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Abstract

Purpose: Vascular remodeling is a significant pathological feature of various pulmonary diseases,

which may be assessed by quantitative CT imaging. The purpose of this study was therefore to

develop and validate an automatic method for quantifying pulmonary vascular morphology in CT

images.

Methods: The proposed method consists of pulmonary vessel extraction and quantification. For

extracting pulmonary vessels, a graph-cuts based method is proposed which considers appearance

(CT intensity) and shape (vesselness from a Hessian-based filter) features, and incorporates distance

to the airways into the cost function to prevent false detection of airway walls. For quantifying

the extracted pulmonary vessels, a radius histogram is generated by counting the occurrence of

vessel radii, calculated from a distance transform based method. Subsequently, two biomarkers,

slope α and intercept β, are calculated by linear regression on the radius histogram. A public data

set from the VESSEL12 challenge was used to independently evaluate the vessel extraction. The

quantitative analysis method was validated using images of a 3D printed vessel phantom, scanned

by a clinical CT scanner and a micro-CT scanner (to obtain a gold standard). To confirm the

association between imaging biomarkers and pulmonary function, 77 scleroderma patients were

investigated with the proposed method.

Results: In the independent evaluation with the public data set, our vessel segmentation method

obtained an area under the ROC curve of 0.976. The median radius difference between clinical

and micro-CT scans of a 3D printed vessel phantom was 0.062±0.020 mm, with interquartile

range of 0.199±0.050 mm. In the studied patient group, a significant correlation between diffusion

capacity for carbon monoxide and the biomarkers, α (R=-0.27, p-value=0.018) and β (R=0.321,

p-value=0.004), was obtained.

Conclusion: In conclusion, the proposed method was validated independently using a public data

set resulting in an area under the ROC curve of 0.976 and using a 3D printed vessel phantom data

set, showing a vessel sizing error of 0.062 mm (0.16 in-plane pixel units). The correlation between

imaging biomarkers and diffusion capacity in a clinical data set confirmed an association between

lung structure and function. This quantification of pulmonary vascular morphology may be helpful

in understanding the pathophysiology of pulmonary vascular diseases.

This article is protected by copyright. All rights reserved. 
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1. INTRODUCTION

Pulmonary vascular remodeling is a significant characteristic of pulmonary diseases, such

as chronic obstructive pulmonary disease, interstitial lung disease (ILD), and pulmonary

hypertension (PH)1–8. Systemic sclerosis (SSc, also called scleroderma), is an autoimmune

connective tissue disease affecting several organs, and its pulmonary involvement can cause

ILD or PH, which may involve pulmonary vascular alterations9,10. Pulmonary vascular

alterations have been described as narrowing and pruning of distal vessels, which increases

vascular resistance and cause hypertension11–13. The dilation of proximal vessels is also an

essential morphological feature, as increasing pulmonary vascular resistance affects proximal

vessels14. Investigation of changes in pulmonary vascular morphology, such as pruning of

small vessels or dilation of large vessels, may provide assessments of pulmonary vascular

remodeling.

Some studies based on the analysis of computed tomography (CT) images have shown

promising results for quantifying pulmonary vascular remodeling in pulmonary diseases, us-

ing different approaches. Matsuoka et al.6,11 introduced a CT measurement by quantifying

the 2D cross-sectional area of small pulmonary vessels for assessing vessel pruning of COPD.

Estepar et al.13,15 extended the pruning measurement into 3D by quantifying the ratio be-

tween the volume of small vessels and all the vessels, and applied these measurements within

each lobe. Rahaghi et al.14,16 introduced the concepts of imaging biomarkers, the ratio of

small vessel volue to total vessel volume and ratio of proximal vessels to all vessels, for quan-

tifying pruning of distal vessels and dilation of proximal vessels, respectively. Rather than

assessing vascular morphology based on vessel size, Helmberger et al.17 calculated tortuos-

ity as well as the 3D fractal dimension of segmented pulmonary vessels for characterizing

vascular remodeling of patients with pulmonary hypertension.

In the pulmonary vessel quantification methods mentioned above, accurate pulmonary

vessel segmentation is an important step. A few approaches have been proposed for extract-

ing pulmonary vessels, and a challenge called VESSEL12 with a public data set and indepen-

dent evaluation has been organized for comparing vessels extraction methods, among which

Hessian-based methods have shown a good performance18–20. Tube-like structures can be

enhanced by Hessian-based methods, such as the Frangi filter21 and the Sato filter22, where

the eigenvalues of the Hessian matrix describe cylindrical properties. However, the response

This article is protected by copyright. All rights reserved. 
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of Hessian-based filters is low at vessels’ edges and bifurcations23. The ’strain energy’ filter19

can partly overcome this problem of low responses at vessels’ bifurcations by analyzing the

shape-tuned strain energy density, where the Hessian matrix was considered as a stress ten-

sor, and three tensor invariants from orthogonal tensor decomposition were used to formulate

distinctive functions for shape discrimination, brightness contrast and strength. Finally, the

multi-scale scheme was adopted to optimally enhance vessels with different size. According

to the VESSEL12 challenge20, simply using a threshold or local thresholds24 on the vessel-

ness map (which is the vessel likelihood map enhanced with Hessian-based methods) can not

extract binary vessels accurately. In our previous work25, a graph-cuts based method was

proposed for extracting lung vessels by combining the appearance (CT intensity) and shape

(vesselness) features into a single cost function, and achieved a competitive performance,

which was the best result among the submitted methods of VESSEL12 that produce binary

vessels. Nevertheless, the separation between airway wall and vessels was still inaccurate,

which could also affect the quantification of pulmonary vascular morphology, due to the

similar CT intensities of airway walls and vessels.

Validating pulmonary vessel quantification methods is a challenging task, as manually

annotating the ground-truth in patient images is extremely time consuming and it is hard

to determine the quality and robustness of the annotated data quantitatively. As a possible

alternative to validate the quantification methods, anthropomorphic phantoms containing

known distributions of vessels can be considered. These phantoms can be created using 3D

printing, a technique with applications in different imaging modalities, including CT, for

imaging and dosimetry purposes26–31. In this work, a 3D printed phantom with vessel-like

structures designed in a similar way to the lung, was used to validate the proposed method

for quantifying vessel morphology. A sufficiently high-resolution micro-CT scan of the lung

phantom was acquired and used as the ground truth for the vessel distribution.

In this study, we present an automatic and quantitative approach to assess pulmonary

vascular morphology alternations, based on an adjusted graph-cuts vessel segmentation and

a novel histogram-based quantitative analysis. The automatic method consists of two steps:

pulmonary vessel extraction and pulmonary vessel quantification. For pulmonary vessel ex-

traction, we extended our previous graph-cuts based method25 by incorporating the distance

map to airways into the cost function, for separating airway walls from vessels. For pul-

monary vessel quantification, a method is proposed by quantifying the radius histogram of

This article is protected by copyright. All rights reserved. 
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pulmonary vessels, where all pulmonary vessels are included in the analysis, instead of only

a specific part. The accuracy and robustness of the automatic method were validated with

three data sets: (1) a public data set of the VESSEL12 challenge to test the accuracy of the

vessel segmentation; (2) a data set of a 3D printed vessel phantom to evaluate the accuracy

of vessel sizing and robustness to protocol settings of the CT scanner; (3) and finally a data

set of SSc patients to confirm the correlation between pulmonary vessel morphology and

pulmonary function.

2. MATERIALS AND METHODS

2.A. Pulmonary vessel extraction

The segmentation task can be treated as a labeling problem L = {Lp|p ∈ P , Lp ∈ {0, 1}},

where P is the set of voxels from an image and p ∈ P32. A voxel is labeled as object or

background according to its own properties and the connections with its neighbors. In the la-

beling problem of graph-cuts, the general energy function formulates the connection weights

of voxel nodes, object (source) node and background (sink) node, as described in Equation

(1). The energy function can be optimized by finding the max-flow/min-cut33,34. To ex-

tract pulmonary vessels, we developed a graph-cuts based method by combining appearance

features, shape features and the distance map to airway (as shown in Fig. 1(a)). The en-

ergy function of the proposed method is specified by formulating the data term Dp(Lp) and

neighbor term Vp,q(Lp, Lq), with a weight γ:

E(L) =
∑
p∈P

Dp(Lp) + γ
∑

(p,q)∈N

Vp,q(Lp, Lq). (1)

where (p, q) ∈ N means that q is a neighbor voxel of p. The data term Dp(Lp) consists of

three parts:

Dp(Lp) = wDCT
p (Lp) + (1− w)DVSL

p (Lp) + waD
DTA
p (Lp). (2)

The appearance term DCT
p (Lp) is calculated based on the CT intensity; the shape term

DVSL
p (Lp) is calculated based on the vesselness of the strain energy filter19; and the distance-

to-airway (DTA) term DDTA
p (Lp) is determined by the distance map to the airways. These

three terms are then balanced with weights w and wa, where w is a global balance between

appearance and shape terms, and wa is the weight for airway wall elimination.

This article is protected by copyright. All rights reserved. 
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Since voxels with a high CT intensity or vesselness obtain a high vessel likelihood, sigmoid

functions are employed for both the appearance term and the shape term. The appearance

term DCT
p (Lp) and the shape term DVSL

p (Lp) are formulated as follows:

DCT
p (ICT

p |Lp = l) =
1

1 + e−α
CT
l (ICT

p −βCT
l )

;

DVSL
p (IVSL

p |Lp = l) =
1

1 + e−α
VSL
l (IVSL

p −βVSL
l )

, (3)

where ICT
p and IVSL

p represent the CT intensity and vesselness of voxel p, respectively;

αCT
l , βCT

l , αVSL
l and βVSL

l are the parameters of the corresponding sigmoid function. The

determination of the parameters in these sigmoid functions is described in Section 2.D.1.

The distance-to-airway map is employed in order to eliminate false detection of airway

walls. Therefore, the lumen of the airway of each chest CT scan is detected by a region-

growing method where a seed point was searched in the trachea and an optimal threshold

was selected by iteratively growing before the leakage of airway volume35. Then, a Euclidean

distance transform is applied for generating the distance map. The thickness of airway walls

is approximately 2 mm24,36, thus, the response range of the distance-to-airway term was set

to [0, 3] mm. For determining the response to airway walls, a Gaussian function is adopted

as the kernel that centers on µ and scales with σ, as follows:

DDTA
p (dp|Lp = l) =

(−1)l · e−
(dp−µ)2

2σ2 , if 0 < dp < 3mm

0, otherwise.
(4)

The neighbor term Vp,q(Lp, Lq) from Equation (1) is the cost for cutting a neighborhood

edge (p, q) on the basis of their similarity and γ is a positive coefficient for controlling the

smoothness of detected objects. It is calculated based on the similarity in CT intensity of

two neighborhood voxels (p, q ∈ N ), and corrected by the spatial distance between them:

Vp,q(Lp, Lq) =

e
−dp,q ·|ICT

p −ICT
q |, if Lp 6= Lq

0, otherwise,
(5)

where dp,q represents the spatial distance between voxels p and q. In other words, if two

neighboring voxels (p, q) have similar CT intensities and are within a short distance but are

labeled differently, the cost of the n-edge (p, q) will be high.

This article is protected by copyright. All rights reserved. 
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2.B. Pulmonary vessel quantification

Based on the segmented pulmonary vessels, the centerlines of vessel trees are extracted

using a skeletonization method37. This method successively erodes the border voxels for

locating the vessel centerline where a refinement step was adapted for eliminating the side

branches; the distance between boundary voxels and central voxel are calculated and the

minimum distance is used to estimate the corresponding radius. This estimated radius is

subsequently assigned to that central voxel, producing a 3D skeleton map with radius value

embedded in the centerline voxels, as illustrated in Fig. 1(b).

The number of voxels in the vessel skeleton with a specific radius on the vessel skeleton

are counted as Nr. The vessel radius frequency is normalized for voxel size (Vl) to make the

histogram comparable across CT scans, i.e. instead of simply using the counted number,

the accumulated length was estimated with the number of voxels and their size. In order

to obtain a linear relation between frequency and radius, a logarithmic transformation is

applied to the normalized frequency in the histogram. Afterwards, a ’radius histogram’ is

generated for pulmonary vessels of each CT scan, in which the ith bin’s index represents the

vessel radius, ri, and its height characterizes the logarithm of the normalized frequency of

occurrence, log(Nri · Vl).

y = α · x+ β

where y = log(Nr · Vl) and x = r.
(6)

For quantifying the pulmonary vessel morphology, the ’robustfit’ method (in MATLAB

R2016a Mathworks, Natick, MA38) was applied to solve the linear regression in Equation

(6). For each patient, two biomarkers, α and β, are calculated, which correspond to the slope

and intercept of the linear regression, respectively, see Fig. 1 (b). The slope parameter α

quantifies the occurrence of vessels with small radius relative to those with large radius,

which may indicate pruning of small vessels and/or dilation of larger vessels. The intercept

parameter β is an extrapolation of the radius histogram to radius 0, which may relate

to the pulmonary vascular tree’s capacity. As capillary vessels have a radius around 5

micrometers i.e. 0.005 mm, an extrapolation to radius 0.005 mm may estimate the total

number of pulmonary capillaries, therefore, the intercept to radius 0 mm is closely related

to the pulmonary vascular capacity.

This article is protected by copyright. All rights reserved. 
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2.C. Implementation and parameter settings

The graph-cuts based vessel segmentation method was implemented in Matlab and its

cost function was optimized with a mixed C++ code39. This proposed vessel segmentation

method was made publicly available by the authors40. The strain energy filter for vessel

enhancement is also open source and can be found via ITKTools41. The quantitative method

for analyzing the pulmonary vascular morphology benefited from the DtfSkeletonization

module of MeVisLab and the robust linear regression method in MATLAB. The entire

processing pipeline was completed in MeVisLab 2.7.1 (VC12-64), on a personal computer

configured with 24 GB of memory, a 2.67 GHz CPU (Intel Xeon W3520) and a 64-bit

Windows 7 operating system.

The parameters used in the segmentation method were optimized on the VESSEL12

training set. The appearance and shape features were normalized to ranges of [0, 1], before

incorporation in the cost function. The strain energy filter’s parameters were set accord-

ing to the literature19,25. Before construction of the graph, a very low threshold of 0.0009

was used on the vesselness map to exclude voxels that almost certainly belong to the back-

ground. This resulted in a relatively small sparse graph structure, which was constructed

with the remaining voxel nodes, object and background nodes, and allowed processing of

high resolution CT scans.

The balance parameter w between appearance and shape terms was set to 0.625, and the

parameter wa of the distance to airway term was set to 0.4, optimized with a grid search

approach on the training data set. Because the response region of the distance to airway term

was limited to a local region around the airways, the parameter wa was not set as a global

balance, in comparison to the global balance parameter w. The parameters of the sigmoid

function in the appearance term DCT
p (Lp) and shape term DVSL

p (Lp) were automatically

estimated with the following algorithm. The mean value of the appearance feature was picked

as the initial threshold to initially separate the background and object. The appearance

feature inside the object region was fitted with a Gaussian distribution, by calculating the

mean µ and standard deviation std. Then, the parameters of the sigmoid function were

estimated by fitting a Gaussian distribution, such that Sigmoid(β) = Gaussian(β) = 0.5

and Sigmoid(µ) = 0.95. The parameters used in the cost function for the shape term were

calculated in a similar way.

This article is protected by copyright. All rights reserved. 
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A distance transform based method (’DtfSkeletonization’ method of MeVislab) was used

to performed the skeletonization on the binary vessels extracted by the graph-cuts based

method37. The binary segmentation was successively eroded while preserving the topology

of the original structure. The vessel centerlines were localized and the radius was recorded

at the corresponding voxels on the skeleton. A vessel radius can obtain a value from only a

limited number of possible distances, due to the limited and constant voxel size. To capture

all these unique radii in the histogram, the bin size was set to as small as 0.001. To calculate

the imaging biomarkers α and β, a linear regression was applied to the radius histogram.

In the regression analysis, the first non-empty bin was excluded as this might be influenced

by the noise of small branches in vessel skeleton extraction or affected by the voxel size in

estimating the size of small vessels.

2.D. Data sets used for validation

2.D.1. Data set of VESSEL12

The proposed pulmonary vessel segmentation method was validated on the VESSEL12

challenge data set20, which contains three CT scans in a training set and 20 CT scans in

a testing set. These anonymous scans were collected from three hospitals: the Univer-

sity Medical Center Utrecht (Utrecht, The Netherlands), the University Clinic of Navarra

(Pamplona, Spain), and the Radboud University Nijmegen Medical Centre (Nijmegen, The

Netherlands). In the 20 testing CT scans, points of interest were annotated individually by

three trained medical students with four possible labels: vessel, lung parenchyma, airway

wall or lesion20. Only the points on which all three annotators agreed were included in the

ground truth. In the three training CT scans, the annotations were labeled in a similar way,

however, there were only two label categories (vessel and non-vessel). Furthermore, the lung

masks for each of these scans were provided by the VESSEL12 challenge organizers.

For the three CT training scans, we performed lung vessel segmentation and the cor-

responding evaluation results can be found in the Appendix. For the 20 CT scans in the

testing data set, the binary pulmonary vessels, which were extracted using the graph-cuts

based method, were uploaded to the VESSEL12 challenge website and independent evalua-

tion results were calculated by the organizers. The probabilistic submissions were scaled to

This article is protected by copyright. All rights reserved. 
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probabilistic maps with a range of [0, 255], then multi-level thresholds were used to generate

a receiver operating characteristic (ROC) curve, details of which are presented in the online

supplementary. For binary submissions, ’probabilistic maps’ were generated by applying

a distance transform and scaling the results to [0,255], subsequently, the ROC curve was

calculated based on the probabilistic maps. The area under the ROC curve (Az) was used

as the main score for validation.

2.D.2. Data set of vessel phantom

To validate the proposed method for quantifying vessel morphology, a 3D printed phan-

tom, representing vessel-like structures with similar sizes as in the lung, was used. This

phantom was designed based on the work by Weibel et al. who performed a microscopic

study of lungs from human cadavers42,43. An algorithm was developed in MATLAB (Math-

works, Natick, MA) to generate a model of a vessel tree structure, with decreasing length and

diameter for the vessels, modelled as cylinders, in each vessel generation iteration44,45. The

model was constrained to an elliptically shaped frame (150x103x26 mm), as it was intended

for manufacturing a small phantom for image quality in CT44,45. The vessel tree started

growing at the center of one of the sides of the ellipse (Fig. 2 (a)). At each vessel segment

ending, there could be a bifurcation or an elongation. The bifurcation chance increased after

each elongation step. The direction of the two generated branches after a bifurcation was

randomly taken but limited within 45◦, with regard to the parent vessel direction. The lung

model was printed using a ProJet HD 3000 3D printer with multi jet modeling (MJM) tech-

nique in ultrahigh definition mode, selecting Visijet EX200 as material. This mode enables

to print very thin layers (32 µm) of material. The total number of generated vessel segments

was in the order of 20000 being the biggest 10 mm diameter and the smallest in the order of

0.2 mm45. To estimate the accuracy of the 3D printing process, three of the biggest vessels

in the phantom (by design, 4.25, 3.35 and 2.65 mm radius) were measured with a Vernier

caliper ( 0.05 mm accuracy) in three different positions along each vessel, and the locations

of these selected vessels are demonstrated in the Figure A3 of the online supplementary.

The 3D printed vessel phantom was imaged with a clinical CT scanner (Aquilion ONE,

Toshiba Medical Systems, Otawara, Japan) with the following acquisition parameters: 0.5×

64 mm collimation, 120kV, pitch 0.828, 0.5 s rotation time, FOV of 195.1 mm, and various

This article is protected by copyright. All rights reserved. 
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tube currents (10, 20, 50, 100 mA). Images were reconstructed with 0.5 mm slice thickness

and interval, selecting FC30 as convolution kernel with two reconstruction methods, filtered

back projection (FBP) and AIDR3D standard. The voxel dimensions were 0.38× 0.38× 0.5

mm. In total, 8 CT scans were available to be analyzed (4 dose levels, 2 reconstruction

methods). The CT scans of the 3D printed phantom can be accessed by contacting the

corresponding author of the original paper.52 To obtain the ground truth of the 3D printed

vessel phantom, the phantom was scanned with a Zeiss Xradia 520 Versa micro-CT scanner,

selecting 80 kV, 7 W and a 0.4 X objective and no additional filtration. The total scanning

time was 36 hours and vertical stitching was applied to obtain the image volumes (1894×1903

px by 2922 images). The voxel size was 52× 52× 52 µm and the micro-CT images, in TIFF

format, were 8-bits depth. The images were reformatted and rotated in MeVisLab, in order

to obtain the same cross-sections as in the CT scans.

2.D.3. Data set of SSc patients

Patients with systematic sclerosis (SSc) were selected from the biobank of the Leiden

Combined Care in SSc (77 patients; 67 women and 10 men; mean age ± STD, 49.9 ± 14.2

years). The images were obtained with a thorax protocol and the patients took pulmonary

function tests (PFT)46. All patients were scanned with the same CT scanner (Aquilion 64,

Toshiba Medical Systems, Otawara, Japan), during full inspiration and without contrast

medium. The CT protocol settings were: tube current 140 mA without modulation; tube

voltage 120kV; rotation time = 0.4 s; collimation = 640.5 mm; images were reconstructed

with 0.5 mm slices9. There were 512×512 pixels in each slice of CT images and the in-plane

pixel dimension was 0.64 × 0.64 mm on average. The local Medical Ethical Committee

approved the protocol. Written informed consent was obtained from each patient prior

to enrollment. The fibrosis scorings of these patients were established by two experts (a

radiologist, L.K. and a rheumatologist, A.S.) on the basis of CT scans and blinded to the

clinical information47. PFTs were tested including total lung capacity (TLC), forced vital

capacity (FVC), forced expiratory volume in 1 second (FEV1) and single-breath diffusion

capacity for carbon monoxide corrected for haemoglobin concentration (DLCOc), and the

PFT results were expressed as a percentage of the predicted (%predicted) value48,49. No

fibrosis were observed in the CT scans of the selected patients, however their gas transfer

This article is protected by copyright. All rights reserved. 
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(DLCOc %predicted) was impaired. Thus, we hypothesized that pulmonary vascular changes

could partly explain the impaired gas transfer.

3. RESULTS

The proposed graph-cuts based method obtained an Az of 0.976, which is a competitive

performance among 31 submitted methods and the best result among binary submissions of

VESSEL12, where the average (range) in Az of all and binary submissions were 0.888 (0.561,

0.986) and 0.83 (0.671, 0.976), respectively. The evaluation results of the best probabilistic

submission and three binary submissions with top ranking performance are shown in Table

I: the best probabilistic method was a logistic regression classifier that enhances lung vessels,

based on a stacked multi-scale strategy learned features (FL); the binary submissions (LT)

of van Dongen et al.24 who extracted vessels with local thresholds on Frangi filter’s vessel-

ness and excluded airway walls by dilating the airway segmentation; the binary submissions

(AS) of our previous method which segmented vessels with a graph-cuts based method by

combining only appearance and shape features into the cost function; the binary submis-

sions (ASD) of the newly proposed method which detected vessels with a graph-cuts based

techniques by incorporating appearance and shape features and distance to airway. The

evaluation results of all submissions are also available online on the VESSEL12 website51.

The vessels in the 8 CT scans of the phantom were segmented with the proposed graph-

cuts based method. The supporting oval frame surrounding the 3D printed vessels in the

phantom was removed using a cylinder mask. As there were no airways designed in this

phantom, the distance map to the airway was set to zero. The vessels in the micro-CT scan

were extracted using a threshold, which was determined by density histogram analysis, see

Fig. 3(a). The distribution of the voxel density in the micro-CT scan had two peaks, the

peak with lower density value corresponds to the background (air) and the peak with higher

density value corresponds to the vessels. Thus, the density value with minimum frequency

between these two peaks was selected as threshold to extract vessels from the micro-CT

scan. The threshold T = 156 was used to segment vessels in this study. The 3D and 2D

view of the extracted vessels are illustrated in Fig. 3 (b) and (c). For testing the robustness

of this ground truth vessel extraction, we selected a range of thresholds (156± 4) to extract

vessels (see Appendix).

This article is protected by copyright. All rights reserved. 
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Based on the extracted vessels in the micro-CT scan and the 8 CT scans, the correspond-

ing vessel size was calculated with the DtfSkeletonization module of MeVisLab, where the

estimated radius was recorded at the vessel centerlines. The micro-CT scan was registered

to the 8 CT scans of the phantom using Elastix registration53, separately, of which the rigid

registration (Euler transform) with B-spline interpolation was used for mapping the micro-

CT scan and CT scans, and the parameters were optimized with an adaptive stochastic

optimizer. The skeletons in the micro-CT scan were extended into a ’radius tube’ by as-

signing the voxels on each cross section with the radius that was recorded on its centerline,

in order to overcome the mismatching between skeletons of micro-CT scan and clinical CT

scans. With the transformation parameters, the radius tube obtained in micro-CT scan was

transferred to each CT scan. For each CT scan, we obtained a mapping vector with two

columns: one contained the radius value of vessels in the clinical CT scan and the other

contained the radius value of the corresponding vessels in the micro-CT scan, where all

vessels (radius range from 0.1 to 5 mm) were analyzed. The median (M) and interquartile

range (IQR) of radius differences (radius of CT - radius of micro-CT) were on average of

0.062 mm (0.16 in-plane pixel units) and 0.199 mm (0.52 in-plane pixel units), with an STD

of 0.02 mm and 0.05 mm, respectively, which shows high robustness. The mean and STD

of errors in percentage [%] (100×(radius of CT - radius of micro-CT)/(radius of micro-CT))

were calculated for vessels with a radius larger than 0.5 mm and 1 mm, respectively. The

mean ± STD of errors in percentage for vessels with a radius > 0.5 mm was on average

3.2± 26.7 %, and for vessels with a radius > 1 mm was on average −7.4± 20.4 %. Details

of % error are included in Table A2 of the online supplementary, for comparing different CT

scans with the micro-CT scan. The correlations (R) between radius in CT and micro-CT

scans were calculated with Pearson’s correlation. The correlations are presented in Table II.

The correlations were all statistically significant and the average correlation was 0.909 (p-

value< 0.001). Furthermore, linear regression was applied to the radii from the clinical CT

scans and those from the micro-CT scan. All regression analysis results are shown in Table

II, with an average slope and intercept of 1.018 and -0.058, respectively. The 2D histograms

and linear regressions between radius of CT scans and micro-CT scan are shown in Fig.

4. With regard to the 3D printing accuracy, the caliper measurements for the radii of the

biggest vessels in the phantom, were 4.26 mm, 3.36 mm and 2.66 mm, respectively, which

are compatible with the expected values from the design file. Estimated by micro-CT, the
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radii of the biggest vessels were 4.07, 3.23 and 2.56 mm, respectively, which demonstrated

on average an underestimation of 0.13 mm and a relative error of 3 %. In CT scans, the

radii of these vessels are 4.07, 3.24 and 2.58 mm, respectively, which is presented on average

an underestimation of 0.12 mm and a relative error of 3 %, and details of vessel sizing in

each CT scan are presented in Table A3 of the online supplementary.

The vascular morphology in the clinical CT scans of the phantom was studied with

the proposed radius histogram analysis method, based on the extracted vessels. For each

CT scan, two imaging biomarkers (α and β) were obtained for quantifying the vascular

morphology of the phantom, where the intercept β estimates the number of small vessels

and the slope α quantifies the relative contribution between small and large vessels. The

results of the biomarkers are presented in Table II. The STD (average) of biomarker α is

0.034 (-1.785), and the STD (average) of biomarker β is 0.049 (7.03) which implies that

the proposed method is robust against CT scanner settings, in particular variation in dose

(mAs) and for two reconstruction methods (FBP and AIDR 3D). The vascular morphology

was investigated in the micro-CT scan with the proposed method, based on the vessels

extracted with a threshold of 156. The imaging biomarkers α and β were -1.803 and 7.265,

respectively. The average of difference in α and β between micro-CT scan and clinical CT

scans was -0.019 and 0.235, respectively.

With regard to the patient images from the Leiden Combined Care biobank, the lung

masks were detected with a multi-atlas segmentation method and pulmonary vascular mor-

phology was investigated with the proposed method. The imaging biomarkers (α, β) were

collected for all these patients. The average ± STD of α and β are (−1.49 ± 0.2) and

(9.58±0.61), respectively. The correlations between imaging biomarkers and DLCOc %pre-

dicted were studied with Spearman’s rho correlation. In the studied patient group, the

imaging biomarkers, α (R=-0.27, p-value=0.018) and β (R=0.321, p-value=0.004), were

significantly correlated with DLCOc %predicted (with average ± STD, 70.4 ± 16.7). The

scatter plots of DLCOc %predicted versus α, β, and the ROC curve of β (AUC=0.651,

p-value=0.034) and α (AUC=0.614, p-value=0.112) are shown in Figure A4 of the online

supplementary, where patients were grouped into normal or abnormal gas transfer, based on

the DLCOc %predicted value61. The processing results of two patients in this SSc patient

group, who were quantified with the proposed method, are illustrated in Fig. 5.
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4. DISCUSSION

In this work, we proposed an automatic method which consisted of two processing steps:

a graph-cuts based pulmonary vessel extraction and a radius histogram based pulmonary

vessel quantification, for investigating pulmonary vascular morphology in CT images. The

accuracy of the graph-cuts based vessel segmentation method was validated with a public

data set, and a competitive result was obtained among other submissions. The robustness of

the pulmonary vessel quantification method was validated with a 3D printed vessel phantom

data set, demonstrating a robust measurement by comparing CT and micro-CT scans. The

pulmonary vascular morphology in each CT scan was quantified into two biomarkers, α and

β. The association between pulmonary vascular morphology and gas transfer was investi-

gated with a data set of 77 patients with SSc. The biomarkers, α and β, were significantly

correlated with DLCOc % predicted, suggesting that the impaired gas transfer is associated

with the remodeling of pulmonary vascular morphology.

Extracting pulmonary vessels accurately is an essential processing step for quantifying

pulmonary vascular morphology. In this work, a graph-cuts based method was used for vessel

segmentation, by including voxel’s appearance, shape features and distance to airways into

a cost function. For a fair comparison with other binary methods for extracting pulmonary

vessels, the public data set of VESSEL12 was used to validate the accuracy of the graph-cuts

based method. In comparison with methods using simply threshold or local-threshold on

vesselness, the proposed vessel segmentation method performed well according to the inde-

pendent validation of VESSEL12. This might be due to the fact that the graph-cuts based

method considers multiple features for each voxel and assigns voxel’s label incorporating its

neighbouring information. The Hessian based filter may involve uncertainties in enhancing

vessels, as computing the second derivative of voxel intensity of the Gaussian-filtered image

is based on the assumption that the pixel intensity across a vessel could be represented

well by a Gaussian distribution, while this is not entirely true as mentioned by O’Dell et

al.28 For separating the airway walls and vessels, the distance map was integrated into the

graph-cuts cost function. In the method proposed by van Dongen et al.24, the airway walls

were excluded by dilating the airway with a spherical element with a specific size, which

might remove partially vessels touching airway walls. Our method obtained slightly better

performance in separating the airway walls, as illustrated in Table I, category 5. Our method
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performed worse, on the other hand, in distinguishing vessels from dense lesions or nodules,

categories 6 and 9, which may be due to the fact that intensity of lesions and nodules are

similar to vessels. These are however not expected in patients with SSc. The probabilistic

submission of FL50 achieved the best results among all submitted methods. As shown in

VESSEL1220, the probabilistic submissions performed slightly better. However, a fair com-

parison between binary and probabilistic method is difficult to make, because the binary

methods are first converted to distance maps and used as a surrogate for ’probabilistic maps’

for ROC calculations. Therefore, the area under ROC curve of the probabilistic methods

would be smaller if these maps were treated in the same way as binary method, i.e. if the

maps were first thresholded and distance transformed.

The quantitative analysis of the extracted pulmonary vessels was performed on the ra-

dius histogram, where the vessel radii were calculated by a distance transform based method.

The accuracy of vessels sizing and the robustness of vessel morphology quantification were

validated using a data set of a 3D printed vessel phantom, which was scanned with a micro-

CT scanner and a clinical CT scanner. The geometry model of the phantom was not used

as a gold standard or ground truth for comparison, because the accuracy of the 3D printing

process (which depends on the printer, technique and selected material) can introduce dif-

ferences between the model and the actual final printed object. Establishing robust methods

to determine the accuracy and reproducibility of 3D printing, in particular for phantoms

is still under investigation45. The characteristics and limitations of the material used in

the lung phantom compared to human vessels were discussed elsewhere45. The use of 3D

printing has grown in the past years in different areas in medicine, such as biocompatible

prosthesis development, surgery planification with models based on patient images and ed-

ucational purposes54. One of its applications is the development of affordable customized

test objects or phantoms that can be used in image quality assessment in different medical

imaging modalities27,55. O’Dell et al. validated the accuracy of sizing vessels using a 3D

printed vascular phantom made of acrylonitrile butadiene styrene plastic. The vessel sizes

(with diameters ranging from 1.2 to 7 mm) were evaluated by manual measurements at 64

branches28. Between manually measured and estimated radii, the linear regression analysis

gave a slope of 1.056, and the difference was 0.074 mm (0.087 in-plane pixel units)28. Due

to the complexity of our 3D printed vessel phantom, however, the vessel sizes were hardly

manually measurable, except for the biggest vessel branches.
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For our study, a micro-CT scan with sufficiently high resolution was used for calculat-

ing the ground truth of vessel sizes. Thus, we validated the accuracy of sizing vessels by

comparing clinical CT scans with micro-CT scan, and evaluated the vessel size in all vessel

trees by matching the clinical and micro- CT scans. The differences of vessel radii calculated

from clinical CT scans and micro-CT scan were very small (median of radius difference is

on average of 0.062 mm, i.e., 0.16 in-plane pixel units); therefore, these radii were highly

correlated; and the regression analysis between radius from clinical CT scans and micro-CT

scan obtained average slope approximated to 1 (1.018) and average intercept approximated

to 0 (-0.058), implying that the radii detected in CT scans and in micro-CT scan are almost

equal. Compared to the vessel sizing study28, which showed a slope of 1.056 in linear regres-

sion analysis and STD in difference of 0.074 mm (0.087 in-plane pixel units), the proposed

method obtained a slightly worse result in difference analysis of vessel radius but a compa-

rable result in regression analysis. As shown in Fig. 4, there are a few outliers which are

estimated in CT as 0.3 mm but micro-CT as 3 mm. This might be due to the fact that side

branches with a small radius, generated by skeletonization method in CT, were mapped to

main branches with large radii in micro-CT. The percentage rate of outliers (with radius

in micro-CT lager 0.5 mm than that in CT) is approximately 2.8%. The histogram plots

of Fig. 4 are based on a voxel-based assessment rather than a branch-based assessment,

a large (long) vessel, which may have many centerline voxels, will have more weight than

small vessels with less centerline voxels. The number of branches is increasing exponentially

with a decreasing radius60. If a histogram plot is on a branch-based assessment, the vessels

with small radius will have more weight in statistics comparing to vessels with large radius.

A voxel based strategy may partly balance the influence of large and small vessels. As

presented in Table II, the IQR of radius differences is smaller by increasing the dose (mA)

for reconstruction kernel FBP, while it is much more stable for the kernel AIDR3D, which

implies the kernel AIDR3D performed well for reconstructing images, with low mA settings.

Aspects of the vascular morphology of the extracted vessels was characterized by two

biomarkers, α and β. The biomarker α, which is the slope of the radius histogram, reflects

the related contributions between small vessels and large vessels, quantifying small vessels

pruning and large vessel dilation. The intercept β, which was calculated by extrapolation

to radius 0, estimates the vascular tree capacity, without actually detecting pulmonary cap-

illaries. The pruning of small vessels will increase the resistance of blood flow in pulmonary
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vessels, the dilation of large vessels will happen after then. In some diseases, like pulmonary

hypertension, the radius of very large vessels will also increase. The combination of these 2

effects would create a S-shaped or flattened curve, these would influence the power for repre-

senting these effects of α and β. The robustness of the automatic quantification method was

validated with CT scans acquired with various settings, while the variation in biomarkers

was quite small. The average difference in α between micro-CT scan and clinical CT scans

is 0.025 by |αmicro−CT − αCT | and 1.4 % by |(αmicro−CT − αCT )/αmicro−CT | ∗ 100, while that

in β is 0.235 and 3.2 %, respectively, i.e., comparing clinical CT scans to micro-CT scan, the

biomarker about relative contribution between small vessels and large vessels were similar,

in comparison with the biomarker of vessel tree capacity, which might be due to the fact

that the micro-CT performed better in detecting small vessels. The relation between gas

transfer and biomarkers was validated with a data set of 77 SSc patients. The α and β

showed significant correlations with DLCOc % predicted, which implied that the vascular

remodeling (pruning/dilation and vascular tree capacity) is associated with impaired gas

transfer. The AUC of β was significantly larger than 0.5 but not large, which implied that

the pulmonary vascular morphology is associated with gas transfer but could not determine

it, as there are many other factors that could influence gas transfer, such as cardiac function,

thoracic stiffness, pulmonary airways, etc. Vascular remodeling as assessed in HRCT may

precede changes in gas transfer and may therefore be important in the clinical evaluation and

treatment decisions of SSc patients. Although the correlations between imaging biomarkers

and gas transfer were moderate, these were comparable results in the relevant study that

investigates the relation between pulmonary function and vascular morphology13.

There are some limitations in this work. The vessel extraction method was validated

with the public data set of VESSEL12, of which the annotation were labeled by three

observers, which might obtain errors in human interpretation. The lung vessel segmentation

method did not work well for separating vessels and lung nodules, as the latter are mostly

attached to vessel trees and have a high intensity, eliminating the response of nodules by

considering the shape properties may be helpful for separating vessels and nodules, however,

detecting / extracting lung nodules is not the goal of this study. The distance transform

based method for sizing vessel radius may result in uncertainties or underestimations, a

refinement operation for optimizing the centerline and radius would improve the radius

estimation. The 3D printed vessel phantom used in this study contained a wide range
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of vessel radii and lengths. A future development in using this type of phantoms to test

algorithms could be to control the number of vessels that are generated per diameter or

length, during the design process. In this way, a robust ground truth based on the model

could be compared. One of the limitations for the phantom is that the attenuation of

the material used to print the vessels is slightly higher compared to human vessels44,45.

Nonetheless, when comparing the the relative contrast between the lung phantom vessels

and the background (air) with values measured in vessels and parenchyma in patients, the

difference is relatively small (around 10%). This limitation could be overcome in the future

if other materials become available that could be printed with the required resolution and a

lower attenuation. Nonetheless, these differences in attenuation do not influence the results

in the present study, as the imaging biomarkers α and β are similar between micro-CT scan

and clinical CT scans acquired in different attenuation with average difference rate in 1.4 %

and 3.2 %, respectively. The CT scans of both phantom and patients have a slice thickness of

0.5 mm, therefore investigating the effect of various slice thicknesses to the proposed method

will help extend its applications to other other lung diseases and acquisition protocols.

The performance of eliminating the airway walls was only validated with the VESSEL12

data, however, this data set was not mainly designed for this type of validation. Manually

annotating a data set of airway walls and making it publicly available will be helpful for

validating this type of techniques. In this work, the automatic quantification method was

applied on both lungs together. Applying the quantification method on separate lungs or

lung lobes may allow more localized assessments of vascular remodeling. In the future, we

will investigate deep-learning techniques in pulmonary analysis, as these techniques generally

perform well in medical images analysis. We did not separate the arteries and veins for

specific analysis. Developing a deep-learning based method for separating arteries and veins

is also a challenging but interesting topic for our future work56–58, as pulmonary vascular

diseases may affect arteries and veins differently. The airway wall thinkness was assumed

to be 2 mm in this study, while adjusting the thinkness assumption with the airway size

accordingly may improve the elimination of airway walls. Deep learning based methods

performed well in measuring airway lumen and walls59. Excluding airway walls from vessel

extractions may benefit from this type of techniques. For validating the association between

biomarkers and gas transfer, only the SSc patient group was involved without a control

group. Quantifying the vascular morphology of healthy people may improve the detection
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of lung vasculopathy in SSc patients. However, even without these specific analyses or a

control group, we already found a significant association between vascular morphology and

gas transfer.

5. CONCLUSIONS

In conclusion, an automatic method has been proposed for quantifying pulmonary vas-

cular morphology in CT images. The accuracy of vessel segmentation has been evaluated

independently with the public data set of VESSEL12, and the robustness of the quantifi-

cation method has been validated with the image data set of a 3D printed vessel phantom.

The imaging biomarkers for quantifying pulmonary vessel morphology in CT images are

correlated with gas transfer in the studied SSc patients.
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FIG. 1. An overview of our proposed method which contains two main steps: pulmonary vessel

extraction and pulmonary vessel quantification. To extract pulmonary vessels, the vesselness, CT

intensity and distance map to airways were incorporated into the graph-cuts cost function, as

shown in (a). The vessel skeletons and radii are calculated based on the segmented vessels, and

the radius histogram is counted and quantified with the proposed method, as illustrated in (b).

FIG. 2. 3D printed vessel phantom (a), together with one slice of the micro-CT scans (b) and

one slice of a clinical CT scan (c).
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FIG. 3. Histogram and extracted vessels of the vessel phantom in the micro-CT scan, (a) the

histogram of the micro-CT scan of 3D printed vessel phantom, (b) 3D view of the extracted vessels

in the micro-CT scan, (c) 2D view of the extracted vessels.
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FIG. 4. Comparison between the vessel radius estimated from the micro-CT scan and those

from the clinical CT scans, for a range of dose levels and two reconstruction algorithms (FBP and

AIDR3D). In each sub-figure, the x-axis contains the radii from the clinical CT and y-axis contains

the radii from the micro-CT scan; the color scale implies the logarithm transformed frequency of

the joint histogram; the white line is the identity line and the red line is the line of linear regression.

FIG. 5. The pulmonary vascular morphology of two patients in SSc were quantified with the

proposed method, and the DLCOc %predicted of patient I and II were 101.5 % and 44.6 %,

respectively. (a, e) the detected lung mask; (b, f) the extracted pulmonary vessels; (c, g) the

pulmonary vessel skeleton; (d, h) the radius histogram.

TABLES
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TABLE I. Area under the ROC curve (Az) score of three binary submissions to the VESSEL12

challenge across all categories (Categories 1: Principal, 2: Small Vessels, 3: Medium Vessels, 4:

Large Vessels, 5: Vessel/Airway Wall, 6: Vessel/Dense Lesion, 7: Vessel/Mucus-filled bronchi, 8:

Vessel-in-lesion/Lesion, 9: Vessel/Nodules). The probabilistic submission using stacked multi-scale

feature learning (FL50), the binary submission using local threshold on Frangi’s vesselness (LT24),

the graph-cuts based method combining the appearance and shape feature (AS25), and the method

proposed in this work incorporating appearance, shape and distance to airway (ASD).

Categories 1 2 3 4 5 6 7 8 9

FL 0.986 0.977 0.986 0.994 0.944 0.667 0.595 0.654 0.439

LT 0.932 0.885 0.954 0.955 0.912 0.688 0.404 0.649 0.517

AS 0.973 0.952 0.973 0.992 0.861 0.485 0.297 0.658 0.255

ASD 0.976 0.958 0.977 0.993 0.930 0.484 0.305 0.661 0.254

TABLE II. Results of comparing radius analysis between CT scans and micro-CT scan, and results

of quantifying vessel morphology of vessel phantom. The median (M), interquartile range (IQR) of

the difference in radius, the correlation (R) between the two radius measurements, with the slope

and intercept of the regression line are presented.

Comparison with micro-CT scan Biomarkers

CT setting M (IQR) [mm] R (p-value) slope intercept α β

10mA, FBP 0.028 (0.281) 0.869 (< 0.001) 0.980 0.040 -1.780 7.035

20mA, FBP 0.031 (0.275) 0.874 (< 0.001) 0.986 0.031 -1.780 7.034

50mA, FBP 0.073 (0.172) 0.922 (< 0.001) 1.029 -0.088 -1.817 7.062

100mA, FBP 0.072 (0.179) 0.921 (< 0.001) 1.031 -0.091 -1.795 7.058

10mA, AIDR3D 0.074 (0.168) 0.921 (< 0.001) 1.030 -0.090 -1.709 6.918

20mA, AIDR3D 0.073 (0.169) 0.920 (< 0.001) 1.027 -0.087 -1.783 7.011

50mA, AIDR3D 0.073 (0.170) 0.921 (< 0.001) 1.029 -0.088 -1.817 7.062

100mA, AIDR3D 0.072 (0.179) 0.920 (< 0.001) 1.032 -0.092 -1.795 7.058

Average 0.062 (0.199) 0.909 1.018 -0.058 -1.785 7.030

STD 0.020 (0.050) N.A. 0.022 0.058 0.034 0.049
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