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Abstract. Hadamard time-encoded pseudo-continuous arterial spin
labeling (te-pCASL) is a signal-to-noise ratio (SNR)-efficient MRI tech-
nique for acquiring dynamic pCASL signals that encodes the temporal
information into the labeling according to a Hadamard matrix. In the
decoding step, the contribution of each sub-bolus can be isolated result-
ing in dynamic perfusion scans. When acquiring te-ASL both with and
without flow-crushing, the ASL-signal in the arteries can be isolated
resulting in 4D-angiographic information. However, obtaining multi-
timepoint perfusion and angiographic data requires two acquisitions. In
this study, we propose a 3D Dense-Unet convolutional neural network
with a multi-level loss function for reconstructing multi-timepoint per-
fusion and angiographic information from an interleaved 50%-sampled
crushed and 50%-sampled non-crushed data, thereby negating the addi-
tional scan time. We present a framework to generate dynamic pCASL
training and validation data, based on models of the intravascular and
extravascular te-pCASL signals. The proposed network achieved SSIM
values of 97.3 ± 1.1 and 96.2 ± 11.1 respectively for 4D perfusion and
angiographic data reconstruction for 313 test data-sets.

Keywords: Pseudo-continuous arterial spin labeling (pCASL) ·
Hadamard time-encoded ASL · Convolutional neural network (CNN) ·
4D magnetic resonance angiography (MRA) · 4D perfusion · MRI
reconstruction

1 Introduction

Arterial spin labeling (ASL) is a non-invasive MRI technique which uses magnet-
ically labeled blood water as an endogenous tracer for assessing cerebral blood
flow (CBF) [1]. Hadamard time-encoded(te)-ASL is a time-efficient approach
which provides the possibility to combine the superior SNR of ASL to acquire
data at different inflow times to obtain dynamic ASL-data [2]. When Hadamard
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te-ASL is done with and without flow-crushing, 4D magnetic resonance angiog-
raphy (MRA) and arterial input function (AIF) measurements can be obtained
next to the perfusion scans [3]. While this approach improves quantification and
enhances information content, it is a factor two slower, since both crushed and
non-crushed data need to be acquired. Accelerating te-ASL quantification can
be done either by acquiring sub-sampled data in k-space or by reducing the rank
of the Hadamard matrix. However, these methods can end up reducing image
quality and/or signal-to-noise (SNR) ratio.

In this work, we propose an end-to-end 3D convolutional neural network
(CNN) for the reconstruction of multi-timepoint 4D MRA and perfusion scans
by using half-sampled crushed as well as half-sampled non-crushed Hadamard te-
ASL scans, to maintain image quality and provide accurate CBF quantification.
Recently, CNNs have shown outstanding performance in medical imaging [4–
6]. However, very few CNN reconstruction techniques have been proposed in
the context of MRA and perfusion reconstruction. In [7] a U-net shape CNN
for boosting SNR and resolution of ASL scans has been proposed. Guo et al.
proposed a CNN based method for improving 3D perfusion image quality by the
combined use of single- and multi-delay pseudo-continuous arterial spin labeling
(PCASL) and an anatomical scan [8]. In Guo’s study, ground truth perfusion
maps were obtained by positron emission tomography scans. In [9] a temporal
CNN approach was proposed for perfusion parameter estimation in stroke. The
proposed CNN takes in the signals of interest (i.e., concentration-time curves
and the AIF) to produce estimated perfusion parameter maps including cerebral
blood volume (CBV), CBF, time-to-maximum, and mean transit time.

In this work, different from the previous works, we employ CNNs in order
to accelerate the simultaneous acquisition of 4D MRA and perfusion measure-
ments. One of the challenging issues is the different properties of the outputs
of the proposed CNN since MRA is intrinsically sparse and has much more
elongated structures than the smooth perfusion map. We tackle this issue by
employing different weighting of the loss functions of these two output-types
and by balancing extracted samples during training. The proposed CNN lever-
ages the idea of dense blocks [10], arranging them in a typical U-shape [11]. Loop
connectivity patterns in dense blocks improve the flow of gradients throughout
the network and strengthen feature propagation and feature re-usability [4]. In
this investigation, we compare the performance of several loss functions: mean
square error (MSE), VGG-16 perceptual loss, structural similarity index (SSIM)
and multi-level SSIM (ML-SSIM). The main contributions of our work are:

– To the best of our knowledge, we are the first to propose acceleration of
the reconstruction of 4D MRA and perfusion images using interleaved sub-
sampled crushed and non-crushed Hadamard te-ASL scans. To allow sub-
sampling, we employed an end-to-end 3D CNN for decoding.

– We employed a framework for generating training and validation 4D MRA and
perfusion scans by generalizing the Buxton kinetic model for a Hadamard te-
ASL signal. Different from [12], we consider the kinetic arterial model to take
into account the arterial compartment.
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– We propose a CNN with a multi-level loss function and compare the proposed
method with several loss functions, i.e. MSE, VGG-16 perceptual loss, and
SSIM.

2 Proposed Approach

2.1 Problem

Reconstruction of dynamic perfusion scans at H−1 time points can be performed
by the decoding of crushed te-pCASL scans of a Hadamard matrix of rank H
[2]. Reconstruction of dynamic MRA scans at H − 1 time points, next to the 4D
perfusion data, is performed by the decoding of non-crushed te-pCASL scans of
a Hadamard matrix of rank H and subtraction of the perfusion data from that
[3]. This process can be formulated as

M
(
{INCi }, {ICi }

)H

i=1
= {P(t),A(t)}H−1

t=1 , (1)

in which M is the decoding and subtraction function as described earlier [2,3],
INCi and ICi are the acquired scans of the ith row of non-crushed and crushed
Hadamard te-pCASL datasets, P and A denote perfusion and angiography scans
respectively.

As mentioned before, obtaining 4D-MRA and perfusion scans require two
acquisitions. To accelerate this process with a factor of two, we propose an end-
to-end 3D CNN, M ′, which reconstructs 4D-MRA and perfusion data by using
interleaved half sampled crushed and half sampled non-crushed Hadamard te-
pCASL scans. Therefore, the problem of reconstruction can be re-defined by

M ′
(
{INC2×i−1, I

C
2×i}

)H/2

i=1
= {P(t),A(t)}H−1

t=1 . (2)

2.2 Proposed Network

Figure 1 illustrates the proposed network, which takes 50% sub-sampled crushed
and 50% sub-sampled non-crushed interleaved ASL data as input and outputs
dynamic MRA and perfusion scans. For managing GPU memory, the network
was implemented patch-based. The input patches (of size 533) are extracted from
50% sub-sampled Hadamard te-crushed and te-non-crushed scans. The outputs
of the network are 14 patches of size 393 containing perfusion and angiogra-
phy patches, each at seven different time-points. In this study, we considered a
Hadamard matrix of rank 8, so the inputs are 8 patches in total (4 crushed, 4
non-crushed). In each dense block two (3× 3× 3) conv-BN-leaky ReLu and one
(1 × 1 × 1) conv-BN-leaky ReLu, as a bottleneck layer, are stacked. Loop con-
nectivity patterns in dense blocks are employed to improve the flow of gradients
[10]. The bottleneck layers are used to increase the number of feature maps in a
tractable fashion, which make the training process easier while leading to a more
compact model. A down-sampling unit is followed by one 2× 2× 2 max-pooling
layer with a stride of 2 × 2 × 2. In order to solve the well-known checkerboard
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Fig. 1. Proposed network with single- and multi-level loss functions. The training data
contains 50% sub-sampled and interleaved Hadamard-crushed and non-crushed scans.
For the single- and multi-level loss functions, Losslevel1 and

∑3
i=1 Lossleveli are con-

sidered respectively. GT stands for ground truth, which is the set of angiographic and
perfusion data reconstructed by the standard full-sampled decoding approach [2].

issue of the conv-transpose layer, for the up-sampling layer the feature maps are
re-sized by a constant trilinear resize convolution kernel, similar to [13]. In this
work we investigate the impact of several loss functions for the defined prob-
lem: MSE, which is the L2-norm, VGG-16 perceptual loss [14], SSIM which is
composed of luminance, contrast and structural error. Later it is shown that
among the mentioned loss functions, SSIM has a higher performance in terms of
SSIM metric value. Therefore, we propose ML-SSIM, which is calculated based
on weighting the SSIM loss function for different levels of the network, see Fig. 1.

2.3 Dataset Generation

In pCASL the arterial spins are magnetically labeled with a radiofrequency inver-
sion pulse applied below the imaging slices in the neck vessels. The labeled blood
then travels via the arteries towards the brain tissue, where they pass from the
capillary compartment into the extravascular compartment. After a certain delay
time after labeling which is known as the post-labeling delay (PLD) a so-called
labeled image is acquired. A control image is acquired without prior labeling and
by subtraction of these two images, the perfusion image can be generated. For
the Hadamard te-pCASL technique, the labeling module (the typical duration
of 3–4 s) is divided into several blocks (sub-boli) and a Hadamard matrix is used
to determine whether a block will be played-out in label or control condition.
For each voxel the Hadamard te-pCASL signal can contain both perfusion signal
as well as label still residing in the arteries, i.e. angiography signals.

Since it is difficult to acquire substantial amounts of real data, we propose to
model the input data, allowing to generate a sufficient amount of training data.
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The ground truth output data is created by decoding fully sampled Hadamard
te-ASL crushed and non-crushed data [2]. For this purpose, we create datasets
based upon a tracer kinetic model for the Hadamard time-encoded pCASL signal
that describes the signal a function of arterial arrival time (AAT), bolus arrival
time (BAT) and CBF. In this study, for calculating the signal, the AAT and BAT
information are obtained from in vivo data. The CBF maps are taken from the
BrainWeb dataset by assigning CBF-values to white matter (WM), gray matter
(GM) and cerebrospinal fluid (CSF).

Figure 2 shows the proposed framework for synthetically generating training
and validation datasets. For this goal, we leverage the well-known Buxton kinetic
model [15], which has been defined for normal ASL, and defined a tracer delivery
function (for tissue voxels and arteries) and a tracer accumulation (perfusion)
function for each bolus of Hadamard encoded labeling scheme. The final kinetic
model is then generated by performing the convolution of the AIF and the residue
function. Equations (3) and (4) define the obtained model for large arteries and
tissue signals for a Hadamard scheme of 8 encoding steps respectively. These
equations can be generalized for Hadamard matrices of higher rank.

Sartery =

⎧
⎪⎪⎨

⎪⎪⎩

0 if t < Δtb

M0a · aCBV · Lr(b) × e
−Δtb
T1b if Δtb +

∑b−1
b′=1 τb′ ≤ t < Δtb +

∑b
b′=1 τb′

0 if t ≥ Δtb +
∑N

b′=1 τb′

(3)

Stissue =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if t < Δtb

γΓβ=0 if Δta ≤ t < Δta + τ1

γ [Γβ=1 + Ξ1:1] if Δta + τ1 ≤ t < Δta +
∑2

b=1 τb

γ [Γβ=B−1 + ΞB−1:1] if Δta +
∑B−1

b=1 τb ≤ t < Δta +
∑B

b=1 τb; B ∈ [3, 7]

γΞN :1 if t ≥ Δta +
∑N

b=1 τb; N = 7

(4)
in which τb is label duration for the bth sub-bolus, N is the number of sub-
boluses, M0a is the magnetization of arterial blood, Δta is AAT which represents
the arrival time of the labeled blood in the artery, Δtb is BAT which represents
the arrival time of labeled blood in the tissue, T1a is the arterial blood relaxation
time, f is CBF (millimeter per gram per second), κ is static tissue signal, aCBV
is arterial cerebral blood volume,

γ = M0a · f · e−Δta
T1a · T1a, (5)

Γβ = Lr(β + 1)

(
1 − e− t−Δta−∑β

b=1 τb
T1a

)
, (6)

and

Ξβ:β′ =
β′∑

b′=β

Lr(b′)

(
e− t−Δta−∑b′

b=1 τb
T1a − e− t−Δta−∑b′−1

b=1 τb
T1a

)
. (7)
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Fig. 2. Data generator framework for one subject, the inputs of the framework (shown
in bold) are: in vivo information (include BAT, AAT, and CBF) and anatomical data
from BrainWeb [16], the outputs are pCASL scans which by decoding the perfusion
and angiographic maps are obtained (see Sect. 2.3), Left: a map of the arrival time of
the label in arteries (‘arterial arrival time’ or AAT) is created from high resolution
4D MRA ASL scan (Cinema, 8 time-points with 200 ms temporal resolution, and a
spatial resolution of 0.82 × 0.82 × 1.02 mm) and the data are registered to a subject
from BrainWeb dataset, and leads to an AAT map for the subject, then the AAT map
is fed into Eq. (3) to calculate the kinetic arterial model. Middle pipeline: using the
GM and WM segmentation of the subject and assigning literature values to the flow
map (or CBF) of GM and WM the flow map is calculated, which serves as one of the
inputs to the kinetic model of the tissue (Eq. 4). Right: an in vivo te-crushed pCASL
data is registered to the same subject of BrainWeb and by Hadamard decoding the
registered data, the arrival of the label at tissue level (‘bolus arrival time’, or BAT-map)
is calculated. This serves as the other input to the kinetic model of the tissue (Eq. 4).
The tissue signal and arterial signal are summed together to form the te-pCASL.

Lr(b) is 0 if the bth bolus in the rth row is control, and it is 1 if the bth bolus in
the rth row is label. For voxels containing large arteries, the pCASL signal can
be computed by Svoxel = Stissue + Sartery. The calculated tracer kinetic model
is a function of AAT, BAT and CBF. In this study, the anatomic structures
are obtained from the BrainWeb database [16]. In order to obtain the tracer
signal, the AAT and BAT and blood maps are extracted from in vivo data, then
registered with a subject from the BrainWeb dataset by Elastix [17]. The ground
truth, i.e. 4D MRA and perfusion scans, are obtained by normal Hadamard



Fast Deep Dynamic Perfusion and Angiography Reconstruction 31

decoding of the pCASL images [18]. To evaluate the generated data, the signal
evolution pattern was validated by the Buxton curve model [15].

In this study, the dataset was generated for a Hadamard-8 matrix with seven
blocks of respectively 1300, 600, 400, 400, 400, 300 and 300 ms with an additional
265 ms delay before the start of readout. Using the permuted in vivo information
(include 6 BAT, 4 AAT) and registering those with the anatomical information
from the BrainWeb dataset (consisting of 20 normal subjects and CBF) and
calculating the Hadamard te-pCASL (Eqs. (3) and (4)), this study contains 1564
distinct simulated data-sets each including crushed and non-crushed input data
for 8 Hadamard-encodings. By decoding each of the generated crushed and non-
crushed te-pCASL data, the corresponding angiographic and perfusion output
data at 7-time points, as the ground truth, are obtained. The scans were divided
into 1096 subjects for training, 155 for validation and 313 for testing.

3 Experimental Results

We implemented the proposed networks in Google’s Tensorflow. The patch
extraction was done parallel and randomly using a multi-threaded daemon pro-
cess on the CPU and then patches were fed to the network on the GPU during
the training process. To tackle the sparsity of MRA with respect to the perfu-
sion scans, 75% of the patches were extracted from the region containing arteries.

Table 1. Comparison of the different networks for perfusion and angiographic images
(in gray the perfusion and in white the angiographic results), the best results for
perfusion and angiography are shown in blue and green respectively, PL stands for
perceptual loss. A Wilcoxon signed-rank test is performed between ML-SSIM and other
loss functions for perfusion and angiography, where † indicates a statistically significant
difference with p < 0.05.
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Fig. 3. Boxplots for different metrics and CNNs for perfusion and angiographic results,
PL stands for VGG-16 perceptual loss. For (e) a few outliers smaller than 25 and for
(c)/(d) a few outliers larger than 0.45/4 are not shown.

The input patches were augmented by white noise extracted from a Gaussian
distribution with zero mean and random standard deviation between 0 and 5,
left-to-right flipping, and random rotation (up to ±18◦).

Evaluation of the proposed networks has been performed by calculating
SSIM, MSE, SNR, and peak signal to noise ratio (pSNR), comparing the ground
truth reconstruction using full sampling with that of the neural network using
50% subsampling. Table 1 tabulates a quantitative comparison between the
mentioned loss functions. A statistically significant difference (with p < 0.05)
between ML-SSIM and all the other methods, for perfusion and angiography,
can be observed.

Figure 3 depicts the boxplots of the metrics on the test set. The network using
the ML-SSIM loss function had a value of 97.3 ± 1.1, 6.2 ± 2.4 and 35.0 ± 3.2
for SSIM, SNR and pSNR respectively, and the best performance for perfusion
reconstruction. The network with the SSIM loss function had a SSIM of 96.7 ±
12.5 for angiography reconstruction, i.e. the best performance in terms of SSIM
while it does not show a statistically significant difference from the network with
the ML-SSIM loss function. Also for angiography reconstruction the network
with perceptual loss had the best value for SNR and pSNR while the network
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with the ML-SSIM loss function with the values of 1.67 ± 0.52 and 35.4 ± 23.2
for SNR and pSNR respectively had the second rank.

Fig. 4. Qualification results, 4D (a) MRA and (b) perfusion and error at multiple time
points after labeling of arterial spins in a single-slice for the different networks, GT
stands for ground truth which is obtained from fully sampled decoding and subtracting
(see Eq. 1).
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Figure 4 exemplifies the qualification compassion for 4D MRA and perfusion
reconstruction between the different CNNs. The lower SNR and higher pSNR
variance for the angiographic data is partially explained by the intrinsic sparsity
of that data, especially noticeable in the earlier time points, see Fig. 4a.

It takes an average of 205± 232 ms from the ML-SSIM network to recon-
struct all perfusion and angiography scans from the interleaved sparsely-sampled
crushed and non-crushed data of size 1073.

4 Conclusion

We proposed a 3D end-to-end fully convolutional CNN for accelerating 4D MRA
and perfusion reconstruction from half-sampled crushed and non-crushed pCASL
data. We leveraged loop connectivity patterns in the network architecture to
improve the flow of information during the gradient updates. For training and
validation purposes we developed a data generator framework based on the gen-
eralized kinetic model for the pCASL signal. The generated dataset included
1096 scans for training, 155 scans for validation and 313 for testing. The proposed
network with ML-SSIM loss function achieved a SSIM of 97.3± 1.1/96.2± 11.1,
MSE of 0.03 ± 0.15/0.44 ± 3.17, SNR of 6.18 ± 2.38/1.67 ± 0.52, and pSNR of
35.0 ± 3.2/35.4 ± 23.2 for perfusion/angiography reconstruction. The lower SNR
and higher variance in the pSNR for the angiographic data is partially explained
by the intrinsic sparsity of that data, especially noticeable in the earlier time
points, see Fig. 4a.

In conclusion, the proposed network obtained promising results for the chal-
lenging problem of 4D MRA and perfusion reconstruction. The method, there-
fore, may assist an accelerated MRI scanning workflow. A further step of this
study is enriching the training and validation datasets with in vivo data.
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López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 343–351.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3 40

https://doi.org/10.1007/978-3-030-00937-3_40


Fast Deep Dynamic Perfusion and Angiography Reconstruction 35

5. Elmahdy, M.S., et al.: Robust contour propagation using deep learning and image
registration for online adaptive proton therapy of prostate cancer. Med. Phys. 46,
3329–3343 (2019)

6. Gong, K., et al.: Iterative pet image reconstruction using convolutional neural
network representation. TMI 38(3), 675–685 (2018)

7. Gong, E., Pauly, J., Zaharchuk, G.: Boosting SNR and/or resolution of arterial
spin label (ASL) imaging using multi-contrast approaches with multi-lateral guided
filter and deep networks. In: Proceedings of the Annual Meeting of the International
Society for Magnetic Resonance in Medicine, Honolulu, Hawaii (2017)

8. Guo, J., Gong, E., Goubran, M., Fan, A., Khalighi, M., Zaharchuk, G.: Improving
perfusion image quality and quantification accuracy using multi-contrast MRI and
deep convolutional neural networks. In: ISMRM, Paris, France (2018)

9. Ho, K.C., Scalzo, F., Sarma, K.V., El-Saden, S., Arnold, C.W.: A temporal deep
learning approach for MR perfusion parameter estimation in stroke. In: 23rd ICPR,
pp. 1315–1320. IEEE (2016)

10. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected
convolutional networks. In: CVPR, pp. 4700–4708 (2017)

11. Jégou, S., Drozdzal, M., Vazquez, D., Romero, A., Bengio, Y.: The one hundred lay-
ers tiramisu: fully convolutional densenets for semantic segmentation. In: CVPR,
pp. 11–19 (2017)

12. Zhao, L., Fielden, S.W., Feng, X., Wintermark, M., Mugler III, J.P., Meyer, C.H.:
Rapid 3D dynamic arterial spin labeling with a sparse model-based image recon-
struction. Neuroimage 121, 205–216 (2015)

13. Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convo-
lutional networks. TPAMI 38(2), 295–307 (2015)

14. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer
and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV
2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-46475-6 43

15. Buxton, R.B., Frank, L.R., Wong, E.C., Siewert, B., Warach, S., Edelman, R.R.: A
general kinetic model for quantitative perfusion imaging with arterial spin labeling.
MRM 40(3), 383–396 (1998)

16. Cocosco, C.A., Kollokian, V., Kwan, R.K.-S., Pike, G.B., Evans, A.C.: Brainweb:
online interface to a 3D MRI simulated brain database. NeuroImage 5, 425 (1997)

17. Klein, S., Staring, M., Murphy, K., Viergever, M.A., Pluim, J.P.: Elastix: a toolbox
for intensity-based medical image registration. TMI 29(1), 196–205 (2010)

18. Hirschler, L., et al.: Transit time mapping in the mouse brain using time-encoded
pCASL. NMR Biomed. 31(2), e3855 (2018)

https://doi.org/10.1007/978-3-319-46475-6_43
https://doi.org/10.1007/978-3-319-46475-6_43



