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Abstract—EMPIRE10 (Evaluation of Methods for Pulmonary
Image REgistration 2010) is a public platform for fair and mean-
ingful comparison of registration algorithms which are applied to
a database of intrapatient thoracic CT image pairs. Evaluation of
nonrigid registration techniques is a nontrivial task. This is com-
pounded by the fact that researchers typically test only on their
own data, which varies widely. For this reason, reliable assessment
and comparison of different registration algorithms has been vir-
tually impossible in the past. In this work we present the results of
the launch phase of EMPIRE10, which comprised the comprehen-
sive evaluation and comparison of 20 individual algorithms from
leading academic and industrial research groups. All algorithms
are applied to the same set of 30 thoracic CT pairs. Algorithm set-
tings and parameters are chosen by researchers expert in the con-
figuration of their own method and the evaluation is independent,
using the same criteria for all participants. All results are pub-
lished on the EMPIRE10 website (http://empire10.isi.uu.nl). The
challenge remains ongoing and open to new participants. Full re-
sults from 24 algorithms have been published at the time of writing.
This paper details the organization of the challenge, the data and
evaluation methods and the outcome of the initial launch with 20
algorithms. The gain in knowledge and future work are discussed.

Index Terms—Chest, computed tomography, evaluation,
registration.

I. INTRODUCTION

F OR many years researchers have worked on registration
algorithms for medical imaging applications [1]–[6]. One

such application is the alignment of thoracic CT images from
the same subject, in particular of the lung and its internal struc-
tures. The lungs are highly deformable organs making accurate
registration of them a challenging task requiring a nonrigid reg-
istration approach [7]. There are many scenarios in which intra-
patient pulmonary registration is clinically useful. Registration
of follow-up (temporally distinct) breathhold inspiration scans
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should make visual comparison of these scans a much easier
and less error-prone task for a radiologist. For well-aligned im-
ages, automatic methods of comparison for analysis of disease
progression, etc., may even be considered. Breathhold inspira-
tion scans may also be aligned and compared with breathhold
expiration scans to enable improved monitoring of airflow and
pulmonary function via CT images. Where 4-D data is avail-
able (i.e., numerous CT images representing various phases in a
breathing cycle) these images may be registered in order to ob-
tain information about the deformations that occur during res-
piration. Such information can be used in image-guided treat-
ment, including motion estimation in treatment planning and is
also expected to be extremely valuable in understanding the ef-
fects of disease on (regional) lung elasticity.

The inability to compare registration algorithms in a mean-
ingful way is a major obstacle to further development and
improvement in the research community. Although many
researchers have published articles demonstrating the results
of their registration algorithms, they are largely based on
proprietary datasets, even with differing image modalities.
Furthermore their methods of evaluating their registrations,
which is a highly complex task in itself, are diverse, further
complicating the task of comparing algorithm results. Some au-
thors have undertaken the task of running a number of different
algorithms on a fixed dataset in order to compare the algorithm
performances in a reliable manner [8]–[13]. The drawback to
this approach, however, is that the configuration of algorithm
parameters for a specific task is frequently a nontrivial problem
which is best understood by those who developed the method.
Ideally the algorithm should be implemented and configured
by those who are thoroughly familiar with all aspects of its
behavior in order to obtain optimal performance. There have
been some initiatives in the past which provided common
datasets and evaluation methods for the evaluation of registra-
tions of brain images [14]–[16], while allowing the users to
configure and run their own registration algorithms on the data.
An attempt was made to provide an objective comparison of
pulmonary registration algorithms in [17] and [18] but based
on just one pair of lung images in the case of [17] and a single
phantom in the case of [18]. Furthermore the methods of

0278-0062/$26.00 © 2011 IEEE



1902 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 30, NO. 11, NOVEMBER 2011

registration evaluation in those works are limited to analysis of
38 manually identified landmarks [17] and 48 plastic markers
[18]. Results from 12 algorithms are reported in [17] and from
eight algorithms in [18].

The EMPIRE10 (Evaluation of Methods for Pulmonary
Image REgistration 2010) challenge1 described in this paper
provides a means for objective comparison of registration algo-
rithms applied to 30 pairs of thoracic CT data. This challenge
invites participants to download a set of thoracic CT intrapa-
tient scan pairs and register them using their own registration
algorithms. The aim of the registration is to align the lung
volumes; structures outside the lungs are not considered during
the registration evaluation. The scans have been selected by the
organizers to represent a broad variety of problems of the type
encountered in clinical practice. Participants calculate defor-
mation fields and submit them to the EMPIRE10 organizational
team for independent evaluation. The deformation fields are
evaluated over four individual categories: lung boundary align-
ment, fissure alignment, correspondence of manually annotated
point pairs, and the presence of singularities in the deformation
field. Evaluation results are published on the EMPIRE10 web-
site.1 The advantages of this approach to registration evaluation
are as follows.

• All algorithms will be applied to exactly the same set of
data, designed to be as large and diverse as possible.

• Any algorithm parameters or settings will be chosen
by those familiar with the algorithm and expert in its
configuration.

• The resulting registrations will be independently evaluated,
in four different categories, using the same criteria for all
participants.

This paper describes the organization of the challenge and its
initial two-phase launch. Phase 1 required participants to reg-
ister 20 data sets in their own facilities and return their registra-
tion results to the challenge organizers for evaluation. Phase 2
consisted of a live workshop at the MICCAI conference in 2010
[19], where participants registered a further 10 scan pairs. The
aim of this work is to describe the challenge in detail and discuss
the outcome of phases 1 and 2 and the advancement in knowl-
edge achieved.

II. MATERIALS

The materials for this challenge were gathered from several
sources to try to include as broad a variety as possible of
the scenarios encountered in clinical practice. Thus, scans
may be taken at various phases in the breathing cycle (full
breath-hold inspiration, full breath-hold expiration, phase from
4-D breathing data). Subjects may exhibit lung disease or
appear healthy, although they typically do not exhibit gross
pathology. Data from a variety of scanners is included and a
variety of different slice-spacings occur.

In this section, we describe in detail the properties of the 30
scan pairs provided to participants. Each scan pair is taken from
a single subject, i.e., only intrapatient registration is considered
in this challenge. The lungs in all images were segmented using
an automatic algorithm from van Rikxoort et al. [20]. Lung seg-

1http://empire10.isi.uu.nl

TABLE I
LISTING OF WHICH CATEGORY OF DATA WAS PROVIDED

FOR EACH OF SCAN PAIRS 01 TO 30. EXPLANATIONS

OF THE DATA CATEGORIES ARE GIVEN IN SECTION II

mentations were checked and altered manually where neces-
sary. In all cases the scan data was cropped using a bounding box
around the lungs before distribution. This was done to reduce the
size of the files to be downloaded since the regions outside the
lungs were to be excluded from consideration during registra-
tion and evaluation. The data downloaded by participants also
included the binary lung masks which they were permitted to
use during registration. No other segmentation information was
provided.

The remainder of this section describes the 30 scan pairs cat-
egorised by type. Table I lists which scan pairs belong to which
category. Note that the participants were not aware which scans
belonged to which category, or even what categories of data
were included, until after they had registered the scans and their
results had been published.

A. Breathhold Inspiration Scan Pairs

Eight of the 30 scan pairs consisted of two breathhold inspi-
ration scans (referred to as “insp-insp” in Table I). These scans
were acquired as part of the Nelson Study [21] which is the
largest lung cancer screening trial in Europe. Current and former
heavy smokers, mainly men, aged 50–75 years are included in
this study. In these eight pairs the follow up scans were made
between 9 and 14 months after the baseline scan. A low-dose
protocol was used (30 mAs) and the scanner was either Philips
Brilliance 16P or Philips Mx8000 IDT 16 in each case. Slice
thickness was 1.00 mm with slice-spacing of 0.70 mm. Pixel
spacing in the X and Y directions varied from 0.68 to 0.78 mm
with an average of 0.74 mm.

B. Breathhold Inspiration and Expiration Scan Pairs

A further eight scan pairs, also taken from the Nelson Study
[21] were made up of a breathhold inspiration scan and a breath-
hold expiration scan, made in the same session (referred to as
“insp-exp” in Table I). The inspiration scan was created using
a low-dose protocol (30 mAs) while the expiration scan was
ultra-low-dose (20 mAs). The scanner used was Philips Bril-
liance 16P with slice thickness of 1.00 mm and slice spacing of
0.70 mm. Pixel spacing in the X and Y directions varied from
0.63 to 0.77 mm with an average value of 0.70 mm.

C. 4-D Data Scan Pairs

Four of the scan pairs consisted of two individual phases from
a 4-D dataset. In each case the phases were chosen to be as
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distinct as possible, i.e., at opposing ends of the breathing cycle.
Three of the scan pairs were from a GE Discovery ST multislice
PET/CT scanner while the fourth (scan pair 17) [22] was from
a Philips Brilliance CT 16 Slice scanner. The scans from the
GE scanner used a beam current of 100 mAs each, while the
Philips scan used 400 mAs. Since each scan pair came from a
4-D dataset the spacing was identical for the two scans in the
pair. Slice-spacing was 1.25, 2.50, and 2.50 mm for the three
GE scans and 2.00 mm for the Philips scan. Pixel spacing in the
X and Y directions was set at 0.98 mm in all cases.

D. Ovine Data Scan Pairs

Four scan pairs were ovine (sheep) data from two datasets
where breathing was regulated. A number of metallic markers
(67 in the first animal, 103 in the second), 1.40 mm in diameter,
had been surgically implanted in the sheep lungs approximately
six weeks before scanning. The markers were implanted mainly
in the left upper lobe and right lower lobe. Airway pressure was
regulated during scanning on a Philips MX8000 Quad Scanner
with the sheep in supine position. Scans were acquired at three
different airway pressures: 8, 16, and 24 cm . Slice spacing
was 0.60 mm with in-plane pixel spacing of 0.47 mm the first
animal and 0.49 mm for the second.

The metallic markers which were visible in the scans were
identified and their locations noted. They were subsequently dis-
guised using a hole filling technique in order that participants
could not identify them and registration algorithms would not
be guided by them. The marker locations were used in the reg-
istration evaluations (see Section IV-C).

E. Contrast–Noncontrast Scan Pairs

Two pairs of scans were used in which contrast material was
present in one scan of the pair but not in the other. These scans
were acquired on a Siemens SOMATOM Sensation CT 64-slice
scanner. The contrast scan (arterial phase) was acquired ap-
proximately 30 s after the noncontrast scan in each case. Slice
spacing was 1.50 mm with pixel spacing in the X and Y direc-
tions of 0.60 mm for the first subject and 0.69 mm for the second.

F. Artificially Warped Scan Pairs

Since registration algorithms are difficult to evaluate in
a quantitative way, a frequently employed method (e.g.,
[23]–[25]) is to apply a known artificial transformation to a
single dataset and then attempt to register the original scan with
the result. In this case, the ground truth is known so evaluation
is more reliable. For this reason four scan pairs were included
in the EMPIRE10 challenge which consisted of an original
scan and the same scan with an artificial thin-plate-spline warp
applied to it.

The procedure for warping a scan artificially was as follows.
A pair of breathhold inspiration scans from the Nelson Study
[21] was acquired. One hundred well-dispersed landmark points
were identified automatically in the baseline scan and matched
semi-automatically in the follow-up scan. Landmark identifica-
tion and matching was done according to the method described
in [26] and [27]. A thin-plate-spline model was created using the
100 pairs of matching points. Using this thin-plate-spline model
and linear interpolation, the baseline image was warped to create

an image with the same image size and spacing as the follow up
scan. The anatomical appearance of this warped scan was, by
construction, similar to that of the follow up scan. This method
was used in order to ensure that the artificial warp would result
in an image with a realistic appearance. A sharpening filter (un-
sharp masking) was applied to the warped image to negate the
smoothing effects of warping and interpolation. Regions around
the edge of the warped image (outside the lungs) where no data
values could be assigned were cropped away. The scan pair dis-
tributed to the challenge participants in each case consisted of
the original baseline scan and the artificially warped version of
this scan.

The scans were acquired using either Philips Mx8000 IDT 16
or Philips Brilliance 16P scanners. Slice-spacing was 0.70 mm
while in-plane pixel spacing varied from 0.66 to 0.80 mm with
an average value of 0.74 mm.

III. CHALLENGE SETUP

The EMPIRE10 challenge was launched in April 2010 when
a large number of researchers involved in the fields of regis-
tration and thoracic CT (as determined by a literature search)
were invited by e-mail to visit the website1 and to participate
in the challenge. The challenge was also widely announced on
mailing lists. The registration tasks involved were divided into
two phases described below. The two phases are considered
independently in this work since the circumstances of regis-
tering were generally different for each. The participants were
not given any information about the source or type of data they
were registering until after they had completed the registrations
and submitted their results.

• Phase 1: The participants downloaded 20 pairs of thoracic
CT scans (pairs 01–20 in Table I) from the 30 pairs de-
scribed in Section II. These pairs were registered by the
participants in their own facilities, and results in the form
of deformation field images were submitted to the orga-
nizers by June 14th. These registrations were evaluated
(see Section IV) and the results were published on the web-
site.1

• Phase 2: The participants took part in the Grand Challenge
Workshop [19] at the MICCAI conference in Beijing on
September 24th 2010. During the first 3 h of the work-
shop participants were required to register the remaining
10 datasets (pairs 21–30 in Table I) which had been pass-
word encrypted until that point. Since registration of such
large datasets is technically challenging in terms of pro-
cessing power and memory requirements it was permitted
to perform the registrations using remotely located hard-
ware if required. If a participant was unable to attend, or un-
able to complete registration by the end of the three hours it
was permitted to submit results during the week following.
(Note that it was not permitted to submit partially com-
plete results at the workshop and supplement these with
additional results during the week following). Algorithms
which were run remotely or whose results were not sub-
mitted during the workshop but rather in the week fol-
lowing are clearly noted in the results section as well as
on the challenge website.
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Since September 2010 the EMPIRE10 challenge has entered
a new ongoing phase and remains open to entries from new par-
ticipants or to submission of improved results from teams al-
ready involved. In this way we hope that EMPIRE10 will con-
tinue to maintain a record of the state of the art in registration
of thoracic CT. All results published on the website now are
based on the combined set of 30 scan pairs. The individual sets
of results from phase 1 and phase 2 as described in this paper
remain on the website but are reported separately for reference
only. Latest results on the combined 30 datasets, some of which
have been recently updated after algorithm modifications, can
be found on the EMPIRE10 website.1

IV. EVALUATION

Evaluation of registration algorithms was carried out in four
different ways as described in the remainder of this section. Note
that for the EMPIRE10 challenge the image to be deformed is
referred to as the “moving image” while the reference image is
known as the “fixed image.”

Participants were asked to declare whether their method was
fully automatic (processed all scan pairs with the same param-
eter set), semi-automatic (required different parameters for dif-
ferent scan pairs), or interactive (required more significant user
interaction such as manual alignment, defining corresponding
point pairs, etc.) and this information is shown on the challenge
website,1 as well as in Section VII.

A. Alignment of Lung Boundaries

Aligning the boundaries of the lungs correctly is one of the
most fundamental expectations of a pulmonary CT registration
algorithm. The lung boundary is easily defined in CT in most
regions, with the notable exception of the mediastinal (central)
region. A method of analyzing lung boundary registration was
therefore developed for this challenge, which is restricted to the
peripheral regions where the obvious density change between
lung parenchyma and chest wall occurs.

The lungs in all images were segmented using an automatic
algorithm from van Rikxoort et al. [20]. Lung segmentations
were checked and altered manually where necessary. All fur-
ther processing described in this section was carried out fully
automatically. The lung boundary defined by the lung segmen-
tations was extracted and a distance transform image was gen-
erated from the boundary image. The mediastinal region of the
lung boundaries was masked out as follows (see Fig. 1). The
center of mass of both lungs combined, cMass was determined.
The Euclidean distances from cMass to the center of mass of the
left lung, and to the center of mass of the right lung were deter-
mined. A sphere centred at cMass and with a radius defined by
the larger of these two distances was used to identify locations
close to the mediastinum. All voxels within this sphere were ex-
cluded from further processing.

Next, points within 20 mm of the lung boundary were
marked in order to define boundary adjacent locations. Points
within 2 mm of the boundary were excluded to allow for

Fig. 1. Schematic representation of the method to mask out the mediastinal re-
gion as described in Section IV-A. The abbreviation C.O.M. refers to the center
of mass. The shaded region in the diagram is excluded from lung boundary eval-
uation due to its proximity to the mediastinum. It is defined by the sphere centred
at cMass and with radius of either “distance right” or “distance left”—whichever
is larger.

minor inaccuracies in the lung segmentation.2 Points inside and
outside the lung boundaries were distinguished using the lung
segmentation image and marked with different values and

, respectively. These markings constituted the reference
standard for checking lung boundary alignment (see Fig. 2(a)
as an example).

Each participant submitted deformation field data for each
registration carried out. Using this data, it was calculated for
each point marked with or in the fixed image,
which point in the moving image was aligned with this lo-
cation. If was marked with and was marked with

then a unit penalty was incurred. Similarly the reverse sit-
uation where was marked with and was marked
with also incurred a unit penalty. Note that if was not
marked with either or (i.e., if it lay within 2 mm of the
boundary, or more than 20 mm from the boundary) then no ac-
tion was taken.

Error in lung boundary alignment was calculated as the per-
centage of points marked with or which were registered
to points marked as being on the opposite side of the boundary.
This value was given as the overall score in the lung boundary
alignment category. For information, the errors in the left lung,
right lung, upper lung and lower lung were also calculated and
displayed on the participant’s results page on the challenge web-
site.1

B. Alignment of Major Fissures

Fissures are plate-like structures which divide the lungs into
regions called lobes. Since fissures represent important phys-
ical boundaries within the lungs their alignment is included as
an evaluation category in the EMPIRE10 challenge. To simplify
the evaluation, particularly for poor quality data where minor

2This 2-mm margin, mentioned in both Sections IV-A and IV-B is chosen
as it is assumed that any segmentation error larger than 2 mm could not
have been overlooked during the segmentation checking process. Making the
margin smaller would certainly detect more errors in the registration results,
many of which would be legitimate. However it would also risk penalizing
some algorithms unfairly where the error lay with the segmentation and not
with the registration.
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Fig. 2. (a) Coronal section of the lung boundary reference standard. The
boundary itself is marked in blue and surrounded by a 2-mm gap on each side.
Regions outside the lung are marked in cyan, and inside the lung are marked in
green. (b) Fissure reference standard. Color coding is analogous to that in the
upper image with regions above and below the major fissures marked in green
and cyan, respectively.

fissure structures may be difficult to see, we evaluate the regis-
tration of the major fissures only. Each lung contains a single
major fissure dividing it into an upper and a lower section. This
method of analysis was developed specifically for use in the
EMPIRE10 challenge.

The fissures in all images were segmented using an automatic
algorithm from van Rikxoort et al. [28]. Fissure segmentations
were checked and altered manually to exclude minor fissures
and any erroneous markings. Gaps in the segmentation were
not always filled so the resulting segmentation may be incom-
plete but does not contain any nonfissure structures. All fur-
ther processing described in this section was carried out fully
automatically.

A distance transform image was generated from the resulting
fissure segmentation image. Next, points within 20 mm of the

fissure segmentation were marked, excluding those within 2 mm
of the fissure to allow for minor inaccuracies in the segmenta-
tion. Points which were not directly above or below a fissure
voxel (looking in the axial direction) were excluded in order to
prevent the marked regions wrapping around the edges of the
fissure plates (or around gaps in incomplete fissure segmenta-
tions). For each marked point , the closest point on the
fissure segmentation was determined. Points above and below
the fissure are distinguished by comparing the axial components
of and . Different values, and were used to
mark points above and below the fissure, respectively. These
markings constituted the reference standard for checking fis-
sural alignment (see Fig. 2(b) as an example).

Using the deformation data submitted by the participant,
it was calculated for each point marked with or

in the fixed image which point in the moving image
was aligned with this location. If was marked with
and was marked with then a unit penalty was in-
curred. Similarly the reverse situation where was marked
with and was marked with also incurred a
unit penalty. Note that if was not marked with either or

(i.e., if it lay within 2 mm of the boundary, or more than
20 mm from the boundary) then no action was taken.

Error in fissure alignment was calculated as the percentage of
points marked with or which were registered to points
marked as being on the opposite side of the boundary. This value
was given as the overall score in the fissure alignment category.
For information, the errors in the left lung and right lung were
also calculated and displayed on the participant’s results page
on the challenge website.1

C. Correspondence of Annotated Landmark Pairs

Analysis of point correspondence is a commonly used way to
evaluate registration algorithms [13], [29]–[34]. In most cases
the set of points is manually annotated by an expert, resulting in
relatively small point sets, which are frequently clustered in the
mediastinal region where distinctive anatomical points are more
easily observed. For the EMPIRE10 challenge a well-distributed
set of 100 distinctive landmark points was automatically de-
fined in the fixed image from each scan pair. Each point
was then matched with the corresponding point in the
moving image using a semi-automatic method. The methods for
defining and matching the points are described in Murphy et al.
[26], [27]. The software used is publicly available at http://isi-
match.isi.uu.nl. An example of the point distribution is shown
in Fig. 3(a). The landmarks are designed to be well dispersed
throughout the lungs and, in most cases, lie in regions of good
contrast (to enable them to be visually matched), typically on
the boundary of vessel and parenchyma. The manual component
of the point-matching procedure allows the user to determine
the match by examination of the point in all three orthogonal
directions and at various zoom levels. A matching point may
be selected or moved at any time. Corresponding points were
marked by either three or four observers independently (from
seven available observers who worked on this task), and any lo-
cation where any pair of observer opinions differed by 3 mm or
more was checked a final time by an observer who could see all
previous annotations on a single screen and accept or reject each
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Fig. 3. (a) An example of the landmark points identified in a fixed scan.
Landmarks have been projected onto a single slice (maximum intensity projec-
tion image is shown here) and markers are increased in size for visualization.
(b) Color coded Jacobian image with the scale going from �0.5 (red) to 40
(blue). Pixels at or below 0 are singularities.

one independently. The observers were all medical students, ex-
cept for one radiologist in training. All observers received in-
struction, training and practice in this task before beginning.)
The rejected points were not included in the reference standard,
all other points were retained. (If all annotations for a landmark
were rejected the landmark itself was excluded. For this reason
seven scan pairs were left with only 99 annotated landmarks
and one scan pair with 98.) An example of a landmark with sev-
eral observer opinions is shown in Fig. 4. By accepting more
than one observer opinion as truth, we acknowledge that in most
cases it is not possible to identify a matching point with perfect
accuracy. This is related to many issues such as image quality,
voxel size, and the partial volume effect.

The deformation data submitted by each participant was
used to calculate for each of the defined points in the
fixed image which point in the moving image was aligned
with this location. The point was then compared (using
Euclidean distance) with the reference standard point .
Where several acceptable options for were defined, the

that was closest to was used as the reference. Note

Fig. 4. Example of differing observer opinions for a landmark in scan pair 07.
The top row shows the landmark identified in the fixed image in the sagittal
(X), coronal (Y), and axial (Z) directions. Subsequent rows show the points
selected by four different observers in the moving image. The slice number is
shown with each orthogonal direction. The value � shown to the right of each
observer opinion is the average distance (in millimeters) of that point from other
observer choices. The mark at� implies whether the point was accepted by the
final “checking” observer who could see all chosen points. The point chosen by
observer 4 was not accepted and, therefore, does not form part of the reference
standard.

Fig. 5. Typical example of a landmark in ovine data (scan pair 04). The top row
shows the landmark in the fixed scan in the sagittal (X), coronal (Y), and axial
(Z) directions. The bottom row shows the matching location in the moving scan.
Since these landmarks are based on the locations of fiducial markers (which have
been disguised to hide them in the final images) they are not necessarily found
on high contrast boundaries.

that was rounded to the nearest voxel location before dis-
tance calculation. Since all observer marks were made without
subvoxel accuracy, an algorithm which agrees precisely with a
particular observer may therefore obtain an error of zero.

The distance from to was calculated in mm
for each of the annotated point pairs. The overall error in the
landmarks category was given by the average of all the distances

in the scan-pair. For information, the minimum distance, the
maximum distance, the average distances in the upper and lower
lungs and the average distance in each of the three orthogonal
directions (anterior–posterior, superior–inferior, and left–right)
were also calculated and displayed on the participant’s results
page on the website.1

There are a number of scan pairs that were treated as spe-
cial cases in terms of the evaluation using landmark pairs. For
the ovine data the landmark locations were given by the fiducial
markers as described in Section II-D and not manually anno-
tated as for the other data. (Therefore, scan pairs 4 and 10 have
67 landmarks each while scan pairs 24 and 29 have 103). The
fiducial markers do not necessarily lie on high contrast bound-
aries (see Fig. 5 as an example).

Furthermore, for the artificially warped data (see Section II-F)
the landmark pairs which were used to specify the thin-plate-
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TABLE II
STATISTICS RELATING TO INTER-OBSERVER DISTANCES FOR MATCHING POINT PAIRS WHICH WERE DEFINED USING THE SEMI-AUTOMATIC

SYSTEM DESCRIBED IN [26] AND [27]. ALL MEASUREMENTS ARE IN MILLIMETERS. THE TOP ROW SHOWS THE PAIR ID, THE SECOND ROW

SHOWS THE MEAN OF THE INTER-OBSERVER DISTANCES, AND THE THIRD ROW SHOWS THE STANDARD DEVIATIONS

spline model were used as the reference standard in landmark
evaluation, meaning that just one (completely precise) matching
point was available for each landmark defined.

To demonstrate the level of accuracy of the points which were
annotated using the semi-automatic system described in [26],
[27] the mean and standard deviation of the inter-observer dis-
tances for each of the 22 scan pairs concerned are provided in
Table II.

D. Singularities in the Deformation Field

The final category of evaluation is designed to analyze how
physically plausible the registration deformation is. Some reg-
istration algorithms may appear to align visible structures very
well, but in doing so may require physically impossible defor-
mations. In particular we expect that a deformation should be bi-
jective, i.e., define a one-to-one correspondence between points
in the fixed image and points in the moving image. Regions
where the deformation field is not bijective are commonly re-
ferred to as singularities.

Each participant submitted deformation field data for each
registration carried out. The determinant of the Jacobian of the
deformation field, , (described well in [35]) was calculated at
every point. This specified for each point whether local expan-
sion or contraction had taken place. Where local con-
traction is implied, implies no change, and implies
local expansion. Fig. 3(b) shows an example of a color-coded Ja-
cobian image. All points within the lung volume were checked
and any location where was a singularity in the defor-
mation field. For each such point a unit penalty was incurred.
Points outside the lung volume were disregarded.

The overall error in the singularities category was given by the
percentage of checked points for which penalties were incurred.
For information, the errors in the left lung, the right lung, the
upper lung and the lower lung were also calculated and reported
on the participant’s results page on the website.1

V. SCORING AND RANKING

It should be noted that although every attempt was made to
evaluate algorithm performance as accurately as possible, there
is nonetheless some room for minor errors in evaluation. For ex-
ample, very small lung boundary alignment errors will be over-
looked due to the 2 mm region on each side of the lung boundary
which we exclude from our evaluation in order to compensate
for any minor lung segmentation errors. In addition, the cor-
responding point pairs identified as part of the reference stan-
dard cannot be guaranteed to be completely accurate—indeed
in most cases it is not possible to match points completely ac-
curately due to the partial volume effect. However, the scoring

system has been designed to be as fair as possible and we con-
sider that it is reasonable to rank teams based on these scores.
The final rankings are calculated as follows.

Error scores in the four individual categories are calculated
as described in Section IV. A score is awarded to each partici-
pant for each scan-pair in each category (note that lower scores
always imply better registration). Since these scores are based
on independent measurements of different concepts there is no
obvious way to combine them into a single participant score. A
ranking system was therefore devised in order to measure a par-
ticipant’s overall performance and to compare participants with
each other.

The ranking scheme works as follows for a theoretical group
of participants. The error score of a participant for scan-pair

and evaluation category is compared with the corresponding
error score of all other participants. The participant is then
awarded a ranking for that scan-pair and category. Where
all participants have different error scores, the participant with
the lowest error will be ranked 1 while the participant with the
highest error will be ranked . If there are ties in some partic-
ipant scores then the ranks must be rearranged such that those
participants rank equally. This is done as follows. Participants
with equal scores initially obtain (randomly assigned) adjacent
rankings. Each group of participants with equal scores is then
examined, their ranks are averaged, and the average rank is
assigned to each one of them. For example, scores of 0.1, 0.5,
0.5, 2 would result in rankings of 1, 2.5, 2.5, 4.

When all ranks have been assigned for individual scan
pairs and categories they are averaged over all scan pairs to give
each participant an average ranking per evaluation category.
(Note that because the average ranking, , is based on the in-
dividual rankings, , and not on the average scores, a linear
relationship between the average score and the average ranking
is not to be expected.) Finally the per-category rankings can be
averaged over the four evaluation categories to give the partic-
ipant a final average ranking . These final rankings are used
to place the participants, with the lowest ranking in first place
and the highest in th place. If there is a tie in final rankings
the placement value will be calculated by averaging in the same
way as described above.

VI. CHALLENGE ENTRIES

Phase 1 of the challenge attracted interest from 23 teams
with a combined total of 34 competing algorithms. A team was
permitted to submit more than one algorithm provided that
there was a significant difference between the methods, beyond
a simple alteration of parameters for example.

For phase 2, six of these teams (with a total of nine
algorithms) declined to participate further due to other commit-
ments. The 17 remaining teams (25 algorithms) were able to
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TABLE III
SUMMARY OF THE ALGORITHMS ENTERED IN THE EMPIRE10 CHALLENGE. METHODS REQUIRING NO INTERACTION AND USING THE SAME PARAMETERS

FOR ALL SCAN PAIRS ARE MARKED AS “FULLY” AUTOMATIC. METHODS REQUIRING MORE THAN ONE SET OF PARAMETERS FOR THE LIST OF 30
SCAN PAIRS ARE MARKED “SEMI-” AUTOMATIC WITH THE NUMBER OF SETS OF PARAMETERS IN BRACKETS. Open Source Symbols: � IMPLIES

THAT THE FULL SET OF PARAMETERS USED IS AVAILABLE EITHER THROUGH THE MICCAI PUBLICATION OR THROUGH THE WEBSITE WHERE THE

SOFTWARE CAN BE DOWNLOADED, ENABLING THE READER TO FULLY IMPLEMENT THE REGISTRATION DESCRIBED. � IMPLIES THAT THE BINARIES ARE

AVAILABLE FOR DOWNLOAD ALTHOUGH THE CODE IS NOT OPEN SOURCE. � IMPLIES THAT THE ALGORITHM IS INTENDED TO BE MADE OPEN SOURCE

IN THE NEAR FUTURE. THE “LUNG MASKS” COLUMN INDICATES WHETHER BINARY LUNG SEGMENTATIONS WERE USED DURING REGISTRATION. �
IMPLIES THAT THE LUNG MASKS WERE USED IN PHASE 2 ONLY. ACRONYMS AND ABBREVIATIONS MAY BE FOUND IN APPENDIX A

participate in phase 2, however due to restrictions on time for
processing during the MICCAI Grand Challenge workshop a
number of teams which had previously entered more than one
algorithm decided to use only their best performing algorithm
in phase 2. Ultimately, a total of 20 algorithms from the 17
teams competed in the second phase.

The remainder of this paper deals only with those algorithms
which were entered in both phase 1 and phase 2. Please note that
rankings provided in this work for the phase 1 stage are from a
total of 34 participating algorithms, although only 20 of those
are being discussed here.

Below is a brief description of each of the 20 algorithms. The
displayed labels A–T will be used to refer to the algorithms here-
after. For reference the corresponding algorithm name which is
used on the website1 is given here in brackets after each label.
Appendix A provides explanations for commonly used registra-
tion related acronyms and abbreviations. A summary of impor-
tant information for each algorithm is given in Table III. For a
detailed description of a particular algorithm please refer to the
appropriate cited article from the proceedings of the MICCAI
Grand Challenge Workshop [19].

• A (Asclepios1) [36], [37]: An initial block-matching based
affine registration is applied prior to performing a diffeo-

morphic demons nonrigid registration. Both steps use lung
masks and work in a multiresolution manner. This method
ensures that the final transformation is one-to-one.

• B (Asclepios2) [37], [38]: An affine registration followed
by a nonrigid registration are applied to the scans. Both
methods use lung masks and are based on a pyramidal
block-matching approach. The nonrigid method is coupled
with an outlier rejection procedure to improve the accuracy
of the motion estimation.

• C (CMS) [39]: An affine registration is first computed fol-
lowed by automatic feature detection and matching. The
matched features are used to guide an MI-based block-
matching image registration, the result of which is further
refined by a hybrid MI/NSSD dense deformable registra-
tion procedure.

• D (DIKU) [40], [41]: A tissue appearance model based on
the principle of preservation of total lung mass throughout
the breathing cycle is proposed. An affine transform using
extracted anatomical information is followed by a series
of B-spline transforms using mass preserving SSD as a
similarity measure.

• E (DROP) [42], [43]: After initial prealignment, the dense
intensity-based registration is performed using hierarchical
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FFDs and iterative discrete labeling of MRFs for the energy
minimization. The energy function consists of the SAD and
a first-order smoothness term.

• F (elastix) [44], [45]: A three stage approach is used: an
affine step without masks followed by two nonrigid stages
(B-splines, without and with masks, respectively). The reg-
istration is driven by a normalized correlation metric, and
optimized by a parameter free stochastic gradient descent
routine.

• G (ICG LBI Graz Anisotropic Optical Flow) [46], [47]: An
initial rigid registration is performed using the provided
lung masks. Next a multiscale optical flow model, con-
sisting of SAD data and a robust Huber-norm based regu-
larization term, is solved using a primal-dual optimization
algorithm.

• H (IMI Lübeck Diffeomorph) [48], [49]: First a nonlinear
surface registration of the lungs is performed. Subse-
quently, an intensity-based diffeomorphic registration of
the CT data is applied, using demons-like forces and dif-
fusion regularization. Diffeomorphisms are parameterized
by static velocity fields.

• I (Iowa sstvd ssvmd Laplacian) [50], [51]: A nonrigid reg-
istration algorithm is used to match lung CT images by
preserving both parenchymal tissue volume and vesselness
measures in the regions of interest defined by the lung
masks. The transformations are represented by B-splines
and regularized using a Laplacian constraint.

• J (ISI@UMCU) [52]: A knowledge model is used to incor-
porate statistical information from a landmark reference set
and information obtained by extracting anatomical struc-
tures. This information is combined in a registration using
diffeomorphic demons with a model that can assign indi-
vidual regularizers to each of the anatomical objects.

• K (Lyon FFD) [53]: The lungs are firstly aligned with an
affine registration. Secondly, the interface where sliding
motion occurs is automatically segmented. Finally the
detected interface is used to guide an intensity-based
B-spline registration using mutual information as a simi-
larity measure.

• L (MGH) [54], [55]: The images were masked using the
provided segmentation results, and then translated to align
the masks. Next, a multiresolution B-spline transform was
optimized with L-BFGS to minimize an SSD cost function.

• M (Nifty Reggers) [56], [57]: A block-matching technique
was used to perform an initial affine alignment. It was
followed by three nonrigid steps, firstly to coarsely align
the lung features, followed by the borders and finally the
details. The nonrigid registration was based on a cubic
B-splines model and was driven by the NMI.

• N (Oxford Flow Discontinuity Preserving) [58]: After a
histogram-matching step, a computationally efficient op-
tical-flow based variational registration is performed using
SAD as a similarity measure. A modified Lp norm is used
for a robust, discontinuity preserving regularization of the
deformations.

• O (Philips Research) [59]: A fully-automatic, volumetric,
multiresolution algorithm consisting of 1) an affine reg-
istration step and 2) a nonrigid, nonparametric registra-

tion step. The second step simultaneously minimizes the
SSD and a regularizing term based on the Navier–Lamé
operator.

• P (picsl exp) [60], [61]: An affine alignment using lung
masks is performed as a first step. This is followed by a
deformable registration with local NCC as a simililarity
metric and an exponential mapping model. The whole reg-
istration was implemented using the open source Advanced
Normalization Tools (ANTS) software package.

• Q (picsl gsyn) [60], [61]: The registration pipeline begins
with an affine alignment using lung masks, which precedes
greedy symmetric normalization coupled with local NCC.
The whole registration was implemented using the open
source Advanced Normalization Tools (ANTS) software
package.

• R (PVG) [62]: A preprocessing stage is used to subsample
the original image volumes and dilate the lung masks. The
preprocessed volumes are then registered with a B-spline
deformation and by the optimization of a gradient-orienta-
tion based similarity metric.

• S (Robust TreeReg Leuven) [63]: This method is based on
the spline MIRIT algorithm (T). Prior to the dense registra-
tion, vessel bifurcations are detected and matched. During
dense registration, a penalty is added based upon the dis-
tance between these corresponding bifurcations.

• T (Spline MIRIT Leuven) [63]: A B-spline registration is
adopted using MI as similarity measure and L-BFGS-B as
an optimizer. A multiresolution approach is used in relation
to both the transformation field and the image size.

VII. RESULTS

A. Phase 1 Results

Table IV gives the scores and ranks for each algorithm in each
of the four categories, averaged over the 20 scan pairs that were
registered. The algorithms are listed in order of their final place-
ment in this phase. The overall average rank for the algorithm,
shown in the second last column, defines its final placement in
this phase (last column). Fig. 6(a) shows boxplots3 illustrating
the range of the error scores over the 20 scan pairs for each team
and each category individually. The average ranking per cate-
gory (as shown in Table IV) is also plotted for reference.

B. Phase 2 (Workshop) Results

The scores and ranks for each algorithm in phase 2 are pro-
vided in Table V. As with Table IV the algorithms are listed
in order of their placement in this phase of the challenge. The
scores and ranks shown are averaged over the 10 scan pairs pro-
cessed in phase 2. The range of errors over the 10 scan pairs is
shown for each team in each category in Fig. 6(b). As for the
phase 1 data, the average rank for the category is plotted along
with each box plot. Table VI provides additional important in-
formation in relation to the processing of the last 10 scan pairs.

3Boxplots are used to represent the spread of values in a dataset. For all box-
plots in this work the box spans from the 0.25 quantile to the 0.75 quantile with
a horizontal line showing the median of the data. The whiskers are vertical lines
that extend to indicate either the full dataset or the lowest/highest data point
within 1.5 times the interquartile range. In the latter case remaining data points
are plotted as outliers.
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TABLE IV
RESULTS FROM PHASE 1. ALGORITHMS ARE LISTED IN ORDER OF THEIR FINAL PLACEMENT IN THIS PHASE, FROM FIRST TO LAST. SCORES AND

RANKS ARE AVERAGED OVER THE 20 SCAN PAIRS THAT WERE REGISTERED AND ARE ROUNDED TO TWO DECIMAL PLACES. MORE DETAILED

INFORMATION INCLUDING THE PERFORMANCE OF EACH TEAM ON EACH SCAN PAIR CAN BE FOUND ON THE EMPIRE10 WEBSITE1

TABLE V
RESULTS FROM PHASE 2. ALGORITHMS ARE LISTED IN ORDER OF THEIR FINAL PLACEMENT IN THIS PHASE, FROM FIRST TO LAST. SCORES AND RANKS

ARE AVERAGED OVER THE 10 SCAN PAIRS THAT WERE REGISTERED AND ARE ROUNDED TO TWO DECIMAL PLACES. MORE DETAILED INFORMATION

INCLUDING THE PERFORMANCE OF EACH TEAM ON EACH SCAN PAIR CAN BE FOUND ON THE EMPIRE10 WEBSITE1

Since the majority (16 of the 20 algorithms) of registrations
were computed during the 3-h time slot at the MICCAI Grand
Challenge Workshop it is important to make note of which al-
gorithms were run at a later date (during the week following
the workshop). Furthermore the table details whether the hard-
ware used was on site at the workshop (laptops only) or remotely
at the participant’s own institute, allowing for the possibility to
use much greater computing power. Information regarding the
hardware used by each algorithm, and the average time taken to
process a scan pair are given. Finally, a number of participants

made some alterations to their algorithms between phase 1 and
phase 2. These were mainly to improve the speed of processing
but occasionally also to improve registration performance. Any
changes made are noted in the rightmost column of Table VI.

VIII. DISCUSSION

The high level of interest in the EMPIRE10 challenge em-
phasizes the fact that nonrigid registration remains a very active
research topic, and that researchers recognize the importance
of evaluating their algorithms in a comparable and objective
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TABLE VI
INFORMATION RELATING TO THE PROCESSING FOR PHASE 2 (WORKSHOP AT

MICCAI) FOR EACH ALGORITHM. SECOND AND THIRD COLUMNS IMPLY

WHETHER THE PROCESSING WAS DONE DURING THE MORNING OF THE

WORKSHOP (OR IN THE WEEK FOLLOWING) AND WHETHER THE PARTICIPANT

USED ON-SITE (OR REMOTELY LOCATED) HARDWARE IF SO. COLUMNS 5,
6, AND 7 LIST HOW MANY CORES WERE USED IN PARALLEL TO PERFORM

EACH REGISTRATION, WHETHER OR NOT GPU PROCESSING WAS USED, AND

HOW LONG EACH REGISTRATION TOOK ON AVERAGE. LAST COLUMN LISTS

ANY ALGORITHM OR PARAMETER CHANGES MADE BY THE PARTICIPANT

BETWEEN PHASE 1 AND PHASE 2

manner. Our aim in organizing this challenge was not to find
the “best” algorithm for the task at hand, but rather to provide
a useful platform for comparison. Although not all researchers
involved are working specifically in the field of thoracic CT, ap-
plying their registration algorithm to the EMPIRE10 data set
enables them to obtain a quantitative reproducible evaluation
which can be updated at any time to reflect the latest improve-
ments to their method.

The organization of this challenge has been of great benefit
not only to individual research groups who were able to assess
their algorithm’s performance, but also to the registration com-
munity at large. In the remainder of this section we discuss the
outcome of the challenge and what has been learned about reg-
istration evaluation, about the registration of thoracic CT in par-
ticular and about the state of the art in nonrigid registration.

A. Categories of Evaluation

As described in Section IV the EMPIRE10 challenge made
use of four categories of evaluation, each weighted equally in
determining the final placement of an algorithm. Using Fig. 6 as
an illustration we consider the merit of each of these categories
individually.

1) Singularities: Singularity assessment was included to en-
sure that registration results represented meaningful and phys-
ically plausible deformations. It can be seen from the average
singularity scores given in Tables IV and V as well as from the
singularity score plots in Fig. 6 that very few of the algorithms
had any significant problem with singularities in their deforma-
tions. In fact, many of them incorporated regularization steps
specifically to avoid any such issues. In each phase of the chal-
lenge, only four algorithms out of 20 had average singularity
scores above 0 when rounded to two decimal places. The worst
average singularity score obtained by an algorithm (in either
phase) was 3.03, meaning that on average 3.03% of the voxel
locations within the lung volume were penalized for having im-
plausible deformations.

Although it is important to ensure that registration results are
physically plausible, this evaluation category was, in general,
not very useful in distinguishing between algorithms. In addi-
tion the ranking system used was somewhat unsuited to han-
dling such negligible differences between algorithm scores. In
Fig. 6(b), for example, it can be seen that while a perfect score
of 0% in the singularity category generated a singularity ranking
of 8.4, algorithm F received a ranking of 11.05 with an av-
erage singularity score of just 0.0002% (unrounded figures may
be obtained on the algorithm’s results page on the challenge
website1). A very minor error could therefore have a dispropor-
tionate effect on the algorithm ranking.

2) Lung Boundary Alignment: In thoracic CT the lung
boundary is among the most easily recognised high contrast
regions and should therefore be relatively easy to align. Fur-
thermore, in the EMPIRE10 challenge the participants were
provided with lung masks which many teams used to assist
their methods with aligning the lung boundaries correctly in
the initial stages of registration. However, it may be envisaged
that an algorithm spending a lot of effort on aligning internal
structures such as vessels might inadvertently result in poorly
aligned lung boundaries. In Fig. 6(b), for example, it can be
seen that algorithm J performs very well in all categories
with the exception of lung boundary alignment. More generally
however, the majority of algorithms are well adapted to aligning
the lung boundaries and Fig. 6 illustrates that in most cases the
error is close to zero for all scan pairs. Of the 20 participating
algorithms, 11 in phase 1 and 13 in phase 2 had zero error in this
category when rounded to two decimal places (see Tables IV
and V).
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Fig. 6. Boxplots showing the range of scores (errors) obtained in each category for each participant. (a) Phase 1 (20 scan pairs). (b) Phase 2 (10 scan pairs).
Evaluation categories, from top to bottom, are: lung boundary alignment, fissure alignment, landmark alignment, singularity scores. Participant labels are shown
on the X-axis in order (left to right) of their final placement in that phase. The left Y-axis shows the score values. The � symbol at each boxplot represents the
average ranking of the participant in that category, with scales shown on the right Y-axis. Note that the average ranking is based on the individual rankings per
scan-pair and not on the average scores, therefore a linear relationship between average score and average ranking is not to be expected. Boxplot outliers are
denoted by filled circles.

3) Fissure Alignment: Fissure alignment was included as an
evaluation category for three main reasons. Firstly, the fissures
form important physical boundaries within the lungs, and there-
fore any algorithm which would be intended for use in a clin-
ical application should be able to align them accurately. Sec-
ondly, the fissures are frequently difficult to register or even to
detect, and therefore present an interesting challenge. Finally,
the points used in the landmark category are rarely located on
fissures so their alignment is not well evaluated in that cate-
gory. Fissures are plate-like structures which are very narrow
in one direction, and with the partial volume effect they are
often comparatively low-contrast or, in poor quality data, par-
tially obliterated by noise. Fig. 7(a) shows an example of a fis-

sure in an ultra-low-dose expiration scan that is moderately dif-
ficult to identify.

Tables IV and V and Fig. 6 show that there is much more
variance in algorithm scores in the fissure alignment category
than in either singularity or lung boundary categories. They are,
therefore, useful for providing some distinction between algo-
rithms where singularity scores and lung boundary scores may
have been uniformly good. It can be seen in Fig. 6(a) that algo-
rithm A, for example, performs extremely well in the singulari-
ties category and quite well also in the lung boundary alignment
category, with just a few close outliers. However in the fissure
alignment category, although the median error remains close to
zero, there are quite a few scan pairs for which performance was
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Fig. 7. (a) An example of a fissure as seen in an ultra low-dose expiration scan
(fixed scan, pair 21). Although the fissure is visible in this scan, it has very
low contrast and the image noise makes it more difficult to identify. The lower
images show an enlarged view of the fissure and the same enlarged view with the
fissure highlighted in red. (b) The deformed moving image showing the same
slice as in (a). Above: For the algorithm performing best on fissures for this
scan pair (algorithm Q). Below: For the algorithm performing worst on fissures
for this scan pair (algorithm G) (note that the black region to the top left of
this image implies only that deformation information was not supplied for that
area since it is beyond the region of interest). The fissure reference standard
is overlaid on both images. Red coloring is used to indicate locations where a
penalty for fissure misalignment was incurred. The enlarged regions show that
algorithm Q has deformed the fissure to the location specified by the reference
standard whereas no fissure is visible in this region in the deformed image from
algorithm G.

considerably worse, resulting in an extended boxplot and several
distant outliers. In phase 2 most of the algorithms performed ex-
tremely well in terms of both singularities and lung boundary
alignment, however differences are much more apparent in the
fissure alignment category [see Fig. 6(b)]. Examples of fissure
alignment in scan pair 21 are shown in Fig. 7(b) for the algo-
rithms which performed best and worst on fissures in this scan
pair. This figure illustrates how penalties are incurred by the al-
gorithm which failed to align the fissure correctly.

4) Landmark Alignment: Landmarks were included in the
evaluation to give an insight into the ability of the algorithm to
align small structures throughout the lung volume. Fig. 6 illus-
trates that the landmark category was the best at distinguishing
between registration results. The median values and box plot
sizes are much more varied in this category than in any other,
both for phase 1 and phase 2. Fig. 8 shows a sample landmark
from scan pair 21. The first four sub-images show the landmark
in the fixed scan, and three accepted observer opinions for the

matching location in the moving scan. Subsequent sub-image
show the matching location selected by each algorithm and its
distance, , to the closest observer choice. The distance values
vary from 0 mm (perfect agreement with one of the observers)
up to 67.1 mm. In fact scan pair 21 was one of the most difficult
scan pairs to register due to a very large deformation between
the inspiration and expiration scans, resulting in this diversity in
algorithm results.

A total of eight scan pairs were considered as special cases
in terms of landmark evaluation since the point correspondence
was not manually defined but known absolutely. These con-
sisted of four scan pairs in which the images were related by
artificial warping, and four scan pairs from ovine data where
fiducial marker locations were known. Fig. 9 compares average
landmark error per participant for scan pairs where landmarks
were manually annotated (x-axis) with landmark error on the
warped and ovine cases (y-axis), respectively. In both scatter
plots there is a reasonably good correlation ( and

) between the average error scores, indicating that,
generally speaking, algorithms which perform well on the ar-
tificial/fiducial data tend to perform well also on the manually
annotated data. However, the slopes, of the lines fitted by
least-squares reveal a disadvantage to the artificially warped
data in particular. For the warped data the slope is 0.17, indi-
cating that algorithms tend to have a very much lower average
error value on the artificially warped data than on the manu-
ally annotated data. In the case of the ovine scans with fiducial
markers, the slope of the line indicates that while
the general trend is for a lower error in the ovine data compared
to the manually annotated data, the distinction is much less ob-
vious than in the case of the warped data. In fact it may be ex-
pected that the error in the manually annotated pairs would be
slightly higher since these include the most difficult category of
inspiration-expiration pairs (see Section VIII-B). We conclude
that the artificially warped data can be useful for comparison of
performance between algorithms but it is not suitable for deter-
mining the actual accuracy that might be expected of an algo-
rithm on real data. The fiducial markers, on the other hand, are
useful both for comparing performance of algorithms and also
in determining actual accuracy levels.

Based on the landmark category results from the best per-
forming algorithms given in Tables IV and V it may be sug-
gested that there is very little room for improvement with av-
erage errors approximately equivalent to slice thickness being
reported. However, although the average landmark distance over
all scan pairs is excellent for these algorithms, the maximum
landmark distance in each scan pair may not be so good, im-
plying that there are small regions in the scan where alignment
is incorrect. Table VII shows the maximum landmark distance
per scan pair in phase 2 for the best three algorithms in that phase
(maximum distances for each algorithm and scan pair are avail-
able through the website results pages1). The overall average
landmark score for each algorithm is shown in the last column
for comparison. It can be seen that although an algorithm may
have an excellent overall landmark score, there are still some
landmarks in particular scan pairs which are not well aligned.
Fig. 10 shows an example of this for algorithm C and scan pair
28. The landmark where the algorithm performed worst
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Fig. 8. Sample landmark point from scan pair 21. Top left: the location in the fixed scan and 3 (accepted) observer opinions about the matching location in the
moving scan. The remaining images show the matching point chosen by each algorithm along with the distance � to the nearest observer chosen match. This
particular landmark is shown because of the variety in the algorithm results due to scan pair 21 being among the most difficult data sets provided. All images shown
are in the coronal direction.

Fig. 9. Scatterplots representing average landmark error, � , in manually an-
notated cases compared to (a) cases where annotations were known due to arti-
ficial warping and (b) cases where annotations were given by fiducial marker lo-
cations in ovine data. Each plotted point corresponds to a participant. The x-axis
value is the average of the landmark error scores, � in the 22 manually anno-
tated cases. The y-axis value is the average of the landmark error scores, �
in (a) four artificially warped cases and (b) four ovine data (fiducial markers)
cases. The values � and � shown are, respectively, the correlation coefficient
for the data and the slope of the line fitted by least squares.

TABLE VII
MAXIMUM LANDMARK DISTANCE � PER SCAN-PAIR IN PHASE 2 FOR THE BEST

THREE ALGORITHMS IN THAT PHASE. ALL DISTANCES ARE IN MILLIMETERS.
THE LAST COLUMN SHOWS THE AVERAGE LANDMARK DISTANCE OVER ALL

SCAN PAIRS (AS PER TABLE V) ILLUSTRATING THAT ALTHOUGH THE OVERALL

AVERAGE MAY BE VERY LOW THERE ARE STILL SOME LANDMARKS IN SOME

SCAN PAIRS WHICH ARE NOT WELL ALIGNED

Fig. 10. Landmark in scan pair 28 which was incorrectly aligned by algorithm
C. The top row shows the original landmark, the point chosen by an observer
in the moving scan (closest observer point to algorithm C choice), and the point
chosen by algorithm C in the moving scan, which was 15.05 mm away from the
closest observer mark. The images in the second row show the fixed scan and
the deformed moving scan according to algorithm C. The deformed scan aligns
well with the fixed image in most locations, but close to the landmark (circled)
the alignment is incorrect.

mm is shown in this image, along with the point
incorrectly chosen by algorithm C. It can be seen that although
the majority of the scan is well aligned, there is a small region
around this landmark where alignment is poor.

To further illustrate this point, Fig. 11 demonstrates the dif-
ference in performance when considering averages (i.e., overall
landmark scores) compared to considering actual landmark
distances with no averaging. In Fig. 11(a) the overall landmark
scores (averages) are plotted, firstly with a maximum value of
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Fig. 11. (a) Boxplots showing the average landmark error per participant,
where each value used is the average for a scan pair (20 values per plot). Shown
with the y-axis range of [0–5] (above) and with the full range of y-axis values
[0–18] (below). (b) Boxplots of the actual landmark errors per participant
without averaging over each scan-pair first (1930 values per plot). Shown with
the y-axis range of [0–5] (above) and the full range of y-axis values [0–53]
(below). All data is from phase 1 of the challenge and participants are arranged
in order of their placement in that phase.

5 on the y-axis, and secondly with the full range of y-values
shown. [Note that the upper image in Fig. 11(a) is identical to
the landmark image in Fig. 6(a)]. In Fig. 11(b) all landmark
error values are plotted individually without averaging over
scan pairs. This shows a much larger number of outliers with
a maximum outlier value of 53 mm. The method of averaging
to achieve a final score per scan-pair, while convenient for
comparison purposes, can be deceptive when considering the
individual performance of an algorithm. We can, therefore, con-
clude that even the best performing algorithms, although their
average results are excellent, have some room for improvement
in more difficult regions.

Another issue to note is our choice to consider the observer
point closest to the algorithm’s location as the reference stan-
dard. In this way, if several observers have made different an-
notations, we opt to give the benefit of the doubt to the algo-
rithm being evaluated. Since there can be a difference in the
order of a few millimeters between observer marks it would be
expected that all algorithms would disimprove in performance
if we chose to define the reference standard in a different way.
Fig. 12 illustrates this point by showing the performance of al-
gorithms according to the current reference standard compared
with their performance if we use the farthest observer annota-
tion as the reference standard. Since all observers are treated
as equally correct this method of evaluation is just as valid as

the method which is currently used. However it can be seen
that performance is decreased, relatively severely in some cases,
with median error values over the 20 scan pairs increasing by up
to 0.5 mm and results at the upper whisker of the box plot in-
creasing by several millimeters in some cases.

It must, therefore, be concluded that we confer some advan-
tage to the performance of the algorithms in the landmark cate-
gory by always using the closest observer point, and that actual
performance may be somewhat poorer than reported. To fully
resolve this issue however, would require knowledge of a single
correct correspondence for every landmark, which in most cases
is not feasible to determine.

B. Categories of Thoracic CT Data

As described in Section II the thoracic CT pairs provided
for the EMPIRE10 challenge came from a number of sources
and had widely varying characteristics. The data was divided
into six categories as follows: inspiration–expiration pairs
(breath-hold), inspiration–inspiration pairs (breath-hold), pairs
from 4-D data sets, ovine data, artificially warped data and
contrast-enhanced data.

Fig. 12 shows the range of landmark error values obtained
by the various algorithms for each scan pair, grouping the scan
pairs into their data categories. The first category shown, inspi-
ration–expiration was clearly the most difficult type of data. This
category of data requires the largest deformations to resolve the
registration since there is typically a considerable difference in
lung volume between breath-hold inspiration and breath-hold
expiration. A second contributary factor in the difficulty with
registering these cases may be the ultra-low-dose protocol used
in acquiring the expiration scans. This results in noisier data and
since the inspiration scans are somewhat better quality, there
may be small structures visible at inspiration which are not easy
to detect in the expiration scan. Fig. 13 shows that there is quite
some variation within the inspiration–expiration category, with
scan pair 08 being relatively easy to register and scan pair 21
being the most difficult. This variation is to be expected as the
amount of deformation is very dependent on the subject’s health
and ability to breathe deeply as well as their regard for the
instructions given during scanning. Furthermore, scan quality
varies depending on many factors such as the weight of the sub-
ject, movement during scanning, etc.

The second most difficult data category appears to be the
ovine data, although it is closely followed by the 4-D and inspi-
ration–inspiration pairs. The ovine data does not exhibit large
deformations so is not expected to be particularly difficult to
register. In some cases algorithms may have been tested and
tuned on human data, and be less suited to this data type as a
result. However, another likely cause for the larger landmark
errors in these cases is the nature of the landmarks themselves.
Since these landmarks are based on fiducial markers, and are
not necessarily located on high contrast boundaries (see Fig. 5)
there is less structure around them to guide the registration.
Testing the algorithm behavior at points that do not incorporate
high contrast structures is likely to result in a drop in perfor-
mance. Ideally, landmarks should be distributed throughout the
parenchyma without regard to the structure or lack thereof, how-
ever in practice it is extremely difficult for a human observer to
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Fig. 12. Boxplots showing the landmark error per participant where the closest observer annotation was considered as the reference standard (light grey), and in
contrast, the landmark error per participant if the farthest observer annotation had been considered as the reference standard (dark grey). All data is from phase 1
of the challenge and participants are arranged in order of their placement in that phase. Note that not the full range of data is shown.

Fig. 13. Boxplots showing the landmark error per scan-pair for the range of participants. Outliers are denoted by filled circles (not the full range of data is shown).
Scan pairs are grouped according to the type of data represented.

match points in low contrast regions with any degree of accu-
racy. Reference standards including low-contrast landmarks are
therefore difficult to obtain.

The inspiration–inspiration and 4-D data categories are ap-
proximately similar in terms of difficulty in registration. There
is more variation among the inspiration–inspiration pairs, prob-
ably depending on whether the patient succeeded in the same
level of breath-hold in both scans (taken several months apart),
and whether precisely the same scanner settings were used. In
the 4-D category, one of the challenges for registration algo-
rithms is to remain robust to artifacts, which are more commonly
encountered in this type of data.

The artificially warped data provided relatively little chal-
lenge in most cases. Since the task was simply to resolve a
thin-plate-spline warp, rather than the much more complicated
motion associated with breathing, most algorithms performed
well, in fact many algorithms obtained zero landmark error on
these pairs. Similarly for the data pairs including a contrast-en-
hanced image, performance was very good. The contrast ma-
terial did not present any difficulties, and since the scans were
taken just 30 s apart there was virtually no motion to resolve.

C. Registration Algorithms Analysis

The competing algorithms in EMPIRE10 include a wide
variety of registration types (transformation models, similarity
measures, etc.) as well as a selection of algorithms tailored
towards thoracic CT applications and completely generic
registration algorithms. All methods are fully automatic with

the exception of one, (algorithm L) where parameters were
manually altered for a few of the scan pairs. Many algorithms
performed extremely well on many scan pairs and there is very
little to choose between them. From Table IV it can be seen
that the top six algorithms all have average landmark distance
scores of less than 1 mm, with a range from 0.66 to 0.99 mm.
In phase 2, (see Table V), the landmark scores for the top 6
algorithms ranged between 0.59 and 1.06 mm. When it is con-
sidered that locations are rounded to the nearest voxel before
distance is determined and slice thickness is typically around
0.7 mm, these are extremely good results in spite of the errors
remaining in some regions as described in Section VIII-A4.

Considering the five algorithms which reached the top three
in either phase 1 or phase 2 (algorithms C, F, I, M, Q), only 1 of
these (algorithm I) was designed specifically for registration of
thoracic CT data. In this case the similarity measures used in-
cluded information about the tissue density between breathing
phases and the “vesselness” measure at each location. The re-
maining four algorithms are all generic registration methods
which were applied to the EMPIRE10 data sets with appropriate
parameter settings. It may be surmised, therefore, that at the
present time and for this set of data, generic registration algo-
rithms can perform just as well as, or better than, data specific
methods. It may still be the case that combining aspects of both
could improve performance even further, particularly on more
difficult scan pairs.

The transformation models included among these five algo-
rithms are B-spline (three times), dense displacement field and
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a diffeomorphic transformation. Similarity measures are var-
ious forms of NCC, MI, or SSD, with lung specific measures
(SSTVD, SSVMD) used by algorithm I. These algorithm pro-
files are not notably different from others which performed less
well in the challenge, therefore it may be concluded that the
good performance of these methods is due to other more specific
elements of the individual algorithms. It cannot be concluded
that there is a single category of registration method which per-
forms best on this type of data.

Since registration is evaluated only on the lung volume it
seems logical that better results should be obtained by avoiding
efforts to register structures outside the lungs. In fact, deforma-
tions in external regions may negatively impact the alignment
of structures within the lung volume. Of the 20 participating
algorithms, 16 of them, including the best performing methods
among them, make use of lung segmentation masks in some way
during registration (see Table III). Algorithm C did not use the
lung mask information during phase 1, but added a step to make
use of it during phase 2 (see Table VI). The improvement in
its ranking from sixth place in phase 1 to 1st place in phase 2
is likely to be largely attributable to this alteration. Overall we
conclude that the use of lung masks is to be recommended for
optimal performance in registration of the lung volumes.

Regarding algorithm speed it is difficult to make generaliza-
tions since participants used their own hardware, which varied
greatly (see Table VI) and since not all algorithms are designed
and programmed for optimal efficiency. With reprogramming
and better hardware the average time per scan pair might be very
different for many methods. However, one point to note is that
there is no evident trend of the best performing algorithms being
the slowest. For example, algorithm C, which took first place in
phase 2 of the challenge, took just 4.5 min per scan pair which
was the third fastest of all algorithms. Therefore, there is every
reason to be optimistic that excellent registration performance
and efficiency which is acceptable in a clinical setting are not
mutually exclusive traits.

D. Future Work

The EMPIRE10 challenge remains open to new or improved
entries, thereby continually monitoring the current state of the
art in registration of thoracic CT. In Section VIII-A4 it was
noted that although some of the best performing algorithms
achieve excellent average landmark error scores, they still
fail to align small regions of some scan pairs correctly. It is
hoped that registration performance will continue to improve
in the future, enabling correct alignment of these more difficult
areas.

In spite of these outstanding issues, the standard of registra-
tion in the EMPIRE10 challenge is generally very high and there
are some extremely accurate algorithms included among the
participants. Depending on the clinical application in question,
some of these may already be sufficiently good to aid medical
personnel in their daily work. Additional challenges lie ahead
in optimizing the speed of algorithms to make them practical
for use in a clinical setting, as well as embedding them into
the workstations and daily routines of clinicians. Furthermore,
while the current aim is to describe the patient motion in terms of
the external coordinate system, an extremely interesting exten-

sion for the future would be to describe the breathing motion in
terms of the patient’s own coordinate system—a problem which
is, as yet, relatively poorly defined [7]. However discussion of
these objectives is beyond the scope of this work.

IX. CONCLUSION

The EMPIRE10 challenge has enabled detailed, independent
and fair evaluation of nonrigid registration algorithms. Although
the common data set was composed of intrapatient thoracic CT
image pairs, generic algorithms which were not tailored for this
data performed extremely well and many different approaches
to registration were shown to be successful. The inspiration/ex-
piration scan pairs proved to be the most difficult to register ac-
curately because of the large deformations present. Among the
most noteworthy conclusions reached in Section VIII is that cor-
responding landmarks provide the most useful reference stan-
dard for distinguishing between registration algorithm results.
Although such landmarks are typically tedious to obtain, a semi-
automatic system [26], [27] for defining them was used in this
work. It was also determined that the use of artificial warping as
an evaluation method is beneficial in distinguishing between dif-
ferent algorithms, but not in providing a true evaluation of a par-
ticular algorithm’s accuracy. Analysis based on fiducial markers
in ovine images, however, was shown to give a good represen-
tation of algorithm accuracy as well as a means of comparing
different methods.

The results of this challenge represent an important step for-
ward, both for the nonrigid registration community and for those
involved in bringing automatic processing into clinical practice.
Researchers in registration may now evaluate their algorithms,
and any methodological improvements applied to them, in a
quantitative independent way. In addition, the state of the art
in registration of thoracic CT has been established for the first
time, enabling a logical analysis of what is required in the future
to bring registration into the clinic.

APPENDIX

ACRONYMS AND ABBREVIATIONS

• CC: Correlation Coefficient
• CUDA: Compute Unified Device Architecture
• FFD: Free Form Deformation
• L-BFGS (and the variant L-BFGS-B): Limited memory

BFGS (Broyden Fletcher Goldfarb Shanno)
• LMI: Local Mutual Information
• MI: Mutual Information
• MPSSD: Mass Preserving Sum of Squared Differences
• MRF: Markov Random Field
• NCC: Normalised Cross Correlation
• NMI: Normalised Mutual Information
• NSSD: Normalised Sum of Squared Differences
• SAD: Sum of Absolute Differences
• SSD: Sum of Squared Differences
• SSTVD: Sum of Squared Tissue Volume Difference
• SSVMD: Sum of Squared Vessel Measurement Difference
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