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Multiscale Bi-Gaussian Filter for Adjacent
Curvilinear Structures Detection With

Application to Vasculature Images
Changyan Xiao, Marius Staring, Yaonan Wang, Denis P. Shamonin, and Berend C. Stoel

Abstract— The intensity or gray-level derivatives have been
widely used in image segmentation and enhancement. Conven-
tional derivative filters often suffer from an undesired merging of
adjacent objects because of their intrinsic usage of an inappropri-
ately broad Gaussian kernel; as a result, neighboring structures
cannot be properly resolved. To avoid this problem, we propose to
replace the low-level Gaussian kernel with a bi-Gaussian function,
which allows independent selection of scales in the foreground
and background. By selecting a narrow neighborhood for the
background with regard to the foreground, the proposed method
will reduce interference from adjacent objects simultaneously
preserving the ability of intraregion smoothing. Our idea is
inspired by a comparative analysis of existing line filters, in which
several traditional methods, including the vesselness, gradient
flux, and medialness models, are integrated into a uniform
framework. The comparison subsequently aids in understanding
the principles of different filtering kernels, which is also a
contribution of this paper. Based on some axiomatic scale-space
assumptions, the full representation of our bi-Gaussian kernel
is deduced. The popular γ -normalization scheme for multiscale
integration is extended to the bi-Gaussian operators. Finally,
combined with a parameter-free shape estimation scheme, a
derivative filter is developed for the typical applications of curvi-
linear structure detection and vasculature image enhancement.
It is verified in experiments using synthetic and real data that
the proposed method outperforms several conventional filters in
separating closely located objects and being robust to noise.

Index Terms— Bi-Gaussian kernel, curvilinear structure
detection, feature extraction, multiscale filtering, vessel
enhancement.

I. INTRODUCTION

DETECTING curvilinear structures, often simply called
lines or tubes, in digital images is an important low-

level operation of computer vision that has many applications.
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In medical imaging, the detection of tubes like blood vessels
or airways, is usually a prior step for quantification of diseases
and evaluation of therapy progress [1]. Curvilinear structures
are also frequently seen in industry. For example, printing and
packaging workers perform quality control of their products
by (automatically) counting the number of linear stripes in
a photograph of a stack of sheets [2], see also Figure 4.
However, accurate detection of curvilinear structures is not
easy due to the complexity of an inhomogeneous background
and noise. Especially in the presence of disturbance from
adjacent objects, the task will become more challenging. Note
that the issue of adjacency is relative to various imaging con-
figurations, e.g. a limited resolution compared to the distance
between objects, can be considered a main obstacle for vessel
separation in medical images.

There are many techniques for curvilinear structure detec-
tion reported in the literature, and a recent survey can be found
in [3]. Among them, the derivative filters have drawn much
attention. Since the seminal work of Koller [4], the image
derivatives were frequently utilized to detect either boundaries
or centerlines of tubular objects. Usually, we consider the
boundaries as odd or antisymmetric structures, which only
respond to the first-order intensity or gray-level derivatives.
From this, the structure tensor method [5] was adopted to
determine the local boundary direction and strength. On the
other hand, centerlines are typically even or symmetric struc-
tures and should be detected with the second-order derivatives.
Correspondingly, the popular Hessian line filters [6]–[8] just
aim to find the tube centers. Originating from [9], the medi-
alness tube filter [10] is a hybrid method, which depends on
the Hessian to find axial directions and the boundary gradient
to estimate local diameters. To account for size variation, the
filters generally identify objects at multiple scales and combine
all results into a single response based on some normalization
scheme [11]. Behind these methods, a Gaussian (linear) scale
space is often employed to calculate the spatial intensity
derivatives. As well-known, Gaussian smoothing is equal to
an isotropic diffusion that may result in blurring across object
boundaries, and will inevitably cause closely located objects
to merge together. Therefore, traditional derivative filters are
unsuitable for detection of adjacent structures.

Several efforts have been made to remedy this shortcom-
ing. McAuliffe et al. [12] defined an adaptive multi-local
medialness to improve centerline detection. Instead of the
traditional radially symmetric Gaussian function, they used the
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first derivative of a bivariate Gaussian to make boundariness
measurements, where shape and orientation of the filtering
kernel can be adaptively adjusted to minimize adjacent dis-
turbances. With additional homogeneity and symmetry con-
straints, the modified medialness filters [13], [14] are able
to reduce influence from sparsely neighboring structures, but
their effect might be limited when handling background with
serious inhomogeneity. Implemented in an iterative scheme,
the Perona-Malik model [15] and edge-enhancing anisotropic
diffusion [16] can efficiently prevent the interregion smooth-
ing based on some edge-tuned conductance functions.
However, the leaking through weak boundaries and local scale
optimization still remain a challenge. Recently, Bauer and
Bischof [17] presented a novel tube detecting approach, which
depends on the gradient vector flow (GVF) [18] to extend
the gradient around boundaries into tube centers. Calculating
the shape likelihood directly on the regularized vector field,
their method efficiently avoids the multi-scale computation,
and allows detection of centerlines independent of tube size
and neighborhood background. The drawbacks of GVF are its
heavy computing cost and the sensitivity to intensity variation
arising from very local gradient calculation. Following the
isotropic gradient flux [19], Law and Chung [20] proposed
an optimally oriented flux (OOF) to distinguish orientational
difference of tubular structures. Their model was verified to
be robust against disturbance induced by close objects, and
have been successfully applied to vessel segmentation and
anisotropic enhancement [21], [22].

In this paper, we present a novel filtering kernel for detection
of closely located structures. Our idea originates from a
comparative analysis and reformulation of existing line filters.
By directly merging two Gaussians with different parameters,
the proposed bi-Gaussian (BG) kernel allows independent
selection of scales on foreground and background. By taking
a narrow neighborhood during the derivative computation, our
method helps to minimize adjacent disturbances, but does not
sacrifice the homogeneity constraint inside object regions. To
develop the kernel as a general detector, its full analytical
representation is deduced and the traditional γ -normalization
scheme for linear scale space operators is extended here to
meet the requirement of multi-scale integration. Specifically,
combining with a parameter-free shape measure, a typical
application is to improve the extraction of adjacent tubular
objects such as vasculature or the edges of stacked sheets.

The remainder of the paper is organized as follows. We first
retrospect on the traditional line filters in Section II. Then,
the bi-Gaussian kernel is proposed in Section III. Section IV
introduces a shape measure and the multi-scale integration
scheme. The experiment results with synthetic and real images
are given in Section V, and Section VI is the conclusion.

II. RETROSPECTION ON TRADITIONAL FILTERS

In this section, several traditional line or tube filters are
reviewed. To investigate and understand the inherent draw-
backs of existing filters, we will show that these methods as
well as the proposed bi-Gaussian kernel can fit into a unified
framework by reformulating them from the viewpoint of

differential convolution [23]. This will then help in developing
a new solution to the adjacent structure problem.

Consider a low-pass filter f (σ, x) = I (x) ∗ h(σ, x), with h
being the smoothing kernel at scale σ and I (x) the original
image. The derivatives of response function f often work as
structure detectors in image analysis. According to the differ-
entiation property of convolution, the i -th order derivative in
the direction �r can be calculated with

∂ i f (σ, x)/∂�r i = I (x) ∗ ∂ i h(σ, x)/∂�r i . (1)

Although implemented by convolution with varying kernels,
the second-order derivative operators for 2D or 3D image
structures detection are divided into two main types: Laplacian
and Hessian, which essentially combine the 1D directional
derivatives of Eq. (1) in different ways. Usually, to account
for the variation of object sizes, the filters are merged with
a multi-scale framework, where a scale normalizing term
NF(σ ) is often multiplied, i.e. the normalized derivative is
defined as NF(σ ) · ∂ i f (σ, x)/∂�r i for interscale compatibility.
As an overall description, several representative filters are
listed in Table I and their scale normalization factors are
particularly included. Since there might be two different scale
variables involved in the filters, we adopt σ to denote the
main foreground scale and σb the background or small gradient
scale.

The following sections describe several popular filters used
for curvilinear structure detection. We will show that all these
methods can be written as a differential convolution filter like
Eq. (1), but with different definitions of the underlying filtering
kernel h(σ, x). This paper is focused on the kernel, rather than
the complete filter. Here, the kernel means the h(·) and its
derivatives in Eq. (1), whereas a complete filter might include
other auxiliary components such as the shape estimating
function, scale and orientation integration or combination of
derivative operators.

A. Gaussian Line Filters

The traditional Gaussian line filters, often known as vessel-
ness methods [6]–[8], are among the most widely used line
filters. They essentially depend on the orientational difference
or anisotropic distribution of the second-order directional
derivatives ∂2 Iσ /∂�r2 = �r t Hσ (x)�r to define a tube shape
measure, where �r indicates the unit vector and Hσ the Hessian
at scale σ. Under a linear scale space [24], [25], the term is
equivalent to ∂2 Iσ /∂�r2 = I (x)∗∂2G(σ, x)/∂�r2, i.e. convolut-
ing with a directional Derivative of Gaussian (DoG). On the
other hand, by radially rotating the DoG to define an isotropic
kernel, Fritsch et al. [26] developed a central medialness
filter for extraction of anatomic objects with nonparallel sides
in medical images. Neglecting the orientational difference,
their scheme actually employed a multi-scale Laplacian of
Gaussian (LoG) operator like [27]. In both filters, the scale
normalization factor NF(σ ) was set to σ 2.

One inherent weakness of Gaussian kernels is that they may
smooth across object boundaries, and tend to merge closely
located structures together. This can be explained from a 1D
curve of the second-order DoG kernel in Fig. 1g, where a big
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TABLE I

SUMMARIZING THE DERIVATIVE FILTERS FOR TUBE DETECTION

Method Article Filtering Kernel Derivative Operator NF(σ )

LoG Fritsch [26] Gaussian Laplacian σ 2γ

Vesselness Lorenz [6], Frangi [8], Sato [7] etc. Gaussian Hessian σ2γ

Flux Vasilevskiy and Siddiqi [19] Rectangle Laplacian σγ

OOF Law and Lung [20], Benmansour [22] Rectangle Hessian σγ

Medialness Krissian [10] Gaussian and Rectangle 3D Hessian and 2D Laplacian σ2γ

BG this paper Bi-Gaussian Hessian σ 2γ

*Here, the default value of parameter γ = 1.
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Fig. 1. Comparison of different kinds of filtering kernels, including Gaussian,
rectangular, and bi-Gaussian kernels. (a)–(c) Original kernel functions.
(d)–(f) First-order derivatives. (g)–(i) Second-order derivatives. Here, the
magnitudes of all the kernels are normalized to 1 for comparison. The
x coordinates are represented in multiples of scale σ , and σb = 0.16σ is
adopted for illustration of rectangular and bi-Gaussian kernels. Subfigures at
the bottom row: big circles denote cross sections of desired tubular objects
and the smaller circles denote the adjacent disturbances.

circle is used to represent the cross-section of the main tube
and the small dotted circle a nearby disturbing object. As seen,
although the scale of DoG is consistent with the tube radius,
the disturbing object is undesirably covered by the side lobes
of the kernel and thus will inevitably lead to a wrong response.

B. Gradient Flux Models

The flux-based tube filter was first introduced for vessel seg-
mentation by Vasilevskiy and Siddiqi [19]. The image gradient
flux is a discrete implementation of the gradient divergence
represented as a surface integral of gradient ∇ I projected
along the surface normal �n. As elaborated in Appendix A,
its mathematical expression can be transformed to

Flux(σ, x) = σ · I (x) ∗ �R̄(σ, σb, x) (2)

with σ the spherical radius and R̄(σ, σb, x) = G(σb, x) ∗
R̄(σ, x) being a smoothened rectangle function. Obviously, the
gradient flux model can be considered a convolution filter with
a Laplacian of Rectangle (LoR) kernel.

Recently, the flux filter was further improved by Law and
Chung [20]. In spite of a different theoretical background, their
Optimally Oriented Flux (OOF) model defined a second-order
matrix Qσ,x with components

qi, j
σ,x = σ · I (x) ∗ ∂2 R̄(σ, σb, x)/∂xi∂x j . (3)

As presented, Qσ,x is equal to a Hessian matrix calculated
with partial differentials of R̄(σ, σb, x) namely DoR. In OOF,
σb is fixed to 1 and σ is multiplied for scale normalization as
the flux model.

Compared with the traditional Gaussian line filters, a salient
advantage of flux models is their better performance in sep-
arating adjacent objects [20]. This can be investigated from
the 1D curve of the smoothened rectangle kernel shown in
Fig. 1h, where only a small neighborhood (width defined
by σb) around the object boundary is taken into account
by the second-order DoR operator. On condition σb < σ ,
it is obvious that a narrow selection of concerned regions
between the object (the big circle) and its background helps
to reduce the influence from adjacent structures (the small
circle). However, the good performance is obtained at the cost
of relaxing the homogeneity constraint inside object regions,
which might make it subject to false responses in the presence
of intensity inhomogeneity and noise. Note that the rectangle
kernel specifically denotes the smoothened rectangle kernel in
this paper, since a pure rectangle kernel is non-differentiable
and seldom directly used as a derivative operator.

C. Medialness Filters

The medialness concept was originally presented by
Pizer et al. [9] to evaluate the likelihood that a point belongs to
the medial axis of an object. Krissian et al. [10] developed an
adaptive offset medialness function for 3D vessel detection.
The function is said to be adaptive in that the orientation
of the filter kernel is locally adapted by the eigenvectors
�e1 and �e2, which correspond to the two major principal
curvatures of Hessian matrix. The meaning of “offset” is that
the boundary information at points equidistant to the tube
center is measured. The medialness function M(x) was defined
at a scale σb in proportion to the vessel radius σ , i.e. ρ = σb/σ
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is constant. As described in Appendix B, we can reformulate
it to

M(σ, σb, x) = σγ+1 · I (x) ∗ �R̄c(σ, σb, x) (4)

where R̄c corresponds to a 2D smoothened rectangle kernel
through the transverse plane. The γ is a scale-normalizing
coefficient often optimized to 1, but a smaller value (0.75)
was actually used by the original authors in real vessel images.
Therefore, the above medialness definition is equivalent to an
isotropic 2D LoR response.

As a hybrid method, the medialness filter depends on the 3D
Gaussian kernel G(σ, x) to find the vascular orientation, which
is also subject to adjacent interferences. Moreover, although
the 2D medialness helps to locate vessel boundaries more
accurately, the inherent drawback of rectangle kernels might
cause intraregion discontinuities being detected wrongly, like
in the gradient flux models.

III. PROPOSED METHOD

Motivated by the retrospection and reformulation of tradi-
tional line detecting filters, we present a bi-Gaussian filtering
kernel in this section. Our innovations focus on designing the
low-level kernel function, and the related scale-normalization
scheme will also be investigated. In Section III-A we propose
the general shape of the bi-Gaussian kernel and the idea behind
this. Section III-B lists conditions adopted from scale-space
theory, which are needed to completely define the bi-Gaussian
kernel. This derivation is done in Section III-C. A comparison
of the related kernels in the frequency domain is given in
Section III-D. Section III-E extends the kernel to a multi-scale
framework, and an extension to dimensions higher than 1 is
given in Section III-F.

A. Defining a New Second-Order Derivative

As introduced in Section II, the Gaussian kernels and their
derivatives hold an attractive property in noise suppression, but
suffer from disturbances induced by adjacent structures. The
reason is that they adopt a single scale on both foreground and
background. For instance, when the size of objects increases,
the Gaussian function G(σ, x) has to use a bigger σ to adapt
to the change. Thus, it simultaneously increases the possibility
of introducing more interference, since a wider neighborhood
will be sampled.

Conversely, the rectangle kernels R̄(σ, σb, x) behind flux
models have an advantage in separating closely located
objects, which is ascribed to the fact that they only depend
on the width of the rectangle or main scale σ to conform
with the object size, but use a smaller gradient scale σb

for contrast computation (see Fig. 1h). However, due to the
limited boundary and its close neighborhood taken in deriv-
ative computation, the interior regions of objects are actually
ignored since their weights are set to zero. Consequently, local
discontinuities will tend to be exaggerated or the boundaries
belonging to different objects might be wrongly identified as
an object. In other words, the rectangle kernel only works in
situations where the object intensity is assumed to be uniform
in advance.
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Fig. 2. Testing the 1-D second-order derivatives on the basis of different
kernels with a synthetic signal. The magnitudes of response curves are all
normalized to [0, 1) for convenience of comparison. A scale ratio σb/σ = 0.2
is used for the bi-Gaussian kernel. (a) Original image. (b) Gaussian kernel.
(c) Rectangle kernel. (d) Bi-Gaussian kernel.

To give an intuitive understanding, the Gaussian and rectan-
gle kernels based second-order derivatives, i.e. G′′(σ, x) and
R̄′′(σ, σb, x), are respectively tested with a synthetic signal,
where adjacent peaks with different extents of overlap are
included and simulated noise was added as shown in Fig. 2a.
The signal is convolved with different kernels according to
Eq. (1) to detect the two 4- and 8-pixels half width peaks,
using the Gaussian, smoothened rectangle and proposed bi-
Gaussian kernel in Fig. 1g, h, and i, respectively. Convolution
is performed in a multi-scale fashion using the normalization
schemes according to Table I and σ ∈ {2, 4, 6, 8, 10} pixels.
As observed, the left two peak pairs are totally merged under
the Gaussian kernel, while false peaks appear in the result of
the rectangle kernel.

To remedy the shortcomings of conventional methods,
a novel filtering kernel is desired. Based on the previous
analysis, our work starts from designing a new second-order
derivative, which is critical to the detection of symmetric struc-
tures. A straightforward solution is to combine the merits of
Gaussian and rectangle kernels, which could be implemented
by directly linking the middle negative part of G′′(σ, x) and the
side positive parts of R̄′′(σ, σb, x). However, considering the
clarity of physical meaning and easiness to understand, instead
of R̄′′(·) we employ another second-order Gaussian G′′(σb, x),
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which is shifted at the object boundaries x = ±σ to
approximate the rectangle kernel components. Thus, a piece-
wise continuous bi-Gaussian function is obtained:

BG′′(σ, σb, x) =

⎧
⎪⎨

⎪⎩

k · G′′(σb, x − σb + σ), x ≤ −σ

G′′(σ, x), ‖x‖ < σ

k · G′′(σb, x + σb − σ), x ≥ σ.

(5)

Here, the coefficient k is used to balance the positive and
negative weights and its value will be derived later. As shown
in Fig. 1i, the new bi-Gaussian operator allows for independent
selection of scales (σ and σb) on foreground and background.

To verify the new operator, a preliminary test on the
synthetic signal is shown in Fig. 2d. From the response curve,
it can be found that the proposed method integrated the
advantages of both Gaussian and rectangle derivatives, where
the majority of adjacent peaks have been efficiently and clearly
separated.

B. Constraint of Prior Conditions

As a multi-scale method, the above derivative filters are
closely related to scale space theory [24], [25]. Although at
this point we can not prove that the bi-Gaussian kernel in
Eq. (5) will generate a well-posed scale space, most of the
conditions behind the scale-space framework [28], [29] can
still be imposed on it. This will help to develop an exact
definition of our filtering kernel.

As presented in previous works, we first introduce the
constraints of rotation, translation and zoom (scale) invari-
ances, since there are usually no preferred direction, position
and size in real images. Then, considering the efficiency of
computation, a linear invariance is imposed to guarantee a
convolution implementation. Without loss of generality, we
use h(σ, x), h′(σ, x) and h′′(σ, x) to represent the zero-, first-
and second-order kernels, respectively. Usually, the first-order
kernel is an odd operator and only detects the anti-symmetrical
structures like step-edges, while the even second-order kernel
is responsible for symmetrical structures, e.g. the ridge-like
tube centerline. This implicitly contains an assumption that
h(σ, x) is differentiable at least up to the second-order, since
higher order derivatives are seldom used in real image analysis.
The assumption is also a basic requirement from differential
structure detection.

From the above explanation, several conditions can be
induced to regulate the kernel definition. Similar axioms or
prior assumptions have been used by other authors [30], [31].
For simplification, we adopt a 1D representation as follows.

1) The zero-order kernel h(σ, x) works as a smoothing
operator, should be a rapidly decreasing function with its
bandwidth determined by the scale σ . This is to restrict
the blurring or weighted average within an adjustable
neighborhood.

2) h(σ, x) is integrable, otherwise convolution would not
be well-defined.

3) According to rotation invariance, we have h(x) =
h(−x), i.e. h(σ, x) is an even function.

4) The first-order kernel h′(σ, x) is odd with h′(−x) =
−h′(x), and the integral

∫ +∞
−∞ h′(σ, x)dx = 0.

This condition ensures that the first-order operators only
respond to antisymmetric objects and neglect constant
offset or even structures.

5) Correspondingly, the second-order kernel h′′(σ, x) is
even and its integral

∫ +∞
−∞ h′′(σ, x)dx is also 0. This

caters to the detection of symmetric objects, and makes
the kernel not respondent to both constant components
and antisymmetric structures.

It is not difficult to verify that both the Gaussian and rectangle
kernel satisfy the listed conditions.

C. Deduction of the Bi-Gaussian Kernels

To exploit the capability of the Hessian matrix in orientation
and shape discrimination, it is necessary to derive a full
representation of the bi-Gaussian kernel. This is done by
integrating Eq. (5).

According to condition 5 above, we first have∫ +∞
−∞ BG′′(σ, σb, x) dx = 0 and get

k = −
∫ σ

0 G ′′(σ,x)dx
∫ +∞
σ G ′′(σb,x+σb−σ)dx

= σ 2
b

σ 2 . (6)

From condition 4, BG′(σ, σb, 0) should be 0 to ensure its
antisymmetry. Then, the analytical formulation of BG′(x) is

BG′(σ, σb, x) =
∫ x

0
BG′′(σ, σb, x)dx + BG′(σ, σb, 0)

=

⎧
⎪⎨

⎪⎩

k · G′(σb, x − σb + σ), x ≤ −σ

G′(σ, x), ‖x‖ < σ

k · G′(σb, x + σb − σ), x ≥ σ.

(7)

Finally, we derive the zero-order kernel as

BG(σ, σb, x) =
∫ x

0
BG′(σ, σb, x)dx + BG(σ, σb, 0)

=

⎧
⎪⎨

⎪⎩

k · G(σb, x − σb + σ) + c1, x ≤ −σ

G(σ, x) + c0, ‖x‖ < σ

k · G(σb, x + σb − σ) + c1, x ≥ σ.

(8)

Here, c0 and c1 = G(σ, σ ) − k · G(σb, σb) + c0 are offset
constants. Based on condition 1, we have limx→∞ BG(x) = 0.
Thus,

c0 = k · G(σb, σb) − G(σ, σ ) = e−1/2√
2π

(σb
σ − 1) 1

σ (9)

and c1 = 0. Obviously, BG(x) has even symmetry as
demanded by condition 3.

To link the two different scales of bi-Gaussian kernels,
we introduce a parameter ρ = σb/σ to represent the scale
ratio. Generally, ρ < 1 is required for detection of adjacent
structures. When ρ = 1, the bi-Gaussian kernel will degenerate
to a Gaussian. However, the exact selection of ρ is application
dependent, since a smaller ρ will benefit the isolation of adja-
cent interferences, but a bigger one is better for suppression
of background noise.

In conclusion, the analytical formula of the proposed kernel
have been fully derived. As shown in Fig. 1, the corresponding
curves appear to be a fusion between those of the Gaussian
and rectangle kernels.
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D. Frequency Domain Analysis

Like the Gaussian and rectangle kernels, the bi-Gaussian
kernel is essentially a low-pass filter with the smoothing
extent being controlled by the scale parameters. A frequency
analysis may provide a qualitative understanding from the
viewpoint of traditional signal processing. As well known,
the Fourier transformation of a Gaussian function maintains
the same Gaussian form, while the pure rectangular function
corresponds to a sinc function in the frequency domain, and
the Fourier transformation of smoothened rectangle kernels
will take the sinc-like shape accordingly. To compare the
bi-Gaussian (BG) with the two classic kernels, we plotted
their single-sided amplitude spectrums in Fig. 3. As shown,
under the same 3db bandwidth, the smoothened rectangle
kernel obtains an ideal sharp cut-off at the cost of producing
ripples in higher frequencies; the Gaussian kernel efficiently
avoids ringing by taking a smooth transition and simultane-
ously leads to an undesired boundary blurring. Considering
the inherent link between object scale and space domain
frequency, e.g. a larger scale results in a lower cut-off fre-
quency, a sharp transition of low-pass filters will then help
to minimize the mutual interference of neighboring scales.
This indirectly explains the advantage of the rectangle kernel
on adjacent vessel separation. However, the involved ripples
are considered the main cause of high-frequency artifacts in
filtering responses, which can be easily found in Fig. 2c and
Fig. 5e.

The bi-Gaussian kernel appears to balance well between
the cons and pros of Gaussian and rectangle kernels by
taking a sharp transition with acceptable ripples. Particularly,
the smoothing and ringing extent can be adjusted with the
parameter ρ. For example, a larger ρ = 0.5 tends to generate
a curve more like the Gaussian, while a smaller ρ = 0.1 more
approximates the rectangle kernel. As shown by the curve
of ρ = 0.001, the bi-Gaussian kernel will not approach the
smoothened rectangle kernel as ρ approaches 0 and suffers
far less from ripples.

E. Scale Normalization

In multi-scale filtering, scale normalization is an essential
step to guarantee the compatibility of operators at differ-
ent scales. The popular γ -normalized derivative [11] was
originally developed under a linear scale space, and has
not been proven applicable to non-Gaussian filters like the
rectangle or bi-Gaussian kernels. In this section, we will
show that the bi-Gaussian kernel can also be employed in a
multi-scale scheme with scale normalization according to the
γ -normalization theory. Based on conservation of responses
to idealized signals, the normalization criteria are introduced
as follows.

1) Constant conservation: it is a basic rule that a smoothing
filter should not change a constant function, which is
also known as “volume conservation” in the textbook of
image processing [32]. Thus, it is forced that the integral
Ah

0 = ∫ +∞
−∞ h(σ, x)dx = 1.

2) Step conservation: the step or Heaviside function u(x) is
an ideal antisymmetrical signal. The first-order kernels at
different scales should respond equally to it, and we have
that the positive half integral Ah

1 = ∫ 0
−∞ h′(σ, x)dx =

− ∫ +∞
0 h′(σ, x)dx remains unchanged with σ .

3) Bar conservation: As previous authors [3], [10] have
done, we adopt a bar or rectangular function Bar(σ, x)
to represent the idealized profile of tubes like vessels.
Since the second-order kernel works as an even oper-
ator, it is reasonable to require h′′(σ, x) preserving a
constant response to the bar function at the correspond-
ing scale σ . Then, the positive half integral Ah

2 =
2

∫ +∞
σ h′′(σ, x)dx = − ∫ σ

−σ h′′(σ, x)dx should be kept
constant.

To realize the interscale compatibility, we multiply the
original kernels with a scale-related coefficient NFh

i (i = 0,
1 or 2), i.e. the normalized i -th order derivative is defined as
NFh

i (σ ) · ∂ i h(σ, x)/∂xi . From the above criteria, the NFh
i (σ )

terms can be obtained.
Since the bi-Gaussian kernel BG(σ, x) is not originally

normalized like a probability density function, a zero-order
coefficient NFbg

0 (σ ) is first multiplied to ensure constant
conservation, i.e.

Abg
0 = NFbg

0 (σ ) ·
∫ +∞

−∞
BG(σ, σb, x)dx = NFbg

0 (σ )

·
[

erf( 1√
2
) + 2e−1/2√

2π
(σb

σ − 1) + (1 − erf( 1√
2
))

σ 2
b

σ 2

]
.= 1

(10)

where erf(x) indicates the error function. If assuming σb 
 σ

or the ratio ρ = σb/σ being fixed, NFbg
0 will take a constant

value to satisfy Eq. (10). Since a multiplied constant coefficient
does not affect the determination of response conservation,
NFbg

0 will be omitted in the following derivation for simpli-
fication. In the paper, a fixed ρ is preferred. Then, for the
first-order kernel, we have

Abg
1 = −NFbg

1 (σ ) ·
∫ +∞

0
BG′(σ, σb, x)dx

= 1√
2π

(1 − e−1/2 + e−1/2ρ) 1
σ · NFbg

1 (σ ) (11)
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and NFbg
1 (σ ) = σ is chosen according to the step conservation

criterion. Further, to satisfy the bar conservation criterion, the
positive half integral of the second-order kernel

Abg
2 = −NFbg

2 (σ ) ·
∫ σ

−σ
BG′′(σ, σb, x)dx

= 2e−1/2√
2π

1
σ 2 · NFbg

2 (σ ) (12)

should be independent of σ . Therefore, the coefficient
NFbg

2 (σ ) is chosen σ 2.
From the above deduction, it is obvious that the

γ -normalization can be extended to the bi-Gaussian kernels on
the condition that the scale ratio ρ = σb/σ is fixed. Actually,
our normalizing criteria are also applicable to the Gaussian
kernel, and the same result as Pauwels et al. [30] will be
derived. As another example, the normalization of rectangle
derivatives are elaborated in Appendix C. One additional
contribution is that the confusion about scale-normalization
(i.e. the different choice of σ or σ 2) between the medialness
and flux models [3] is then clarified.

F. Extension to Higher Dimensions

Although the filtering kernels were analyzed mainly with
1D forms in the previous subsections, the extension to high-
dimension space is straightforward. For example, by replacing
x with the polar radius r equal to the square root of

∑
x2

i ,
the 2D or 3D bi-Gaussian kernel can be easily obtained as
BG(σ, σb, r).

As introduced before, the Laplacian and the Hessian are the
two common second-order derivative operators. Under the bi-
Gaussian kernel, the isotropic Laplacian might be calculated
by directly convoluting with BG′′(σ, σb, r). However, in order
to investigate the orientation and shape information of struc-
tures behind the directional derivatives, the anisotropic Hessian
should be considered. In the latter case, we first convolve the
image with the zero-order kernel BG(σ, σb, r), then the matrix
components are separately calculated with

hbg
i j (σ, x) = σ 2γ · I bg

xi x j (σ, x)

= σ 2γ · ∂2[BG(σ, σb, r) ∗ I (x)]/∂xi∂x j . (13)

Here, the normalization coefficient γ is usually assigned a
default value 1. Obviously, the Laplacian can also be derived
from this equation by summing only the diagonal components.

IV. MULTISCALE CURVILINEAR STRUCTURES DETECTION

In Section II, we have verified that several classic line
or vessel filters can be integrated into the same differential
convolution framework. However, these methods not only have
a different underlying kernel, but also employ the kernel in
different ways. This makes it difficult to evaluate the perfor-
mance and influence of various kinds of kernels. To address
this issue, we will define a single parameter-free anisotropic
(Hessian-based) measure for complex 3D linear or tubular
shapes like vessels in this section. The corresponding isotropic
Laplacian-based measure, or its 2D implementation, can be
easily modified from this definition. Then in the experiments

we only need to change the kernel, while keeping the measure
fixed.

To describe 3D linear shapes, several popular tubeness
or vesselness functions [6]–[8] exist, which depend on the
distribution of Hessian eigenvalues to generate a likelihood
estimation. Assuming the eigenvalues λi (i = 1, 2, 3) are
sorted in order, e.g. |λ3| ≥ |λ2| > |λ1|, a bright tubular
structure will have λ1 ≈ 0 with its eigenvector correspond-
ing to the axial direction, and λ3 ≈ λ2 < 0 with their
eigenvectors defining the cross-section plane. Since our main
purpose is to verify the performance of different kernels rather
than constructing a general segmentation algorithm, the shape
estimating scheme of [7] will be followed, but their empirical
parameters are removed to make the comparison as fair as
possible. Then, a simplified line estimation is defined as

	(σ, x) =
{

−λ2
λ3

· (λ2 + λ3),
∑3

i=1 λi < 0

0, otherwise.
(14)

Here, the sum of all eigenvalues quantifies the local contrast,
which will take a negative response for bright objects [33].
We choose the two eigenvalues inside the transverse plane to
measure the structure strength, which approximates the 2D
medialness response [10] as analyzed in Eq. (B1), and the
eigenvalue ratio is multiplied to punish deviation from the
tubular center. By omitting the λ1 related term, the filter tends
to preserve axial continuity, since the intensity variation in
this direction is then neglected. From Eq. (14), it is trivial
to obtain a similar estimation for the dark tubes, where the
eigenvalues take inverse signs. Although the shape measure
is defined the same for different filters, the Hessian can be
computed in multiple ways, using the Gaussian, rectangle and
bi-Gaussian kernels.

To account for the variety of tube sizes, a typical multi-scale
integration scheme is utilized to get the optimal response, i.e.

	m(x) = max{	(σ, x), σmin < σ < σmax} (15)

where σmin and σmax are the minimum and maximum scales.
Thus, 	m(x) acts like a lineness function, which measures the
likelihood of a voxel belonging to a curvilinear structure.

V. EXPERIMENTS AND VALIDATION

In this section, we will compare the bi-Gaussian kernel
based filters with conventional methods in experiments by
using synthetic and real images. The related algorithm imple-
mentation and validation are also introduced. Since the main
purpose is to verify the advantage of the proposed kernel over
the two classic Gaussian and rectangle kernels, we will keep
the filtering framework unchanged but correspondingly adjust
the underlying kernel.

Two recent methods including the Laplace-Gabor filter [27]
and the gradient vector field (GVF) model [17] are also
compared. Note that these methods do not fit the framework
of Eq. (1) and Table I, but have been reported with good
properties in separating adjacent vessels. Since these models
are quite different methods compared to our kernel-based filter,
we only simply applied them in the following real image
experiments for reference.
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A. Algorithm Implementation

Unlike the Gaussian kernel, the proposed bi-Gaussian kernel
has no separability property, meaning that the high-dimension
convolution cannot be efficiently implemented with a cascade
of 1D filters. Instead, we utilize the Fourier convolution theo-
rem to do the computation: the image is Fourier transformed
and multiplied with the transformed convolution kernel, then
transformed back using the inverse Fourier transform. In our
implementation, the fast Fourier transform (FFT) algorithm is
adopted for acceleration. Thus, the convolution filter response
is calculated with

f (x) = FFT −1{FFT [I(x)] · FFT [h(x)]} (16)

where h(x) could be one of the bi-Gaussian and rectangle or
even the Gaussian kernels. Recently, a similar scheme has been
used by Law and Chung [34] in a flux model. According to
their report, equivalent computing accuracy can be achieved,
while the speed is drastically higher than the traditional spatial
domain algorithms.

Currently, our algorithm was implemented in Matlab
(MathWorks Inc.) and its embedded FFT library is adopted.
The calculation time with Eq. (14) for a typical 2563 size
3D dataset is about 50s for a single scale on our computer,
configured with 2.66 GHz CPU and 3 GB memory. The
computing speed is expected to increase largely with a better
optimization like in [34] or parallel programming.

The codes of the Laplace-Gabor and GVF filters were
downloaded through internet from the home pages of the
original authors [18], [27]. Due to the complexity of 3D Gabor
transformation, only the 2D version of Laplace-Gabor filter
was implemented. Both 2D and 3D implementations of GVF
models have been verified with the same public data as in [17].

B. Synthetic Data Experiment

As shown in Fig. 4, a synthetic volume image was generated
by merging two tubes with radius 4 and 8 pixels, and the
overlap between each tube pair was adjusted by changing their
center distance. The intensity profiles were assumed to be in
Gaussian distribution, and Gaussian random noise with 16%
variance was added to simulate a real environment. Actually,
the data is a 3D counterpart of the signal in Fig. 2a.

Here, we first adopted the isotropic Laplacian operator,
which is equivalent to replacing the shape function l(σ, x)
in Eq. (14) by the inverse sum of all Hessian eigenvalues,
to verify the performance of various kernels. For the Gaussian
and rectangle kernels, the filters then correspond to the existing
multi-scale LoG [26] and gradient flux models [19], respec-
tively. We set the range of scale σ to 2-10 voxels and uniformly
divided it into 5 steps. A fixed σb equal to 1 voxel was used for
the rectangle kernel as the paper [20], and the ratio parameter
ρ of the bi-Gaussian kernel is set to 0.2. All scale normalizing
coefficients were configured with default values as in Table I.
According to Eq. (15), the multi-scale responses were obtained
and are shown in Fig. 4.

As observed, the Gaussian kernel generated the smoothest
result among the three kernels, and the intensity distribution
through the transverse planes is close to the ground truth,

Original image | Ground truth

Gaussian kernel

Rectangle kernel

Bi-Gaussian kernel
(a) (b)

Fig. 4. 3-D synthetic image filtering with different kernels. (a) 3-D
visualization. (b) Contours of 2-D cross sections located at the axial midpoint.

but almost all of the tube pairs appear to merge together.
The rectangle or flux filter improved the adjacent structures
detection while introducing some irregular transitions around
the object boundaries. Particularly, the original circular shape
of level-contours is frequently distorted, which will make
it a problem to localize the centerline or estimate the tube
diameter. The bi-Gaussian kernel retains a clear gap between
the neighboring tubes, except for the seriously overlapping
ones on the right side of the figure. Moreover, the intensity
distribution is well preserved as seen from the contour plot.
The distinctive advantage is ascribed to an integration of pre-
vious kernels, where the intra-region smoothing of Gaussian
and the neighborhood adjusting ability of rectangle kernels are
seamlessly merged into a single filter. However, both the bi-
Gaussian and rectangle kernels appear to sharpen the smooth
boundaries, and the tubes are perceived thinner partially due
to the selected threshold.

C. Real Data Experiments

1) 2-D Page Images: To compare the filtering kernels in real
applications, we first adopt a 2D page image from packaging
industry used for sheet-counting, where the data are captured
by scanning the sides of a book or paper-stack with CCD cam-
eras for quality control [2], [35]. Fig. 5a shows a typical image
with closely located curvilinear structures. Due to noise and
background inhomogeneity, it is difficult to directly identify
the page stripes. Instead, multi-scale derivative filters are often
adopted for preprocessing enhancement. The enhanced image
is subsequently used for automatic page-counting, where we
mainly employ a peak detection algorithm [36] to locate the
sheet centers and then output the number of pages. In the
experiment, the scale range is commonly set to 3-6 pixels
and 5 steps are used. The ratio ρ of bi-Gaussian kernel is
0.2, and the σb of the rectangle kernel is 1 pixel as in [20].
The normalization factors of all the kernels are configured
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(a) (b)

(c) (d)

(e) (f)

Fig. 5. 2-D page image filtering. (a) Original image. (b) Laplace-Gabor
filtering. (c) GVF filtering. (d)–(f) Results from Gaussian, rectangle, and
bi-Gaussian kernels, respectively. Yellow digits: detected number of pages
in the region denoted by the red arrows, using the algorithm described in
[36].

according to Table I. During multi-scale integration, only
the Hessian eigenvalue with largest magnitude at each scale,
i.e. l(σ, x) = −λ2 is used to generate the final response.
By neglecting the smaller eigenvalue in the axial direction,
the continuity along page edges will be better preserved as
detailed in Section IV. This is also a requirement from the
page-counting task, where the traverse separation and the
longitudinal connection are both emphasized. Additionally, a
Laplace-Gabor filter [27] and a 2D GVF filter [17], [18] were
also applied here and the filtering parameters were optimized
to the data.

From the filtering result, the Gaussian kernel seems to
blur across weak boundaries, which can be seen from the
missed line segments labeled with yellow ellipses in Fig. 5d.
Simultaneously, the widened bright stripe on the left just
indicates the incorrect merging of adjacent lines. As marked
by the red arrows in Fig. 5e, the rectangle kernel leads to
an over-estimation of stripe number, which originated from a
wrong division of tube regions due to the lack of a homo-
geneity constraint. However, the overall performance of the
bi-Gaussian kernel is better. As shown in Fig. 5f, all stripes
have been clearly separated leading to accurate page counting.
The Laplace-Gabor filter is comparable to and even better
than the bi-Gaussian one with smoother stripes in Fig. 5b.
The computing time was however much longer (about 45
times of the bi-Gaussian kernel in our experiments) due to

the complexity of Gabor decomposition. The special effect
of GVF model is given in Fig. 5c, where the tubes were
obviously thinned with highlighting centerlines. As marked
with yellow circles, a potential drawback is that the axial
gray-level variation has been improperly exaggerated and thus
causes some obvious discontinuities or merging of adjacent
stripes.

2) 3-D Clinical Images: The filtering kernels are further
tested with 3D blood vessel images. We used a time-of-
flight MRA image from an open dataset [37] with an image
resolution of 0.513 × 0.513 × 0.8 mm3. As shown in Fig. 6a,
a sub-volume was specifically selected from the “Normal082”
sample. In the image, many tangential vessels exist, which
have been considered a problem to conventional vessel detect-
ing algorithms [38]. Before filtering, an interpolation algorithm
was applied to transfer the image into a 0.5 × 0.5 × 0.5 mm3

isotropic data, which is necessary to satisfy the Nyquist criteria
during differential convolutions [7].

Considering the complexity of 3D vessels, we utilized a
fully defined lineness function in Eq. (14) to generate a multi-
scale response on the MRA image. The selected scale range
was 1-3 pixels and uniformly divided into 5 steps. All the
scale-normalizing coefficients for the Hessian calculation in
Eq. (13) were configured according to Table I. The scale
ratio ρ of bi-Gaussian kernel was set to 0.1. Since the 3D
implementation of Laplace-Gabor filter [27] is not available,
we only adopted the GVF model [17] using the same lineness
function as the kernel-based filters and the default parameter
(μ = 0.1) was verified to be an optimal configuration here.

In the experiment, we focused on the detection of closely
located structures. As seen from Fig. 6, the Gaussian kernel
failed to distinguish almost all the neighboring vessels due to
its over-smoothness. The rectangle kernel was able to separate
parallel vessels as the green arrow indicates, but seems quite
limited in detecting the cross tangential vessels marked with
red arrows. The bi-Gaussian kernel performed much better
than the previous two filters concerning all kinds of vessels.
The axial continuity and many weak vessels invisible to
the traditional filters were well preserved. The GVF method
was good in separating adjacent vessels, especially with a
merit to detect very weak objects, see the blue arrow in
Fig. 6b. However, the axial discontinuity arising from too
local gradient estimation was also very obvious just like its 2D
counterpart in Fig. 5c. To illustrate the influence of binarizing
thresholds, various isosurfaces of the bi-Gaussian kernel result
are rendered in Fig. 6f-h. A complete isosurface rendering of
filtering results can be referred to a digital supplement attached
with this paper.

D. Quantitative Validation

1) 2-D Page Images: Among the above experiments, the
page image belongs to a special application, where we are
concerned more about the increasing identifiability of stripe
numbers through the differential filtering. Therefore, the final
counting accuracy obtained with the post-processing peak
detection is a good quantitative index to evaluate the perfor-
mance of various kernels. To give a statistical evaluation, we
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 6. 3-D clinical image filtered with different methods. (a)–(e) Image visu-
alized with volume rendering. (f)–(h) Depiction of the isosurface rendering
of the bi-Gaussian kernel result in (e) corresponding to different thresholds.

applied the five filters in Fig. 5 to 50 samples of stacked-
sheets images, and over 400 profiles were chosen for statistical
analysis. The page-counting errors are summarized in Table II.
As shown, the Gaussian kernel, Laplace-Gabor and GVF filters
commonly take negative biases, which means part of sheets
were merged or missed. The rectangle kernel has a very
high positive bias due to its large number of false responses.
The bi-Gaussian kernel produced the lowest bias but with a
larger variance than the Laplace-Gabor and GVF methods. It

TABLE II

STATISTICAL EVALUATION OF PAGE-COUNTING

Quantitative
Indices

Gaussian
Kernel

Rectangle
Kernel

Bi-Gaussian
Kernel

Laplace-
Gabor GVF

Systematic
bias (%) −0.723 16.570 0.009 −0.039 −0.048

Random
error (%)

±4.253 ±8.957 ±2.123 ±1.193 ±1.417

Fig. 7. Flowchart to evaluate vessel separation in MRA filtering.

indicates that the proposed bi-Gaussian kernel is more suitable
for unbiased measurement, though a statistical averaging or
other post-processing is necessary to reduce the non-ignorable
random error. The Laplace-Gabor filter got the lowest variance,
which can be indirectly verified from the smoother stripes in
Fig. 5b.

2) 3-D Clinical Images: We randomly selected 15 volume
images from the open dataset [37] containing clinical MRA
data, and 18 pairs of adjacent vessels were manually selected
using masks by two trained observers. As shown in Fig. 7,
from these selected adjacent vessels, we chose patches in the
planes approximately orthogonal to the vessel axes. Both the
2D cross-sections of neighboring vessels and the transition
region between them were subsequently labeled manually. On
average, there were about 120 patches drawn for each pair of
vessels, resulting in a total of 2283 patches. The evaluation
task was implemented in Mevislab [39], using the interactive
contour editing and 2D-3D cursors synchronizing tools. The
interactive segmentation was first performed by two trained
operators, a third observer subsequently verified the editing
result and a radiologist was enquired to settle the disputes. The
sketched procedure circumvents the need to manually extract
the whole vasculature, which is infeasible, and focuses the
evaluation on adjacent vessels to demonstrate the separating
ability of the several kernels.

To quantify the filtering performance, we first normalized
the kernel responses to [0, 1]. When the normalized images
are binarized with some global threshold, the isolation of
neighboring vascular profiles across the patch plane will be
a good index to evaluate the ability to separate adjacent
structures. For each 2D patch, after thresholding the number
of objects could be 0, 1, 2 or larger than 2, with 2 being the
correct response. This can be more clearly understood from the
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Fig. 8. Quantitative evaluation of 3-D vessel filters. (a) Accuracy and (b) F1-measure curves, with legends showing the maximum responses. (c) Change of
quantitative indices with the scale-ratio parameter of bi-Gaussian kernel and an offset of 0.2 is added to the two AUC curves for better display.

TABLE III

STATISTICAL EVALUATION OF 3-D VESSEL FILTERING

Method Accuracy Maximum Accuracy AUC F1-Measure Maximum F1-Measure

Bi-Gaussian kernel 0.9028 (±0.0621) 0.3674 (±0.0852) 0.9489 (±0.0338) 0.4339 (±0.0904)

Rectangle kernel 0.7480 (±0.1355) 0.2636 (±0.0649) 0.8558 (±0.0906) 0.3336 (±0.0745)

Gaussian kernel 0.5712 (±0.1241) 0.1639 (±0.0453) 0.7165 (±0.0949) 0.2317 (±0.0598)

GVF 0.7452 (±0.1246) 0.4060 (±0.0950) 0.8539 (±0.0802) 0.5072 (±0.0797)

*The statistical means are listed with their variances inside the brackets.

flowchart of Fig. 7, where the complete procedure is depicted.
For the four different kinds of binarized responses inside a
patch, the detection of zero objects corresponds to missing
both vessels, while the case of a single object is caused by
vessel merging or loss of a single branch. A count larger than
2 mainly arises from noise interference and false responses.

To perform the receiver operating characteristic (ROC)
analysis for quantitative validation, we define a count 0 as
a False Negative (FN), a count 2 as a True Positive (TP),
and a count larger than 2 as False Positive (FP). A special
case is a count 1, which can be classified as FP or FN
depending whether the cause is merging or missing of objects,
respectively. The accuracy is then equal to TP/(TP+FP+FN),
where the True Negative (TN) is deliberately omitted due
to the lack of a clear definition. Like the work of [27],
we further used the F1-measure as a quantitative index,
which is considered suitable for skewed data. It is defined
as 2TP/(2TP+FP+FN). Note that both the accuracy and the
F1-measure are independent on the choice of FP or FN for
the count 1 case.

The curves of accuracy and F1-measure as a function of
the relative threshold are given in Fig. 8a and b, respectively,
which summarizes the results for all 2283 patches. In this
experiment, the filtering parameters are set the same as Fig. 6,
i.e. ρ = 0.1 for the bi-Gaussian kernel. As observed, the corre-
sponding accuracy and F1-measure curves take similar shapes.
It is clear that the bi-Gaussian kernel has the highest maximum
response among the four methods. The GVF model appears
similar to the rectangle kernel filter in maximum responses,
but obtains a wide coverage, which reflects its robustness to
binarizing thresholds. More extensive evaluations are summa-
rized in Table III. It can be found that the bi-Gaussian kernel

obtains the highest mean maximum response under the lowest
variance. The GVF takes the largest AUCs. With a proper
selection of the threshold, the maximum response is the most
important criterion for optimal vessel segmentation, at which
the bi-Gaussian kernel is best.

E. Selection of Scale-Ratio Parameter in Bi-Gaussian Kernels

In Section III, we have briefly introduced the scale-ratio
parameter configuration of the bi-Gaussian kernel. To verify
its effect, we performed additional experiments using the
MRA images, by adjusting ρ in the range (0, 1] with a
step size of 0.01. The accuracy and F1-measure responses
of the bi-Gaussian kernel with varying configuration were
then obtained, the four quantitative indices were calculated
and the corresponding curves are illustrated in Fig. 8c. As
shown, all the index curves are generally decreasing functions
of ρ, though some small oscillations can be found. The two
maximum response curves tend to be flat while ρ < 0.1, which
means the filter is insensitive to the parameter inside this range.
On the other hand, a too small ρ is at a risk to introduce
background noise. In our experiments, the selection of ρ ∈
[0.1, 0.2] appears a good compromise between optimization
of maximum responses and immunity of noise interference.

F. Influence of Scale-Space Parameters

Among the previous derivative filters, there are several
parameters including the minimum scale σmin, maximum scale
σmax, scale step and normalizing coefficient γ , which need be
configured for multi-scale integration. Usually, the σmax and
γ are considered the most sensitive parameters and should be
chosen carefully.
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Fig. 9. Testing the sensitivity of parameter γ in different kernels with a 1-D synthetical signal.

Although the γ coefficient is theoretically optimized to 1
on basis of the scale-invariance criterion, it could be adjusted
from other considerations. To verify the influence of γ to
various line filters, a series of experiments were conducted
with a noise-corrupted synthetical signal as shown in Fig. 9.
Here, the Gaussian-like peaks are taken from Fig. 2a, and
two neighboring bar-like peaks with radius 8 and 4 pixels are
particularly added to simulate sharp profiles. The second-order
derivatives of three different kernels are respectively convolved
with the lD signal and generate the multi-scale responses under
a common configuration σmin = 2, σmax = 10 and step = 1
pixel. As observed, a large γ > 1 tends to create smoother
results simultaneously at an increasing risk to merge close
peaks, which is especially obvious with the Gaussian kernel.
A small γ < 1 is beneficial to the separation of adjacent
objects, but the drawback is to miss the bar-like peaks with
large width or detect them incorrectly. Generally speaking,
the default value γ = 1 keeps a better balance between noise-
suppression and adjacent objection separation for all the three
kernels. The bi-Gaussian kernel appears more robust to the γ
parameter variation than the other two kernels.

The basic rule for σmax configuration is to select its value
just above the expected largest object size, but over- or under-
estimation are very common in real applications. Like the
results with γ < 1 in Fig. 9, a lower σmax is better for
separation of neighboring objects with Gaussian-like profiles,
but will suffer from bar-like profiles and noise disturbance.
In contrast, an over-large σmax might blur the adjacent struc-
tures. As an example, the 3D clinic image in Fig. 6a is further
filtered with σmax = 5 while the other parameters remain
unchanged. Here, the interested vessel radii of original sub-
volume fall between 1 and 3 pixels. As seen from the results
in Fig. 10, the closely located vessels are seriously blurred
under all the three filters, but the bi-Gaussian kernel has

(a) (b) (c)

Fig. 10. Influence of an over-large σmax in 3-D clinical image filtering.
(a) Gaussian kernel. (b) Rectangular kernel. (c) Bi-Gaussian kernel.

the smallest overlap of the results. Particularly, false vessel
responses between the parallel tubes can be found in Fig. 10b,
which means that the boundaries belonging to different vessels
were erroneously identified as an object under the rectangle
kernel.

VI. CONCLUSION

In this paper, a multi-scale derivative filter has been
presented for the detection of adjacent curvilinear structures.
Our idea was inspired by retrospection of traditional line
filters. The classic Gaussian vesselness, gradient flux and
medialness models are reformulated and uniformed into a
differential convolution framework, which helps to better
understand and further improve the existing methods. Our
main contribution is to introduce the concept of scale sepa-
ration on foreground and background. Based on this idea, a
new bi-Gaussian filtering kernel is developed, which realized
a natural integration of traditional Gaussian and rectangle
(flux) kernels. With the deduction of its full analytical rep-
resentation, the proposed kernel holds a potential ability to
replace the low-level Gaussian operators in many vessel and
structure detecting filters, especially concerning the specific
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application of neighboring object extraction. To address the
scale-normalization issue about non-Gaussian derivatives, our
additional contribution is the design of several criteria based
on response conservation to idealized standard signals.

The performance of our method was demonstrated in exper-
iments by using synthetic and real images. It is shown that the
proposed method is more effective in detecting adjacent struc-
tures compared with conventional filters. In particular, most
tubular objects including those with mid-level overlap have
been clearly separated while introducing few false responses.
This is validated not only from the illustration of filtered
results, but also with the quantitative accuracy and F1-measure
curves. For example, in the clinical image experiment, our
method gained the highest maximum responses among the four
kinds of filters, i.e. about 21% and 11% higher than the second
best rectangle kernel on accuracy and F1-measure maxima,
respectively.

Compared with the Gaussian function, the proposed bi-
Gaussian kernel essentially reduces adjacent disturbances with
a shortened or sharpened tails. Although there exist probably
countless functions to achieve the purpose, our kernel is a good
choice in terms of clarity of physical meaning and easiness of
normalization. However, a limitation of the bi-Gaussian kernel
is that it is only differentiable up to the second-order, and
it might be problematic if the image derivatives higher than
two, such as the third-order edge strength measure [40], are
required. In addition, the good structure separating property
of our filtering kernel was obtained in the study with an
assumption that the background noise of images is limited.
Otherwise, we have to adopt a bigger scale ratio parameter to
cancel this influence. In that case, our method will degrade to
a traditional Gaussian filter.

Presently, our focus is on investigating the bi-Gaussian
kernel as a general detector to extract reliable information
from closely located structures. Strictly speaking, it only
belongs to the category of feature detection or preprocessing
enhancement. To deal with complicated tasks such as the
separation of hepatic or pulmonary artery-vein trees, more spe-
cific segmentation schemes and additional constraints should
be considered. For example, the current 3D operators might
introduce unnecessary blurring orthogonal to the overlapping
direction, which will probably decrease the discriminability
of adjacent objects. The asymmetric intensity distribution is
also frequently seen in many neighboring structures like blood
vessels, and has not been sufficiently emphasized in the current
work. These issues still remain an open problem and will be
our future research direction.

APPENDIX A

REFORMULATION OF THE GRADIENT FLUX MODELS

According to [19], the image gradient flux can be con-
verted to a volume integral via the divergence theorem, i.e.
Flux(σ, x) = 1/SR

∫

R div(∇ I )d R, where R indicates the
spherical neighborhood with radius σ and SR its surface
area. Notice this is actually a convolution of the Laplacian
�I with the sphere function R(σ, x), whose one-dimensional
representation is a unit rectangle kernel. Further consider the

noise-suppression Gaussian filtering with a small constant
scale σb involved in gradient calculation, the gradient flux can
be rewritten to

Flux(σ, x) = 1
SR

∫

R
div(∇ Iσb )d R

= VR
SR

· div[I (x) ∗ ∇G(σb, x)] ∗ R̄(σ, x) (A1)

where the normalized kernel R̄(σ, x) is obtained from R(σ, x)
divided by its volume integral VR . The coefficient VR/SR ∝
σ , and σ is used for simplification. In fact, it resembles
a traditional scale-normalizing term. Thus, according to the
differential property of convolution, we have

Flux(σ, x) = σ · I (x) ∗ �R̄(σ, σb, x) (A2)

with R̄(σ, σb, x) = G(σb, x) ∗ R̄(σ, x) being a smoothened
rectangle function.

The OOF model of Law and Chung [20] adopted the
second-order partial differentials of R̄(σ, σb, x), namely
DoRs, to construct Hessian matrix, see Eq. (3). To further
understand the DoR operators, their 1D analytical repre-
sentations can be obtained with the distributional derivative
of Heaviside step functions, i.e. ∂ R̄(σ, σb, x)/∂x = 1/2σ ·
[G(σb, x + σ) − G(σb, x − σ)] and ∂2 R̄(σ, σb, x)/∂x2 =
1/2σ ·[G′(σb, x +σ)−G′(σb, x −σ)]. Obviously, the terms are
the combination of two shifted Gaussians and their first-order
derivatives, respectively.

APPENDIX B

REFORMULATION OF THE MEDIALNESS FUNCTION

In [10], the 2D medialness response was originally defined
as M(σb, x) = 1/2π

∫ 2π
0 −σ

γ
b · ∇ Iσb (x + τσb�vα) · �vαdα.

Here, �vα = cos(α) �e1 + sin(α) �e2 is the unit vector in radial
directions across the transverse plane defined by �e1 and �e2.
The term σ

γ
b is added on purpose for scale-normalization of

gradient calculation, and the parameter τ ensures the circle
radius σ = τσb. Thus, the central Hessian and its eigenvectors
are computed at scale σ , whereas the boundary gradient at σb

like the flux models. Obviously, M(·) is the average of gradient
projections taken in radial directions around a circle Cσ . Then,
the medialness can be rewritten as a flux-like representation:

M(σ, σb, x) = 1

2πσ
σ

γ
b

∫

Cσ

< ∇ Iσb , �n > ds

= 1
2ργ σγ+1 · I (x) ∗ �R̄c(σ, σb, x) (B1)

where ρ = σb/σ , Rc denotes the planar region surrounded by
circle Cσ and its 1D representation is also a unit rectangle
function. R̄c corresponds to Rc divided by its area πσ 2,
then R̄c(σ, σb, x) = R̄c(σ, x) ∗ G(σb, x) is a 2D smoothened
rectangle kernel through the transverse plane. Since the term
1/2ργ is constant, it can be omitted for simplification.

APPENDIX C

SCALE NORMALIZATION OF THE RECTANGLE KERNELS

As introduced in Section II, the zero-order smoothened
rectangle kernel is defined as R̄(σ, σb, x) = 1/2σG(σb, x) ∗
[u(x + σ) − u(x − σ)] with the term 1/2σ to ensure constant
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conservation. Then, using NFr
1 to represent the first-order

normalizing factor, the positive half integral of R̄′(σ, σb, x)
is written as

Ar
1 = −

∫ +∞

0
NFr

1(σ ) · R̄′(σ, σb, x)dx

= 1
2σ NFr

1(σ ) · er f ( σ/σb√
2

). (C1)

By step conservation, we set NFr
1(σ ) = σ to guarantee Ar

1
being constant on condition that σb 
 σ or the ratio ρ = σb/σ
is fixed.

As for the second-order kernel, the positive half integral is
obtained as

Ar
2 = −

∫ σ

−σ
NFr

2(σ ) · R̄′′(σ, σb, x)dx

= 1
σ NFr

2(σ ) · 1
σb

√
2π

[

1 − exp(− 2σ 2

σ 2
b

)

]

(C2)

with NFr
2(σ ) the normalizing coefficient. If σb 
 σ , Eq.

(C2) is approximated to A2
r ≈ 1/σNFr

2(σ ) · 1/σb
√

2π .
Then, fixing the value of σb, NFr

2 = σ is able to keep
Ar

2 a constant. On the other hand, if the ratio ρ = σb/σ
is fixed, by rewriting Eq. (C2) to Ar

2 = 1/σ 2NFr
2(σ ) ·

1/
√

2π1/ρ
[
1 − exp(−2/ρ2)

]
, it is obvious that NFr

2 should
be chosen to σ 2. Actually, the two cases represent different
scale-normalization schemes for rectangle kernel related oper-
ators. The former corresponds to the flux filters [19], and the
gradient scale σb is fixed to 1 pixel in the OOF model [20].
The latter is the case of medialness filters [9], [10], where σb

is proportional to the object scale σ .
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