetrical real tensor with Hij

r ¼ @
2Ir=@xi@xj. In the

following, the subscript r of Hr will be omitted for brevity. Like
stress tensors, H can be decomposed into an eigensystem of three
real eigenvalues ki and three mutually orthogonal eigenvectors
~eiði ¼ 1;2;3Þ.

In tensor analysis, the inner product operator is termed contrac-
tion, which is denoted by a colon (:). The contraction of two tensors
U and V is defined as

U : V ¼ trðUVtÞ; ð1Þ

where tr() is the trace operator, and t the transposition. If U:V = 0,
the two tensors are orthogonal. Similarly, the tensor magnitude
can also be defined using tensorial contraction and is equivalent
to the Frobenius norm: kUkF ¼

ffiffiffiffiffiffiffiffiffiffiffi
U : U
p

.
A common decomposition of the stress tensor H is expressed as

H ¼ H þ eH; ð2Þ

where H corresponds to the so-called ‘‘isotropic” or spherical com-
ponent since it represents the mean stress and is homogeneous in
varying orientations. eH indicates the ‘‘deviatoric” or anisotropic
component, and contains the directional inequality information of
stress. They are calculated as follows:

H ¼ 1
3

trðHÞ1 ¼ 1
3
ðH : 1Þ1; ð3Þ

eH ¼ H � 1
3

trðHÞ1 ¼ H � 1
3
ðH : 1Þ1: ð4Þ

Here, 1 is the identity matrix. According to the stress principle
(Bower, 2009), only the isotropic component causes volume
changes, while the deviatoric component exclusively accounts for
the distortion or shear without volume changes. Since H : eH ¼ 0,
Eq. (2) is an orthogonal decomposition of H. From this, Criscione
et al. (2000) introduced a set of orthogonal tensor invariants Ki for
the analysis of hyperelastic strain energy:

K1 ¼ trðHÞ; ð5Þ
K2 ¼ keHkF ; ð6Þ
K3 ¼ 3

ffiffiffi
6
p

detðeH=keHkFÞ; ð7Þ

where det() is the determinant operator. These invariants are natu-
ral descriptions of local deformation in a loaded solid. Here, we use
the term ‘‘loaded” to represent the state in which forces are being
exerted. Due to orthogonal decomposition, the three invariants re-
flect mutually independent properties of the deformation. The intu-
itive physical meaning behind them is that K1 represents the
amount of dilatation (with a negative value corresponding to com-
pression), K2 the magnitude of distortion, and K3 the mode or type
of distortion. For easy understanding, the above three equations can
be rewritten in terms of the eigenvalues ki of H as well as their first
three central moments l1 (mean), l2(variance) and l3:

K1 ¼ k1 þ k2 þ k3 ¼ 3l1; ð8Þ

K2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3

i¼1
ðki � l1Þ

2

r
¼

ffiffiffiffiffiffiffiffiffi
3l2

q
ð9Þ

K3 ¼ k1k2k3=keHk3
F ¼

ffiffiffi
2
p

l3l
�3=2
2 : ð10Þ

Note that K3 is actually the skewness of eigenvalues. Ennis and
Kindlmann (2006) named these invariants the ‘‘cylindrical invariant
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set”, and used it for analysis and visualization of diffusion tensors in
fMRI images. However, the diffusion tensor is different from Hes-
sian matrix: it must be positive-definite, i.e. all eigenvalues are lar-
ger than zero. The Hessian matrix has real eigenvalues, which may
be positive or negative.

4. Method

The development of our vessel filter is divided into six parts. In
Section 4.1, we define the invariant K1 as a measure of brightness
contrast. A strain energy density function is introduced to measure
the image structure strength in Section 4.2. Based on the intensity
continuity assumption, a description of the Hessian eigenvalue dis-
tribution for general vascular structures is obtained in Section 4.3.
To ensure the dominance of second-order derivatives, Section 4.4
presents a relative Hessian strength to suppress undesired first-or-
der edges. In Section 4.5, a shape discriminating function is devel-
oped, and its response to different vessel shapes is analyzed. The
above terms are integrated in the multi-scale framework to form
a final vessel likelihood measure in Section 4.6.

4.1. Measure of brightness contrast

We first explore the usage of invariant K1 in image structure
detection. As mentioned before, K1 is a measure of local volume
change, it can also be verified to reflect relative density variation
of material. By the mass conservation law, we obtain the derivative
relation between material density n and volume V as n
�dV + dn�V = 0, which can be easily transferred to d n/n = �d V/V.
This means the relative increment of density is inverse to the con-
cerned volume term. Considering an infinitesimal element of elas-
tic solid with unit side length, and ui being the components of
deforming displacement ~u, the volume changing ratio can then
be approximated with

lim
V!0

dV
V
¼ @u1

@x1
þ @u2

@x2
þ @u3

@x3
: ð11Þ

Here, dV indicates the volume increment and its limit is dV. Accord-
ing to mechanical theory, the right side of Eq. (11) is exactly the
trace of strain tensor. Since the gradient of density is proportional
to deforming displacement, we have ui / @n

@xi
. Then, from Eq. (11),

it is not difficult to derive

lim
V!0

dn
n
/ � @2n

@x2
1

þ @
2n

@x2
2

þ @
2n

@x2
3

 !
: ð12Þ

If the density n is assumed to be an image intensity I, Eq. (12) will
explain that the local average intensity variation (i.e. contrast) can
be measured with the Laplacian of image. Therefore, the invariant
K1 ¼

P3
i¼1

@2 Ir
@x2

i
of Hessian tensor is able to work as an indicator of

brightness contrast.
As a complement, the effect of invariant K1 might be derived dif-

ferently from the heat equation. When applied to image denoising,
the heat equation is also called the homogeneous linear diffusion
equation (Weickert, 1997), and takes the form of

@I
@t
¼ DIðtÞ: ð13Þ

As well known, Eq. (13) is equivalent to Gaussian smoothing filter
with

ffiffiffiffiffi
2t
p

being the scale r (ter Haar Romeny, 2003). The corre-
sponding time discrete equation is written as

Inþ1 � In ¼ sDIn; ð14Þ

and s is a time step. Obviously, if MIn < 0, the local intensity value
will decrease during iterations and vice versa . Notice the essence
of heat equation is to describe the physical phenomena that the
high density (intensity) mass or particles diffuse gradually to neigh-
boring lower density regions. Thus, it can be considered as a con-
trast-driven diffusion with MIn being the contrast strength at
current scale. Based on the above analysis, we might define the
scale-related Laplacian of intensity, i.e. K1 = MIr, as a measure of
brigntness contrast. To some extent, this contrast term was used
previously in the flux maximizing geometric flow (Vasilevskiy and
Siddiqi, 2002) to generate a curve evolving speed for vessel
segmentation.

Generally, we only need to confine the sign of K1, with negative
(positive) values corresponding to bright (dark) objects. For pul-
monary CT images, we additionally choose a relative threshold in
proportion to the maximum magnitude of eigenvalues (km) to en-
sure noise immunity, i.e.

jK1j ¼ jk1 þ k2 þ k3j > 3akm: ð15Þ

Here, the proportional parameter a is adopted to adjust sensitivity,
and its theoretical range is limited to [0,1) from the definition. The
reason not to use an absolute threshold is that pulmonary vessels
cover a large range of intensity variety, and it is difficult to balance
the intensity gap between vessels with various sizes. It should be
pointed out that this contrast constraint differs from the traditional
ones, which only use the sign of the two eigenvalues with highest
magnitude.

4.2. Measure of structure strength

The strain energy density is a term to quantify the local energy
stored in a solid after mechanical loading. Based on the observation
that stressed materials are in a compressed state similar to the
intensity concentration of image structures, we attempt to develop
a strain energy density function to evaluate structure strength.

For an isotropic and linear elastic material, the stress–strain
relation without thermal effect is

gij ¼
1þ m
�

rij �
m
�

dij

X3

k¼1

rkk: ð16Þ

Here, � and m are Young’s modulus and Poisson’s ratio respec-
tively, rij(gij) the elements of stress (strain) tensor, and dij the
Kronecker delta function. Then, the strain energy density

U ¼ 1
2

P3
i¼1

P3
j¼1rijgij

� �
can be rewritten as

U ¼ 1þ m
2�

X3

i¼1

X3

j¼1

r2
ij �

m
2�

X3

k¼1

X3

l¼1

rkkrll: ð17Þ

By diagonalization, we can also represent the density function in
terms of the eigenvalues of the tensor:

U ¼ 1
2�
ðk2

1 þ k2
2 þ k2

3Þ �
m
�
ðk1k2 þ k1k3 þ k2k3Þ: ð18Þ

With the tensor decomposition in Section 3, the strain energy den-
sity function of the Hessian matrix can be defined as the combina-
tion of two orthogonal components, i.e.

UðHÞ ¼ 1� 2m
2�

ðH : HÞ þ 1þ m
2�
ðeH : eHÞ: ð19Þ

The deduction is given in Appendix A. Essentially, Eq. (19) divides
the energy density function into two independent parts: a volume
changing (isotropic) energy and a distortion deforming (aniso-
tropic) energy. Since � does not affect the relative weights, we fix
it to 0.5. To keep the value of U(H) in the same power order as
the original image intensity, the square root of strain energy density
is adopted, i.e.

qðHÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 2mÞðH : HÞ þ ð1þ mÞðeH : eHÞq

: ð20Þ
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Since H : H ¼ 1
3 K2

1 and eH : eH ¼ K2
2, Eq. (20) is actually a tensor

invariant representation.
Before using q(H), it is necessary to understand the physical

meaning of Poisson’s ratio m. In mechanics, when a sample of mate-
rial is stretched in for example the horizontal direction, it tends to
get thinner or larger in the vertical direction. The Poisson’s ratio m
is then defined as the ratio of vertical strain (relative displacement)
to horizontal strain. This is actually a parameter to describe the
mutual influence between deformations in different directions.
For a stable material, the value range is �1 6 m 6 0.5. Based on
the similarity of material deformation to intensity variation, it is
possible to verify the effect of m in image processing. If m < 0, the
intensity concentrating in one direction will cause the relative
intensity increasing in the perpendicular directions, which is
known to generate isotropic ‘‘blob” structures. Inversely, m > 0 will
adversely affect the intensity concentration in orthogonal direc-
tions, and then encourage anisotropy. Actually, the above relation
can be easily checked from the two weights of isotropic and aniso-
tropic energy terms in Eq. (20) by taking different m values. If m = 0,

qðHÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

1 þ k2
2 þ k2

3

q
, which is then the ‘‘second-order structure-

ness” first used by Frangi et al. (1998). Here, we point out that m
is adjustable to the requirement of applications.

To verify the effect of m on real images, we illustrate a vessel
likelihood function which will be elaborated later in Eq. (31). Here,
the Poisson ratio varied from �1.0 to 0.5, while the remaining
parameters were kept fixed, i.e. a = 0.1, b = 0.06, j = 0.5. An indi-
vidual vessel tree was selected for demonstration. The original im-
age is visualized in Fig. 1a. The performance with varying m can be
observed in Fig. 1b–d. For brevity, we only show the three repre-
sentative results, i.e. m = �1.0, 0.0, 0.5. As illustrated, a negative m
tends to smoothen branches, but the junctions deteriorate with
decreasing m, even disconnections occur around the bifurcations
(labeled with green circles). Inversely, anisotropic structures are
commonly enhanced by positive m values. This can be seen not only
from the obviously strengthened vascular junctions, but also from
the newly visible weak branches after filtering (see the blue1 cir-
cles). But a high positive m may lead to coarse surfaces and degrade
some irregular vessel structures, e.g. the blob-like deformations
(indicated with red circles) will be exaggerated and tend to be bro-
ken. Therefore, the parameter m essentially acts to adjust the sensi-
tivity to anisotropy.

4.3. Intensity continuity constraint

Most vessel structures including the branch, junction and cross-
ing, share one common characteristic: there exists at least one
direction in which the intensity variation is very small. This inten-
sity continuity constraint has been used widely in various vessel
detection techniques (Qian et al., 2009).

Although in real vascular images, the continuity constraints are
often violated due to noise corruption, it can still be observed at an
appropriate scale r. The intensity continuity constraint at pixel x0

in direction~r is equivalent to Irðx0 þ h~rÞ � Irðx0Þ � 0, with~r a unit
vector and h the magnitude. Then, the corresponding Taylor expan-
sion is

rIrðx0Þ �~r þ
h
2
~rtHrðx0Þ~r � 0: ð21Þ

If the edge (first-order derivative) dominates the location, we can
use rIrðx0Þ �~r � 0 to find the vessel orientations. This is essentially
the theoretical basis behind gradient-based vessel detecting tech-
niques (Agam et al., 2005). Instead, if the first-order derivative is
1 For interpretation of color in Figs. 1, 2, 4–8, the reader is referred to the web
version of this article.
negligible, the Hessian term will mainly account for the intensity
variation, i.e.

~rtHrðx0Þ~r � 0: ð22Þ

To investigate the influence of intensity continuity on Hessian
eigenvalues, we first decompose ~r in the coordinate system of
eigenvectors:

~r ¼ c1~e1 þ c2~e2 þ c3~e3: ð23Þ

As elaborated in Appendix B, the eigenvalue representation is ob-
tained as

~rtHrðx0Þ~r ¼ c2
1k1 þ c2

2k2 þ c2
3k3: ð24Þ

Then, from Eq. (22), we have

c2
1k1 þ c2

2k2 þ c2
3k3 ¼ 0: ð25Þ

Since none of the above coefficients (c2
i ) are negative, it can be in-

ferred that only two conditions of eigenvalues distribution are able
to satisfy Eq. (25):

� At least one of the eigenvalues (e.g. ki) is zero. Thus, with c2
i ¼ 1

and other coefficients nulls, the sum on the left side will be 0.
� The eigenvalues take different signs, e.g. a positive eigenvalue

and two negative ones. If they are all positive or negative, the
weighted sum will never be 0.

The first condition occurs where the intensity continuity direc-
tions coincide with the eigenvectors, which includes the line (one
zero eigenvalue) and sheet (two zero eigenvalues) structures. The
homogeneous region has full zero eigenvalues and is continuous
in all directions. The second condition corresponds to more general
cases, where the intensity similarity results from the interaction of
compression (intensity increasing) and expansion (intensity
decreasing) in varying eigenvector orientations. Particularly, it is
able to explain the eigenvalue distribution of vessel junctions,
which have intensity continuity directions different from the
eigenvectors, and even perhaps have more than one continuity
directions. This condition also conforms to the eigenvalue distribu-
tion of vascular stenoses described previously by Sato et al. (2000).

4.4. Relative Hessian strength

The above second-order structure analysis is established on the
assumption that the gradient term in Eq. (21) is relatively weak
compared to the Hessian component. We emphasize that it is non-
trivial to quantify the relative strength of the second-order deriva-
tives, and ensure its dominance over the gradient. Since the
gradient magnitude is defined as the maximum response of
rIrðx0Þ �~r, we define the magnitude of Hessian matrix as

kHk1 ¼maxfj~rtH~rÞj; k~rk ¼ 1g: ð26Þ

Substituting Eq. (24) into Eq. (26), we can find that kHk1 is the max-
imum magnitude of eigenvalues, i.e. km. Then, a relative Hessian
strength function can be defined as

GrelðxÞ ¼ exp �b
krIk
km

� �
: ð27Þ

Here, the constant b > 0 is used to adjust the sensitivity of response.
Grel(x) will tend to 1, while km� kr Ik. Conversely, it will take value
of 0, while km � krIk. This relative strength function is useful in
suppressing step-edges, which also respond strongly to eigenvalue
detection like the second-order structures, but take strong gradient
(Koller et al., 1995; Lorenz et al., 1997). Another potential effect of
this term is to prevent small objects from being overlapped by lar-
ger smoothing kernels (Agam et al., 2005; Bennink et al., 2007),



Fig. 1. Comparing results of the proposed filter with varying parameter m.
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since the blurred boundaries appear to have low Hessian strength.
Recently, Bauer et al. (2010) presented a similar step-edge sup-
pressing term to adaptively adjust medialness response near vascu-
lar boundaries.

4.5. Vessel shape discrimination

Until now, we only discussed the detection of common second-
order structures. It is important to design a specific shape discrim-
ination function for vascular images. In this paper, we follow the
tensor ‘‘shape” concept of traditional vessel filters by evaluating
the relative magnitude change of Hessian eigenvalues, while
neglecting the orientation of its eigenvectors.

As mentioned in Section 3, the invariant K3 is termed mode by
Criscione et al. (2000) in a continuum mechanics context. Intrinsi-
cally, the mode is a dimensionless parameter of anisotropy type,
varying between �1 and +1. Ennis and Kindlmann (2006) verified
its effect in distinguishing planar and linear anisotropy of diffusion
tensor. However, the shape discriminating ability of mode will
gradually decrease when the anisotropy of structures becomes
weaker. To remedy this drawback, we introduce the fractional
anisotropy (FA) as an additional indicator.

Fractional anisotropy was originally proposed by Bassera and
Pierpaoli (1996), and has been widely used in diffusion tensor
imaging. Since the Hessian matrix is not necessarily positive-defi-
nite as diffusion tensors, we modified the original formulation by
multiplying with a different constant:

FA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
eH : eH
H : H

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk1 � k2Þ2 þ ðk1 � k3Þ2 þ ðk2 � k3Þ2

k2
1 þ k2

2 þ k2
3

s
: ð28Þ

This ensures that FA = 1 for an ideal vessel branch (jk1j � 0 and
k2 � k3� 0 or � 0). Since eH : eH ¼ K2

2 and H : H ¼ 1
3 K2

1 þ K2
2; FA can

also be considered as a relative ratio between the invariant K1

and K2. In addition, the eigenvalue representation of mode(K3) is
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modeðxÞ ¼
ffiffiffi
2
p 1

3

P3
i¼1ðki � �kÞ3

1
3

P3
i¼1ðki � �kÞ2

� �3
2
; ð29Þ

with �k the average eigenvalue. Although both FA and mode can be
computed without eigenvalue decomposition, the above expres-
sions are useful for intuitive understanding of their responses to
varying vessel structures.

To investigate the potential of FA and mode in discriminating
vessel shapes, we need to know not only their values on specific
vessel structure, but also their response curves concerning the
transition between various structures. Based on the previous inten-
sity continuity constraint, the eigenvalue distributions of typical
vessel structures including the vessel branch, boundary, junction
(or stenosis), blob and step-edge, are summarized in Table 1. Since
the vessel branch (usually considered as a line or tubular shape) is
the standard structure, the shape deviation (transition) of other
structures from the ideal branch is described with the change of
one eigenvalue (shown as column 3 in Table 1). Here, we consider
only bright objects, set k3 = �km to be the maximum magnitude
eigenvalue, and other eigenvalues are represented in relative ratio
to km. Without loss of generality, the tolerance of the remaining
third eigenvalue is considered, and the variation range is set to
1
2 km as shown in column 4. The novelty of this classification is that
we use two negative eigenvalues and one comparatively smaller
positive eigenvalue to represent non-tubular vascular structures
(labeled as junction and stenosis here). In our category, Types I–
III are initialized from the line shape, and one exception (Type IV)
is originally the extensive part of Type II. The corresponding 3D
curves of FA and mode are shown in Fig. 2.

According to the distribution of eigenvalues, we divide the
shape transitions into two groups: low-anisotropy and high-
anisotropy. The weak anisotropy group (FA < 1) corresponds to
‘‘Type I”. As observed, the mode curves vibrate unstably with isot-
ropy increasing (k1 � �km). But FA decreases gradually from 1 to 0
with the shape deviating from the ideal branch, and is then able to
act as a discrimination function. The effect is equivalent to the
‘‘blob” suppressing term used in traditional Hessian filters. The
high-anisotropy group (FA P 1) contains the remaining three
types. Since FA is only a measure of anisotropy strength, its shape
selecting ability will become invalid here. Instead, the mode of
anisotropy is effective now. For ‘‘Type II”, the transition from vessel
branch center to boundary is indicated. We can find that the mode
curve occurs to be a quadratic descending function, which will
work as a ‘‘sheet” suppressing term. Furthermore, the most attrac-
tive characteristic of anisotropy mode is shown in ‘‘Type III”. Here,
the curve responds with the same high value close to 1 for all
structures including line, junction and stenosis. This means the
mode, as a shape discriminating parameter, will accommodate lo-
cal deformations from normal vessel branches, and help to solve
the problem of junction suppression. However, mode is not as good
in suppressing step-edges as its performance on sheet structures
(see ‘‘Type IV” in Fig. 2). It is known that the second-order deriva-
tive operator often gets strong response on step edges (Koller et al.,
1995). But this problem is believed to be well compensated in our
Table 1
Eigenvalue distribution and transition between typical vessel structures.

Type Initial structure Transition

I Vessel branch (line) k1 ¼ 0; k2 ¼ �km; k3 ¼ �km k1:0 ? �km

II k2:�km ? 0

III Junction and

k1:0 ? km

IV Vessel boundary (sheet)k1 = k2 = 0, k3 = �km k2:0 ? km
model by the ‘‘relative Hessian strength” and ‘‘brightness contrast”
terms mentioned before, because the step-edges usually have
strong gradient and low average eigenvalue.

From the above analysis, we formularize the final vessel shape
discriminating function as

VðxÞ ¼
ffiffiffiffiffiffi
FA
p

; FA < 1
1
2 ½modeðxÞ þ 1�; otherwise

(
; ð30Þ

where the mode term is modified to limit its value inside [0, 1], and
the square root of FA is adopted to balance the curve tendency, then
makes both ‘‘blob” and ‘‘sheet” shapes be equivalently suppressed
under the same discriminating function.

4.6. Multi-scale vesselness measure

The strain energy density function q(H) in Eq. (20) has no shape
selecting ability. Therefore, we multiply it with V(x) to form a
shape-tuned function, and the relative Hessian strength is
weighted to suppress undesired first-order structures. Further con-
sidering the brightness contrast constraint, our final weighted den-
sity function is presented as

uðr; xÞ ¼
0; if 1

3 ðk1 þ k2 þ k3Þ > �akm

exp �b krIk
km

� �
VjðxÞqðH; mÞ; else:

8<: ð31Þ

The maximum eigenvalue magnitude km and parameters a, b,m are
the same as defined previously. A power coefficient j > 0 of V(x)
is added to adjust the sharpness of shape selectivity. Theoretically,
j could be any positive value, but a high one (j > 1) will become
very sensitive to shape deviation. Here, we only consider the case
of bright objects and dark background. It is trivial to formulate
the inverse cases.

The scale related first- and second-order derivatives are com-
puted by convoluting with Gaussian operators, where the c-nor-
malization (Lindeberg, 1998) is adopted to compensate intensity
decrease due to smoothness. For comparing across scale space,
the weighted strain energy density at each discrete scale is re-
scaled to [0,1] with �uðr; xÞ being the normalized function. Pres-
ently, the rescaling operation is implemented by dividing by the
maximum of u(r,x). The traditional multi-scale framework can
be utilized to generate the maximum response of vessels with var-
ious sizes:

umðxÞ ¼maxf�uðr; xÞ;rmin < r < rmaxg ð32Þ

where rmin and rmax are the selected minimum and maximum
scales. Thus, um(x) is similar to a vesselness function (Frangi
et al., 1998), which measures the likelihood that a voxel belongs
to a blood vessel in the original image.

5. Experiments and evaluation

Our algorithm was implemented in the C++ language, using the
ITK package (Ibáñez et al., 2005). The calculation time for a typical
512 	 512 	 80 size dataset is about 20 s for a single scale on our
Tolerance Final structure

k2 2 ½� 1
2 km;�km� Blob k1 = k2 = k3 = �km

k1 2 � 1
4 km;

1
4 km

� �
Vessel boundary (sheet) k1 = k2 = 0, k3 = �km

stenosis

k2 2 ½� 1
2 km;�km� Symmetric stenosis k1 = km, k2 = k3 = �km

k1 2 � 1
4 km;

1
4 km

� �
Step edge k1 = 0, k2 = km, k3 = �km



Fig. 2. Responses of FA and mode to various vessel structures. The Type I–IV curves corresponding to Table 1 are arranged orderly from left to right, and we plotted the 3D FA
and mode surfaces separately in the upper and lower rows.
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computer, configured with 2.66 GHz CPU and 3 GB memory. The
computing speed is expected to increase largely with multi-
threading and parallel programming.

5.1. Data and evaluation methods

We evaluated the proposed method on synthetic and clinical
datasets. For the synthetic data, a digital phantom was generated
by modeling with 3ds Max (Autodesk Inc.), and then discretized
into 225 	 153 	 18 size images. As shown in Fig. 3a, six objects
were created to simulate different kinds of vessel structures, which
resemble stenoses, varying diameter, bifurcations, curved and
touching branches, respectively. Furthermore, the intensity profile
was idealized as a Gaussian function of distance to the boundary.
Setting the background to one-third of the maximum intensity,
synthetic images were produced by adding multiplicative Gaussian
noise with different variances. Thus, Fig. 3a is the ground truth.

The clinical data were acquired of two patients in the supine po-
sition on a Toshiba Aquilion 16 detector row CT scanner without
contrast media. The images were reconstructed at a 0.5 mm slice
thickness with a 0.5 mm slice increment. The in-plane voxel size
was set to 0.7 	 0.7 mm, and an FC02 reconstruction filter was
used.

Unlike the synthetical data, no gold standard existed in advance
for the clinical images. Artificially defined references were used in
our validations. Due to the complexity of pulmonary vessels, man-
ual segmentation is extremely tedious and time-consuming. It is
unrealistic to artificially extract the vessel network of a whole lung.
Instead, we randomly chose sub-volumes of the CT images across
the boundary of pulmonary lobes, where the bright plane-shaped
fissure (a fiber tissue between lung lobes) and plenty of vessel de-
tails make it a challenging region. Subsequently, a technical expert
and a pulmonologist were asked to hand-draw the data, using the
interactive tools of ITK-snap (Yushkevich et al., 2006). Then, a tho-
rax surgeon was enquired for further verification. A final segmen-
tation is shown in Fig. 4b, and will serve as reference standard in
the quantitative evaluation. Here, the red surfaces indicate the ves-
sels, the blue ones represent bronchi, and green plane is the fissure.
In total, two ‘‘reference standards” corresponding to two different
patient data were extracted, which will be exchanged for training
and testing (i.e. cross-validation) in our experiments.

Our results were compared with three traditional Hessian-
based filters (Frangi et al., 1998; Sato et al., 1997; Li et al., 2003),
whose implementations were downloaded from the ITK package
and Insight Journal (Antiga, 2007; Enquobahrie et al., 2007), and
the different kinds of vessel likelihood were considered. Here, we
only adopted the early method of Sato et al. (1997), which is
now a standard ITK filter. The stenosis preservation was addressed
in their improved version (Sato et al., 1998). Both visual and quan-
titative evaluation methods were adopted for comparison. The 3D
visualizations were implemented with the standard modules in
Mevislab (Bitter et al., 2007), and the rendering parameters were
kept consistent among the same type of images.

The quantitative evaluations were conducted by plotting the
precision–recall (PR) curve after binarizing the filtered images with
varying global thresholds. The PR curve was reported to perform



Fig. 3. Synthetic dataset experiment. (a) Original image; (b) synthetic image corrupted with 16% variance Gaussian noise; (c)–(f) are respectively the enhanced images of our
method, Frangi, Li and Sato filters.
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better than the Receiver Operator Characteristic (ROC) curve in
assessing the classifying problems like vascular images, where
the number of negative sample (background) greatly exceeds the
positive sample (object) (Davis and Goadrich, 2006). Here, the pre-
cision indicates the percentage of detected objects that are truly
vessels, the recall (sensitivity) corresponds to the ratio of true ves-
sels that have been detected correctly. We defined two different
kinds of recall namely in terms of volume and skeleton. The latter
is implemented by checking the overlap between the centerline of
‘‘ground truth” and the extracted vessel body. It is not difficult to
understand that this implementation will emphasize the presence
of vessels but neglect their radial size. Actually, the size and
boundaries are often uncertain for a vessel with a Gaussian profile.
Therefore, the skeleton-based recall will be sensitive to the connec-
tivity of vascular network, which is mainly influenced by the pres-
ervation of bifurcations and thin vessels. Usually, the area under
curve (AUC) of the PR curves are calculated to give an overall eval-
uation. To distinguish the above volume and skeleton related pre-
cision–recall curves, we name them separately as PRv and PRs.
Correspondingly, the area terms are AUCv and AUCs.
5.2. Optimization of parameters

There are four vessel filters used in our experiments. In order to
compare the best possible results of all the methods, we optimize
their parameters on various types of data. No parameters are in-
volved in the Li et al. (2003) filter. The fixed parameters of Sato
et al. (1997) and Frangi et al. (1998) filters are set the same as
the original papers, then only the noise-suppressing parameter c
of Frangi method need optimizing.

The proposed method has four parameters. Among them, the
shape selective parameter j is empirically set inside [0.3,0.8] with
0.5 being a reference value for real vessels, and it can be further ad-
justed according to the specific property of objects. Generally, a
lower j tends to loose the restriction of ‘‘sheet” and ‘‘blob” defor-
mations. The choice of m is also application dependent. In pulmon-
ary images, we prefer a positive m owing to the importance of
preserving vascular connectivity at bifurcations. In our experi-
ments, a positive value 0.1 < m < 0.3 is sufficient to satisfy the
requirement of junction enhancement in most cases. It is safe to
set m = 0, if no priority of structures is involved.

The remaining parameters a and b may be manually adjusted
by gradually increasing values from 0. Since the effect of b is to ad-
just the strength of suppressing first-order edges, and a accounts
for the sensitivity to noise, both of them will tend to remove weak
structures and thin vessels if too large values are adopted. For vas-
cular images, the empirical configuring ranges are a 2 [0,0.4] and
b 2 [0,0.4]. While the ground truth or reference standard is avail-
able, the two parameters can be optimized automatically based
on the PR measure. Generally, the best parameters are chosen
where the sum of normalized AUC reaches its maximum. We dem-
onstrate this by using the first clinical data in Section 5.4. The AUCv
and AUCs responses to varying a and b are calculated and generate
the color filling contour graphs in Fig. 5a and b. Then, the AUC func-
tions are normalized by dividing by their maxima. The maximum
of their rescaled sum is located at a = 0.20 and b = 0.06, which
are chosen the optimized values.



Fig. 4. The first non-contrast-enhanced pulmonary CT dataset experiment. (a) original image; (b) manually segmented reference standard; (c) filtered image of our method;
(d)–(i) are the extracted ROI from the original image, reference standard, the filtered results of proposed, Frangi, Li and Sato method, respectively.
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Similarly, the noise-suppressing parameter c of Frangi’s filter
was also optimized automatically with the corresponding AUC re-
sponses as shown in Fig. 5c. It can be seen that AUCv and AUCs do
not reach their extreme values simultaneously. Then, the maxi-
mum of the normalized sum is also used to find the optimized
parameter, and we have c = 120.

5.3. Synthetic dataset experiment

We compared the four filters on the synthetic image with 16%
variance noise in Fig. 3b. The scale range used in this experiment
is 1–6 pixels, and is further divided logarithmically into 10 steps.
According to Section 5.2, our parameters were optimized to
a = 0.2 and b = 0.02. Considering the complexity of phantom
shapes, we chose a smaller shape selecting parameter (j = 0.4)
than the reference value to accommodate more deformation. m
was simply set to 0 without priority to specific structures. Simi-
larly, we optimized the parameter c of Frangi’s filter to 0.65. Here,
the synthetic image was in its original float type with low pixel val-
ues, which lead to a smaller c compared with the clinical data. The
filtering results are given in Fig. 3c–f. As shown, the traditional
Hessian filters were not good to preserve the junctions and local
deformations, where disconnections in varying degrees can be ob-
served. The distortions near the endpoints of cylinders can be con-
sidered as a reflection of the wrong response to step-edges. The
proposed method has more advantages in enhancing both vascular



Fig. 5. Optimization of parameters on the first clinical data. (a) and (b) are
respectively the AUC responses of PRv and PRs curves with the proposed filter
(j = 0.5,m = 0.1), where the steps of contour level are fixed to 0.01; (c) is the
corresponding response of Frangi’s filter.

C. Xiao et al. / Medical Image Analysis 15 (2011) 112–124 121
branches and bifurcations. Additionally, most details including lo-
cal diameter variety and thin vessels are well preserved. The merit
of our method in preserving details and separating touching
branches (see the rightmost objects in Fig. 3c) is partly ascribed
to the first-order structure suppressing ability of the relative Hes-
sian strength term. However, over-suppression will weaken the
vessel boundaries and make the diameters look smaller. Another
shortcoming may be that our method tends to develop coarser sur-
faces, which arises from the difficulty in balancing between
smoothness and the sensitivity to details.

The quantitative evaluation continues by plotting the PR curves
in Fig. 6a and b. For PRv, the proposed method performs almost the
same as Frangi filter. But our advantage is obvious with the PRs

measure, which can be clearly checked with the AUCs given in
the legend of the figure. Since precision can be seen as a measure
of exactness or fidelity and recall a measure of completeness, the
proposed method is considered to have detected more true vessels
(in terms of presence) with the same fidelity level. Essentially, the
advantage shown in Fig. 6b just reflects the performance of our
method in preserving bifurcations and thin vessels, which directly
contribute to the better completeness of vessel topology. To check
the immunity to noise, we further tested these filters on a series of
synthetic images with different noise levels, while the filtering
parameters were kept the same as Fig. 6b. The corresponding AUCs

curves are plotted in Fig. 6c. As observed, the proposed method ap-
pears to be more stable to noise.

5.4. Clinical dataset experiment

Our method was further validated by using two clinical data-
sets, which work mutually as training and testing sets. Since the
manually extracted reference standards are available, we were able
to optimize the filtering parameters as described in Section 5.2.
Two different configurations of parameters were obtained for Fran-
gi and the proposed filters.

The contrast and edge-suppressing parameters of the proposed
filter were automatically optimized to a = 0.2 and b = 0.06 (labeled
as ‘‘Our method1”) on the first dataset, and a = 0.22, b = 0.1 (‘‘Our
method2”) for the second one. In both configurations, we manually
chose a default j = 0.5, and a positive m = 0.1 to enhance junctions,
since image intensity usually decreases around vessel bifurcations
(Verschakelen and Wever, 2007). Simultaneously, the noise-sup-
pressing parameter of Frangi’s filter was automatically optimized
to c = 120 (‘‘Frangi1”) and c = 90 (‘‘Frangi2”) for the first dataset
and the second dataset , respectively. The selected vascular scales
were 0.5–3.0 mm, and 10 steps were used for all the four vessel
filters.

We selected a sub-volume of data for validation as described in
Section 5.1. With Fig. 4a and b being the original image and refer-
ence standard from the first pulmonary CT data, the result of our
method is presented in Fig. 4c. Compared with the reference stan-
dard, the fissure (rendered in green with low opacity) is basically
invisible in our result, which just verified the ability of the pro-
posed method in suppressing unwanted sheet (plane) structures.
For better observation of details, an independent vascular tree in
Fig. 4d was extracted and visualized. Fig. 4f–i shows the corre-
sponding ROIs from the results of the four filters. As illustrated,
although the main large vessel branches are well preserved with
the three traditional methods, the weakening and missing of junc-
tions are commonly seen, especially in places where small vessels
link to a larger branch. Our result appears to contain most vascular
trees, both branches and bifurcations are enhanced without distor-
tion. In particular, thin vessels and local deformations are clearly
preserved and connected to main vessels. This will be a useful fea-
ture for pulmonary lobe segmentation, because the extraction of
complete and unbroken vessel network will directly benefit the
estimation of the lobe position (Kuhnigk et al., 2003; Ukil and Rein-
hardt, 2009).

The PR curves are also plotted to quantitatively evaluate the fil-
tering performance. Since the reference standard was drawn man-
ually, it is inevitable that some fine vessels may not be accurate
and the vascular boundaries appear coarse and irregular. But the
local uncertainties are believed not to affect the global evaluation,
particularly to determine the presence of vessels. The computed
curves of the first clinical image are shown in Fig. 7. As observed,
the proposed filter takes the maximum AUC for both PRv and PRs,
especially obvious with the latter. Different from the synthetical
image experiment, the performance of the proposed method is
clearly better than other filters in the volume-based evaluation.
This may be ascribed to the fact that real edges in clinical image
are not so sharp as the idealized ones in phantoms, thus the
step-edge suppressing term will not cut down too much vascular
region. In Fig. 7b, the recalls of our method are higher than the
other methods at almost all precision levels. This is consistent with



Fig. 6. Quantitative evaluation of filtered synthetic images with PR curves. (a) and (b) respectively correspond to the PRv and PRs, and the numbers inside the brackets of
legend are AUC values. (c) indicates the change of AUCs to varying standard deviations of Gaussian noise.

Fig. 7. Quantitative evaluation of the first pulmonary image filtering with PR
curves. (a) and (b) respectively correspond to the PRv and PRs, where the numbers
inside the brackets of legend are AUC.

Fig. 8. Quantitative evaluation of the second pulmonary image filtering with PR
curves. (a) and (b) respectively correspond to the PRv and PRs, where the numbers
inside the brackets of legend are AUC.
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the visual illustration, where our filtered image contains more
small vessels as well as feature details. Therefore, in terms of con-
nectivity and completeness of the detected vessel tree, the pro-
posed method outperformed the other filters.

To test the sensitivity of parameters, a cross-validation tech-
nique was utilized. As mentioned previously, we further experi-
mented on a second patient image, and the quantitative
evaluation is given in Fig. 8. Recall the above definition of ‘‘Fran-
gi1/2” and ‘‘Our method1/2”, the first dataset acted as a training
set with the second dataset a testing set in Fig. 8, and conversely
in Fig. 7. Obviously, the testing results of the proposed method
resembles much their training counterparts in both experiments.
The Frangi filter is very robust to parameters, nearly no difference
exists between the Frangi1 and Frangi2 curves. At the same time,
there is also hardly a gap between the two different measures with
our method on PRv, but a small one on PRs, see Fig. 8. In general, our
method is not sensitive to parameters’ change within a certain
range.
6. Discussion and conclusions

In this paper, we have presented a 3D vessel enhancing filter
based on the tensor invariants and strain energy density theory.
The main feature is that we directly generalized the Hessian-based
vesselness filters to non-tubular shapes and realized the enhance-
ment of anisotropic vascular structures like bifurcations. Although
the basic idea is motivated by existing achievements in strain en-
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ergy analysis and diffusion tensor imaging, our novelties concen-
trate on different aspects:

� A strain energy density function is defined to measure strength
of second-order derivative structures, and the sensitivity to
anisotropy can be adjusted by a Poisson ratio parameter.
� Based on the intensity continuity assumption, a mathematical

description of Hessian eigenvalues for general vessel shapes is
given.
� Two tensor invariants, i.e. the mode of anisotropy and fractional

anisotropy index are combined to form a shape discriminating
function, and has been applied to a vessel likelihood measure.
� We introduced the volume-change invariant from tensor

decomposition as a description of brightness contrast, and the
theoretical interpretation is derived.
� The concept of relative Hessian strength has been introduced

previously by other authors. Our work is to discover its ability
in suppressing first-order step-edges and preventing fine struc-
tures from smoothing out by larger Gaussian kernels during the
scale-space integration.

The performance of our method is demonstrated on both syn-
thetic images and non-contrast-enhanced pulmonary CT data. It
is shown that the proposed filter is effective in enhancing non-
cylindrical structures or deformations like junctions compared to
the other three vessel filters, and improves the connectivity of ves-
sels. This has been validated not only from the 3D visualizations,
but also with the quantitative precision–recall curves. For example,
in the clinical data experiments, our method gained a more than
17% higher AUCs measure among the four filters. Actually, the
advantage is quite salient and useful, since the increased ratio
came mainly from the challenging objects rather than the majority
of normal vessels like large branches, which can be easily detected
by most vessel extracting algorithms.

The improvement of connectivity will directly benefit the seg-
mentation of vessel networks. In clinical imaging, the pulmonary
vessel trees are widely used to infer or guess the boundaries of
lung lobes, whose accuracy will depend on the completeness and
reaching dept of neighboring vessel extraction. Moreover, the vas-
cular bifurcations themselves are naturally intrinsic landmarks for
image registration and navigation. Correspondingly, the enhance-
ment of vessel junctions is desired in localization of progression
and treatment of pulmonary diseases. In particular, the utilization
of our filter is not limited to pulmonary images. Many vessel-re-
lated applications, such as the ridge tracking and curve evolution
methods, rely on the vessel likelihood measure to define a driving
speed function. The proposed strain energy filter will be a good
choice, since it is able to preserve most desired vessels while sup-
pressing unwanted noise and disturbance. Furthermore, even
though the proposed filter did not directly generate an accurate
vessel segmentation, the enhanced connection and presence can
still be used as a topological prior to guide post-processing such
as diameter quantification and aneurysm grading.

Presently, the proposed method is limited to 3D vessel images.
It cannot be applied directly to 2D images because the orthogonal
invariants, e.g. the mode of anisotropy may become invalid after
adaption to 2D space. Further effort is needed to expand this model
to more general structures and images. Although we have demon-
strated the ability of Poisson ratio m parameter in controlling
anisotropy, it is better to adaptively optimize its value to local
varying structures rather than use a global one for the whole im-
age. Then, an appropriate adjusting mechanism will be desired.
Currently, the proposed method only utilized the magnitude infor-
mation of the Hessian tensor. Although our filtering result was ver-
ified to be a good measure of vessel likelihood especially around
the deformed structures, directional information is needed for
more rubust segmentation of complex images. In this paper, we
emphasized on the axial connectivity. It is likewise important to
accurately estimate the radial vessel size or profile in many cases.
Our future work will therefore focus on improving the quality of
vessel detection with the strain energy filters.
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Appendix A. Representation of strain energy density function
with orthogonal components

The strain energy density function is originally defined as
U ¼ 1

2

P3
i¼1

P3
j¼1rijgij, and the corresponding principal stretches

form is

U ¼ 1
2

X3

k¼1

kkgk; ðA:1Þ

where kk and gk are separately eigenvalues of stress and strain ten-
sors. From Eq. (16), we have
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Then, Eq. (A.1) is rewritten to

U ¼ 1
2E

k2
1 þ k2

2 þ k2
3 � 2mðk1k2 þ k1k3 þ k2k3Þ

� �
: ðA:3Þ

Consider H : H ¼ 1
3 ðk1 þ k2 þ k3Þ2 and eH : eH ¼ 1

3 ½ðk1 � k2Þ2þ
ðk1 � k3Þ2 þ ðk2 � k3Þ2�, we can further formulate the strain energy
density as

U ¼ 1� 2m
2E

ðH : HÞ þ 1þ m
2E
ðeH : eHÞ: ðA:4Þ
Appendix B. Eigen decomposition of the second-order Taylor
expansion term

Assume ~ei and ki are the eigenvectors and eigenvalues of Hes-
sian matrix, it is clear from eigen decomposition that

Hrðx0Þ ¼ EKEt : ðB:1Þ

Here, E ¼ ð~e1~e2~e3Þ, and K = diag{k1,k2,k3}. Let~r ¼ c1~e1 þ c2~e2 þ c3~e3,
then the second-order Taylor expansion term can be written as

~rtHrðx0Þ~r ¼
X3

i¼1

ci~et
i

 !
EKEt

X3

i¼1

ci~ei

 !
¼
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i E
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ciE
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 !

¼ c1 c2 c3½ �K
c1

c2

c3

264
375 ¼ c2

1k1 þ c2
2k2 þ c2

3k3: ðB:2Þ

Thus, the second-order intensity continuity constraint of Eq. (22) is
equivalent to c2

1k1 þ c2
2k2 þ c2

3k3 ¼ 0.
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