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Abstract. Invasive right-sided heart catheterization (RHC) is currently
the gold standard for assessing treatment effects in pulmonary vascu-
lar diseases, such as chronic thromboembolic pulmonary hypertension
(CTEPH). Quantifying morphological changes by matching vascular trees
(pre- and post-treatment) may provide a non-invasive alternative for
assessing hemodynamic changes. In this work, we propose a method for
quantifying morphological changes, consisting of three steps: construct-
ing vascular trees from the detected pulmonary vessels, matching vascular
trees with preserving local tree topology, and quantifying local morpholog-
ical changes based on Poiseuille’s law (changes in radius−4, �r−4). Sub-
sequently, median and interquartile range (IQR) of all local �r−4 were
calculated as global measurements for assessing morphological changes.
The vascular tree matching method was validated with 10 synthetic trees
and the relation between clinical RHC parameters and quantifications
of morphological changes was investigated in 14 CTEPH patients, pre-
and post-treatment. In the evaluation with synthetic trees, the proposed
method achieved an average residual distance of 3.09± 1.28 mm, which is
a substantial improvement over the coherent point drift method (4.32 ±
1.89 mm) and a method with global-local topology preservation (3.92 ±
1.59 mm). In the clinical evaluation, the morphological changes (IQR of
�r−4) was significantly correlated with the changes in RHC examina-
tions, �sPAP (R = −0.62, p-value = 0.019) and �mPAP (R = −0.56,
p-value = 0.038). Quantifying morphological changes may provide a non-
invasive assessment of treatment effects in CTEPH patients, consistent
with hemodynamic changes from invasive RHC.

1 Introduction

Computed tomography (CT) pulmonary angiography (CTPA) is an important
modality for assessing the severity and treatment effects of pulmonary vascular
diseases, such as chronic thromboembolic pulmonary hypertension (CTEPH) [1].
Quantifying density changes in pulmonary vessels, by automatically comparing
c© Springer Nature Switzerland AG 2018
A. F. Frangi et al. (Eds.): MICCAI 2018, LNCS 11071, pp. 517–524, 2018.
https://doi.org/10.1007/978-3-030-00934-2_58

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00934-2_58&domain=pdf


518 Z. Zhai et al.

CTPA scans of pre- and post-treatment with image registration, can assess treat-
ment effects of CTEPH [2]. CT measurements of pulmonary vascular morphol-
ogy could reflect the severity of CTEPH disease [3]. However, invasive right-sided
heart catheterization (RHC) serves as the gold standard for assessing disease sever-
ity and treatment effects of CTEPH [4], since it directly measures blood pressure
at the main pulmonary artery. Quantifying morphological changes by matching
pulmonary vessel trees of pre- and post-treatment CT scans may provide a non-
invasive assessment of treatment effects.

Vascular tree matching can be treated as a point set registration task, in
which the point sets represent the vessel trees. Myronenko et al. [5] proposed
a coherent point drift (CPD) method for point sets registration based on a
Gaussian mixture model (GMM), and with a regularization term for enforcing
the motion coherence and preserving the global topology. The regularization is
useful to constrain the global topology, however, its capacity to handle local
deformation is low. Ge et al. [6] proposed a method with global-local topology
preservation (GLTP), where a local topology term was used for regularization,
based on a local linear embedding of the K nearest neighbors of each point. The
main idea of local topology preservation is that local neighbors in the original
point set should be preserved after transformation. The method works well with
dense point sets in computer vision, such as data obtained from the Kinect
depth sensor, however, the local topology constraint may induce errors in tree-
like structures. This is because leaf points, that belong to different sub-trees, may
still be located closely to each other. This method would then consider them as
genuine neighbors, therefore over-regularizing the deformations of sub-trees.

In this paper, we propose, therefore, a method that preserves the local tree
topology during vascular tree matching, and apply this method to quantify mor-
phological changes of pulmonary vessel trees between pre- and post-treatment.
The proposed method consists of three steps: (1) pre-processing for converting
the detected vessels into tree structures; (2) vascular tree matching with geodesic
paths for local tree topology preservation; and (3) quantification of vascular mor-
phological changes on the basis of Poiseuille’s law [7]. The vascular tree matching
method was validated with a synthetic data set, and a clinical data set consisting
of 14 CTEPH patients, with CT scans and invasive RHC examinations before
and after treatment.

2 Methods

We aim to align trees T x and T y, which can be treated as a point set registration,
with reference point set X = [x1, ..., xN ]T corresponding to nodes in T x and
template point set Y = [y1, ..., yM ]T corresponding to those in T y, xn, ym ∈ R

3.

2.1 Vascular Tree Construction

For each CT scan, pulmonary vessels were segmented with a graph-cuts method
[8]. The skeletons of the pulmonary vessels were extracted with a skeletonization
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Algorithm 1. Constructing vascular trees
1: procedure ConstructVascularTrees( g ) � a graph object g
2: Initial tree T as empty
3: for node i in g.allNodes() do
4: Initial node nd as empty
5: nd.ID = node i.getID()
6: [nd.px, nd.py, nd.pz] = node i.getPosition()
7: if node i has no InEdges then
8: nd.PreID = -1; nd.Radius = node i.getRadius()
9: else

10: e = node i.getInEdge()
11: nd.PreID = ID of e.getStartNode(); nd.Radius = average radius of e

12: Attach nd to T
13: return T

method based on a distance transform [9] (‘DtfSkeletonization’ of MeVisLab),
and the radius was recorded at the corresponding voxels on the skeleton. The
skeletons were converted into a directed graph g. In the directed graph, an edge
e from a start-node a to end-node b, is called an out-edge of node a and an
in-edge of node b. The graph g was processed by stripping cyclic edges, so that
each node (except for root node) has only one in-edge, and was converted to
a tree T . A node, then, represents a bifurcation point or a leaf point, and an
edge represents a branch. For each node, the average radius of the in-edge was
calculated by iterating along the voxels on that in-edge and was assigned to the
corresponding node. The pseudo-code of the algorithm for constructing vascular
trees is given in Algorithm 1.

2.2 Vascular Tree Matching

In GMM-based methods, point sets X and Y can be registered by maximizing
the likelihood function and an additional regularization term R(Θ) where Θ
represents the deformation parameters. This framework minimizes the energy
function:

E = −log (p(X)) + R(Θ). (1)

X is considered to be distributed from a GMM with centroids Y′ and all Gaus-
sians are equally-weighted with the same isotropic variance σ2, where Y′ is
deformed from Y, Y′ = Y + GW, G is a Gaussian kernel matrix with elements
gij = exp(−‖yi−yj‖2

2β2 ) and W is M ×D weight matrix of the Gaussian kernel. W
can be calculated by minimizing Eq. (1) when fitting the GMM to X.
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The CPD [5] and GLTP [6] use this GMM framework, with different regular-
ization terms. CPD uses a global regularization term Rcpd(W) = λ

2Tr(WT GW)
and GLTP [6] adapted the regularization term by adding a term for preserving
local topology:

R(W) =
λ

2
Tr(WT GW) +

α

2
Tr{(Y + GW)T M(Y + GW)}, (2)

where M is an M × M kernel matrix for preserving local deformation obtained
by minimizing local linear cost function embedded with K nearest neighbors
[10]. Instead of using K nearest neighbors, we compute a geodesic path with K
connected nodes Ng for local topology preservation, which is more suitable for
the vascular trees’ deformation. M = (I − H)T (I − H), where Hij is calculated
by minimizing: Φ(Y) =

∑
i |yi − ∑

j∈Ng
i

Hijyj |2 [10]. For each node, a geodesic
path is generated by iteratively searching the parent node and child node with a
depth-first strategy, the pseudo-code is described in Algorithm 2. E is optimized
with the EM algorithm, by minimizing its upper bound is:

Q =
N∑

n=1

M∑

m=1

pprev(y′
m|xn)

‖ xn − ym − G(m, .)W ‖2
2σ2

+ R(W), (3)

where pprev(y′
m|xn) = p(y′

m)p(xn|y′
m)/p(xn) is the posterior probability com-

puted with the parameters from the previous step. For optimizing Eq. (3), the
derivative of Q with respect to W is:

∂Q

∂W
=

1
σ2

G(diag(P · 1)(Y + GW) − PX) + λGW + αGM(Y + GW), (4)

in which P is an M × N matrix with elements pprev(y′
m|xn). By setting the

function 4 to zero and right multiplying it by σ2G−1, we have:

{diag(P · 1) + σ2λI + σ2αMG}W = PX − diag(P · 1)Y + σ2αMY. (5)

In the M-step of the EM algorithm, W is calculated by solving Eq. (5). In the
E-step, P is updated with the weight W. After optimizing the energy function,
the matching pair C between X and Y can be built by searching point xn that
maximizes the posterior probability, C(m) = argmax

n
{p(y′

m|xn)}.

2.3 Quantitative Analysis

The nodes of the vascular trees in pre-treatment CT scans can be compared
with those in post-treatment CT scans based on C. As the average radius of a
branch is assigned to its end-node, morphological changes in each branch can be
quantified based on C between vascular trees. Poiseuille’s law [7] describes the
relation between the resistance (ratio between pressure difference and flow rate,
�P/F ) and the radius r in a tube:

�P/F =
8ηL

πr4
, (6)
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Algorithm 2. Searching geodesic paths with a deep first strategy
1: procedure GeodesicPathSearching( T, K )
2: Initial N with the number of nodes in T ; Neighbors as an N × K zeros matrix
3: for i = 1 to N do
4: kfind = 0
5: ID = T (i).ID; PreID = T (i).PreID
6: while kfind < K & not (PreID==-1& ID==0) do
7: if PreID �= -1 then
8: [preind, PreID]=findPreID(T ,PreID) � find the ID of pre-Node
9: kfind = kfind + 1; Neighbors(i, kfind)=preind

10: [postind, ID]=findPostID(T , ID) � randomly pick a post-Node
11: if ID �=0 then
12: kfind = kfind + 1; Neighbors(i, kfind)=postind

13: return Neighbors as Ng

where L is the length of the tube and η is the fluid viscosity. Assuming that L
and η of a local branch do not change after treatment, its resistance changes can
be estimated by the changes in r−4 (�r−4). Thus, the morphological changes of
vascular trees are quantified based on �r−4 of matched branches. The median
and interquartile range (IQR) of the �r−4 are calculated over all branches and
are used as global assessments of morphological changes.

3 Experiment

The method for constructing pulmonary vascular trees was implemented as a
module in MeVisLab 2.7.1, the methods for matching vascular trees and quan-
tifying morphological changes were implemented in Matlab, which is benefiting
from the open source tools of CPD [5]. The experiments were performed on a
local PC, with a 2.67 GHz CPU, 24 GB memory and a 64-bit Windows 7 system.

To evaluate the performance of vascular tree matching, synthetic vascular
trees were obtained with a tree editing method [11]. In short, an initial tree
T 0 with 3176 nodes was obtained from the left lung of a clinical CT scan and
10 synthetic trees T i, i = 1, ..., 10 were generated by randomly removing 30 ∗ i
leaf nodes and deformed with Elastix using different non-rigid transformation
parameters [12]. To simulate both deletions and additions, the synthetic tree T 5

and T i were matched with the proposed method (settings: MaxIteration = 100,
β = 1, λ = 3, outlier = 0.05, α = 100,K = 5), furthermore, CPD [5] (MaxIter-
ation = 100, β = 1, λ = 3, outlier = 0.05) and GLTP [6] (MaxIteration = 100,
β = 1, λ = 3, outlier = 0.05, α = 100,K = 5) were adopted for comparison.
The Euclidean distance between nodes in T 5 and T i were calculated, based on
the corresponding point pairs. The average and standard deviation (STD) of the
residual distances were used for evaluation.

The quantification of morphological changes was validated with 14 CTEPH
patients [2], who were treated with balloon pulmonary angioplasty (BPA),
referred to the Tohoku University Hospital. All patients underwent both CTPA
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Fig. 1. Evaluation for vascular tree matching, average and STD of distance.

Table 1. Pearson’s correlation R (p-value) between morphological changes and hemo-
dynamic changes.

�sPAP �dPAP �mPAP �PVR

median of �r−4 0.19 (0.506) 0.04 (0.901) 0.16 (0.576) 0.07 (0.815)

IQR of �r−4 −0.62 (0.019) −0.46 (0.097) −0.56 (0.038) −0.47 (0.088)

scans and RHC examinations, pre- and post-BPA treatment. The invasive RHC
examinations, including pulmonary artery pressure (PAP, systolic, diastolic and
mean; sPAP, dPAP and mPAP) and pulmonary vascular resistance (PVR), are
examined at the main pulmonary artery. The RHC parameters changes (�PAP
and �PVR) were used as reference measurements for assessing treatment effects.
The morphological changes in vascular trees were quantified with the proposed
method. The relation between the quantifications of morphological changes and
hemodynamic changes (�sPAP, �dPAP, �mPAP, �PVR) were validated with
Pearson’s correlation.

4 Results

The proposed method obtained an average residual distance of 3.09 ± 1.28 mm,
while CPD and GLTP obtained an average distance of 4.32 ± 1.89 mm and
3.92 ± 1.59 mm, respectively. In comparison with CPD and GLTP, the proposed
method achieved a substantial improvement, as shown in Fig. 1. The 3D visual-
ization of vascular tree matching can be found in the supplement.

The relation between morphological changes in pulmonary vascular trees and
changes in RHC measurements were investigated with 14 CTEPH patients. The
IQR of �r−4 significantly correlated with �sPAP (R = −0.62, p-value = 0.019)
and �mPAP(R = −0.56, p-value = 0.038), but the median of �r−4 did not
have a significant correlation with hemodynamic changes. Quantitative analysis
of vascular morphological changes in two selected patients are shown in Fig. 2.
Pearson’s correlation results are given in Table 1, and scatter plots are shown in
Fig. 3.
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Fig. 2. Morphological changes of pulmonary vessels for two patients, patient A in
the first row and B in the second row. Left column, initial position of vascular trees;
middle column, matched vascular trees; right column, color-coded vascular trees, based
on morphological changes (red: a large increase in r−4; blue: a large decrease; green
small changes).

Fig. 3. Scatter plot for IQR of �r−4 against �sPAP and �mPAP (A and B are
corresponding to patient A and B in Fig. 2).

5 Discussion and Conclusion

We present a method for quantifying morphological changes in pulmonary vas-
cular trees, pre- and post-treatment, using vascular tree matching. The vascular
tree matching method with geodesic paths for local topology preservation showed
a better performance, in comparison with methods of CPD and GLTP. The IQR
of �r−4, calculated based on Poiseuille’s law, had a significant negative corre-
lation with the �sPAP and �mPAP, which implies that a higher variation in
�r−4 corresponds to a bigger treatment effect of decreasing pulmonary arterial
pressure. This finding is consistent with a previous observation that a higher
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variation in density changes was related to bigger drop in pressure. In future
work, we will focus on a more detailed validation of the vascular tree matching
with manually annotated corresponding point pairs. By applying methods of
artery-vein separation, the quantification of morphological changes may become
more specific for CTEPH, since that is an arterial disease.

In conclusion, morphological changes can reflect hemodynamic changes, and
quantifying morphological changes by matching vascular trees can provide a
non-invasive assessment of treatment effects in CTEPH patients.
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