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Abstract. Image registration is often very slow because of the high
dimensionality of the images and complexity of the algorithms. Adaptive
stochastic gradient descent (ASGD) outperforms deterministic gradient
descent and even quasi-Newton in terms of speed. This method, however,
only exploits first-order information of the cost function. In this paper,
we explore a stochastic quasi-Newton method (s-LBFGS) for non-rigid
image registration. It uses the classical limited memory BFGS method in
combination with noisy estimates of the gradient. Curvature information
of the cost function is estimated once every L iterations and then used
for the next L iterations in combination with a stochastic gradient. The
method is validated on follow-up data of 3D chest CT scans (19 patients),
using a B-spline transformation model and a mutual information metric.
The experiments show that the proposed method is robust, efficient and
fast. s-LBFGS obtains a similar accuracy as ASGD and deterministic
LBFGS. Compared to ASGD the proposed method uses about 5 times
fewer iterations to reach the same metric value, resulting in an overall
reduction in run time of a factor of two. Compared to deterministic
LBFGS, s-LBFGS is almost 500 times faster.

1 Introduction

Image registration is important in the field of medical image analysis. How-
ever, this process is often very slow because of the large number of voxels in
the images and the complexity of the registration algorithms [1,2]. A powerful
optimization method is needed to shorten the time consumption during the reg-
istration process, which would benefit time-critical intra-operative procedures
relying on image guidance.

The stochastic gradient descent method is often used to iteratively find the
optimum [3]. This method is easy to implement and fast because at each itera-
tion only a subset of voxels from the fixed image is evaluated to obtain gradients.
Although it obtains a good accuracy, its convergence rate is poor since only first
order derivatives are used. A preconditioning matrix can be used to improve the
convergence rate of (stochastic) gradient descent, but this was only proposed in
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a mono-modal setting [4]. The quasi-Newton method also has a better conver-
gence rate than deterministic gradient descent, but comes at a higher cost in
computation time and large memory consumption. Limited memory Broyden-
Fletcher-Goldfarb-Shanno (LBFGS) takes an advantage in the storage of only
a few previous Hessian approximations, however, the computation time is still
very long as all voxels are needed for new Hessian approximations [2].

Some approaches to create a stochastic version of the quasi-Newton method
are proposed in a mathematical setting, such as online LBFGS [5], careful quasi-
Newton stochastic gradient descent [6], regularized stochastic BFGS [7] and
stochastic LBFGS [8]. However, there is no application in the image registra-
tion field, and applying the stochastic quasi-Newton method to non-rigid image
registration is still a challenge. All of the previous methods either used a man-
ually selected constant step size or a fixed decaying step size, which are not
flexible when switching problem settings or applications. Moreover, the uncer-
tainty of gradient estimation introduced by the stochastic gradient for Hessian
approximation is still a problem. Although Byrd [8] used the exact Hessian to
compute curvature updates, which is still difficult to calculate for high dimen-
sional problems. For careful QN-SGD [6], the average scheme may be useless in
case of an extremely large or small scaling value for H0. Mokhtari [7] used a
regularized term like Schraudolph [5] did to compensate the gradient difference
y from the parameter difference s and introduced a new variable δ, which is not
only complex, but also needs to store all previous curvature pairs.

In this paper, we propose a stochastic quasi-Newton method specifically for
non-rigid image registration inspired by Byrd et al. [8]. Different from Byrd’s
method, the proposed method employs only gradients and avoids computing sec-
ond order derivatives of the cost function to capture the curvature. Secondly, we
employ an automatic and adaptive scheme for optimization step size estimation
instead of a fixed manual scheme. Finally, we propose a restarting mechanism
where the optimal step size is recomputed when a new Hessian approximation
becomes available, i.e. every L iterations. The proposed method and some vari-
ations are validated using 3D lung CT follow-up data using manually annotated
corresponding points for evaluation.

2 Methods

Non-rigid image registration aims to align images following a continuous defor-
mation strategy. The optimal transformation parameters are the solution that
minimizes the dissimilarity between fixed IF and moving image IM :

µ̂ = argmin
µ

C(IF , IM ◦ Tµ), (1)

in which Tµ(x) is a coordinate transformation parameterized by µ.
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2.1 Deterministic Quasi-Newton

The deterministic quasi-Newton method employs the following iterative form:

µk+1 = µk − γkB
−1
k gk, (2)

where Bk is a symmetric positive definite approximation of the Hessian matrix
∇2C(µk). Quasi-Newton methods update the inverse matrix Hk = B−1

k directly
using only first order derivatives, and have a super-linear rate of convergence.
Among many methods to construct the series {Hk}, Broyden-Fletcher-Goldfarb-
Shanno (BFGS) tends to be efficient and robust in many applications. It uses
the following update rule for Hk:

Hk+1 = V T
k HkVk + ρksks

T
k , (3)

in which

ρk =
1

yT
k sk

, Vk = I − ρkyks
T
k , sk = µk+1 − µk, yk = gk+1 − gk. (4)

Since the cost of storing and manipulating the inverse Hessian approximation
Hk is prohibitive when the number of the parameters is large, a frequently used
alternative is to only store the latest M curvature pairs {sk,yk} in memory:
limited memory BFGS (LBFGS). The matrix Hk is not calculated explicitly,
and the product Hkgk is obtained based on a 2-rank BFGS update, which uses
a two loop recursion [8]. The initial inverse Hessian approximation usually takes
the following form, which we also use in this paper:

H0
k = θkI, θk =

sTk−1yk−1

yT
k−1yk−1

. (5)

2.2 Stochastic Quasi-Newton

A large part of the computation time of quasi-Newton methods is in the com-
putation of the curvature pairs {sk,yk}. The pairs are computed deterministi-
cally using all samples from the fixed image. A straightforward way to obtain
a stochastic version of the quasi-Newton method is to construct the curvature
pairs using stochastic gradients, using only a small number of samples at each
iteration. This however introduces too much noise in the curvature estimation,
caused by the fact that stochastic gradients are inherently noisy and for each it-
eration are also evaluated on different subsets of image voxels, both of which may
yield a poor Hessian approximation. This leads to instability in the optimization.

To cope with this problem, Byrd et al. [8] proposed a scheme to eliminate
the noise by averaging the optimization parameters for a regular interval of
L iterations and obtain the curvature through a direct Hessian calculation on
a random subset S2. This is combined with a series of L iterations performing
LBFGS using the thus obtained inverse Hessian estimate together with stochastic
gradients (using a small random subset S1). Inspired by this scheme, we propose
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a method suitable for medical image registration and avoiding manual tuning
the step size. First, more samples are used for the curvature pair update than for
the stochastic gradient evaluation. Second, the curvature information is obtained
using a gradient difference instead of second order derivatives evaluated at an
identical subset of samples, i.e. yt = g(µ̄I ;S2) − g(µ̄J ;S2) and the curvature
condition yTs > 0 is checked to ensure positive definiteness of the LBFGS
update [8]. Finally, the initial step size at the beginning of each L iterations
is automatically determined, with or without restarting. Restarting is a recent
development [9] showing improved rate of convergence, which in this paper we
apply to the step size selection.

Instead of manual constant step size selection as in [8], we employ an au-
tomatic method. A commonly used function for the step size which fulfils the
convergence conditions [10] is γk = ηa/(tk +A)α, with A ≥ 1, a > 0, 0 ≤ η ≤ 1
and 0 ≤ α ≤ 1. The step size factor a and the noise compensation factor η are
automatically determined through the statistical distribution of voxel displace-
ments [11], while A = 20 according to [3] and α = 1 is theoretically optimal
[3]. Different strategies for the artificial time parameter tk are tested: a constant
step size tk = 0, a regularly decaying step size tk = k, and an adaptive step size
tk = f(·). Here, f is a sigmoid function with argument of the inner product of
the gradients g̃T

k · g̃k−1 for gradient descent. For s-LBFGS, it can be derived that
the search direction is needed as argument, i.e. dT

k · dk−1 with dk = B−1
k gk.

An overview of the proposed s-LBFGS method is given in Algorithm 1.

3 Experiment

The proposed method was integrated in the open source software package
elastix [12]. The experiments were performed on a workstation with 8 cores
running at 2.4 GHz and 24 GB memory, with an Ubuntu Linux OS.

3D lung CT scans of 19 patients acquired during the SPREAD study [13]
were used to test the performance. Each patient had a baseline and a follow-
up scan with an image size around 450 × 300 × 150 and the voxel size around
0.7×0.7×2.5 mm. For each image, one hunred anatomical corresponding points
were chosen semi-automatically using Murphy’s method in consensus by two
experts, to obtain a ground truth.

To evaluate the method, each follow-up image was registered to the baseline im-
age usingmutual information and aB-spline transformationmodel. Themaximum
number of iterations for each resolution was 500. A three-level multi-resolution
framework was employed using a Gaussian smoothing filter with standard devia-
tions of 2, 1 and 0.5mm for each resolution.The grid spacing of the B-spline control
points was halved between each resolution resulting in a final grid spacing of 10mm
in each direction.After initial testing, we chose the update frequencyL= 10, 20, 40
for each resolution, respectively, thememoryM = 5 from [2,8], the number of sam-
ples for stochastic gradient computation |S1| = 5000, and the number of samples
for the curvature pair update |S2| = 50000.

To measure the registration accuracy, the anatomical points from each base-
line image were transformed using the obtained transformation parameters and
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Algorithm 1. Stochastic LBFGS (s-LBFGS) with and without restarting

Require: initial parameters µ0, memory sizeM , update frequency L, iteration number
K

1: Set t = 0, µ̄J = µ0, µ̄I = 0
2: Automatically estimate the initial step size λ0 � According to [11]
3: for k = 1, 2, 3, . . . ,K do
4: Compute g̃k(µk;S1) � stochastic gradient
5: µ̄I = µ̄I + µk � Update the mean parameters
6: if k <= 2L then � ASGD update
7: Update the step size λk � According to [11]
8: µk+1 = µk − λkg̃k

9: else � s-LBFGS update
10: Compute dk = Htg̃k � s-LBFGS search direction, see [8] and (2)
11: if mod (k, L) = 0 and restarting then
12: Automatically estimate the initial step size λ′

0

13: Reset λk = λ′
0

14: Update the step size λk � According to [11] but using dT
k · dk−1

15: µk+1 = µk − λkdk

16: if mod (k, L) = 0 then � Curvature pairs update
17: µ̄I = µ̄I/L � Update the mean parameters
18: st = µ̄I − µ̄J , yt = g(µ̄I ;S2)− g(µ̄J ;S2) � New curvature pair
19: µ̄J = µ̄I , µ̄I = 0, t = t+ 1

20: return µK

then compared to the corresponding points of the follow-up image. We used the
Euclidean distance between the corresponding points pF ∈ ΩF and pM ∈ ΩM

to measure the accuracy using the following equation: ED = 1
n

∑n
i=1 ‖T (pi

F )−
pi
M‖. For 19 patients, we first obtained the mean distance error of 100 points

for each patient then performed Wilcoxon signed rank test to these mean errors.
For convergence testing we computed the cost function value after each iteration
deterministically, i.e. based on full sampling. The registration time in the first
resolution is presented to compare the algorithm speeds.

4 Results

To gain insight in the proposed method, we investigated some aspects that
influence registration performance. The restarting scheme (Restart) was com-
pared with a scheme without restarting. We evaluated different step size selec-
tion strategies all based on automatic initial step size selection [11]: a constant
scheme (Constant, tk = 0), a regularly decaying scheme (Decaying, tk = k), and
the proposed adaptive scheme (Adaptive, tk = f(·)). The proposed method is
further compared with the ASGD method [3] and with deterministic LBFGS [2].
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Fig. 1. Euclidean distance error in mm. The symbols # and + indicate a statistically
significant difference with ASGD and LBFGS, respectively.

Table 1. Run time in the first resolution. I indicates how many iterations are needed
to reach the same metric value as ASGD after 500 iterations. s-LBFGS and s-LBFGS-
NR are with and without restarting, both using adaptive step sizes. The speed-up is
relative to ASGD.

Time at k = 500 I Time (s) at k = I Speed-up

ASGD 27.2 ± 0.7 500 - -
LBFGS 26838 ± 9965 21± 1 8081 ± 1580 0.004 ± 0.0005
s-LBFGS-NR 74.3 ± 4.8 190± 93 30.6 ± 13.9 1.0± 0.4
s-LBFGS 75.8 ± 1.0 107± 17 18.1 ± 2.6 1.5± 0.2

From Fig. 1 we can see that all methods have very similar final registration
error, for LBFGS regularization may improve the results [14]. Fig. 2 shows the
convergence plots of the methods for several patients. Comparing the three step
size strategies in Fig. 2a and 2b, the regularly decaying method has suboptimal
convergence, while the constant and the adaptive scheme behave similarly. The
restarting scheme shows a substantial improvement in convergence rate, therefore
in Fig. 2c∼2f we only show the result of restarting scheme with adaptive step
size (s-LBFGS). Some small spikes are visible in Fig. 2b and Fig. 2f, which
we attribute to noise in the curvature pair estimation: an experiment using 1.5
million samples for the curvature estimation yielded smooth results (not shown).
In terms of iterations, s-LBFGS always obtains faster convergence than ASGD,
but slower than LBFGS. The registration time of ASGD, LBFGS and s-LBFGS
is shown in Table 1. The LBFGS method is very costly, as expected. To obtain
the same metric value as ASGD at iteration 500, the proposed method always
takes fewer iterations resulting in an average speedup of two, while the proposed
method without restarting requires more iterations and therefore more time.
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(a) Patient 1
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(b) Patient 2
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(c) Patient 3
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(d) Patient 4
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(e) Patient 5
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Fig. 2. Convergence plots, showing the negated mutual information metric against the
iteration number.

5 Conclusion

In this paper, we present for the first time a stochastic quasi-Newton optimiza-
tion method (s-LBFGS) for non-rigid image registration. It uses the classical lim-
ited memory BFGS method in combination with noisy estimates of the gradient.
Curvature information of the cost function is estimated robustly once every L it-
erations and then used for the next L iterations in combination with stochastic
gradients. A novel restarting procedure, automatically selecting the optimization
step size, is shown to be beneficial for accelerated convergence. The new optimiza-
tion routine is validated on follow-up data of 3D chest CT scans (19 patients).
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Compared to ASGD the proposed method uses about 5 times fewer iterations to
reach the samemetric value, resulting in an overall reduction in run time of a factor
of two. Compared to deterministic LBFGS, s-LBFGS is almost 500 times faster.
Future work will focus on developing a stopping condition for stochastic second
order procedures, on a more robust estimation of the initial approximation of H0

more resilient against noise, on alterative quasi-Newton schemes such as the sym-
metric rank-one update [15], and more extensive validation.
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