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An Efficient Preconditioner for Stochastic
Gradient Descent Optimization

of Image Registration
Yuchuan Qiao , Boudewijn P. F. Lelieveldt, and Marius Staring

Abstract— Stochastic gradient descent (SGD) is
commonly used to solve (parametric) image registration
problems. In the case of badly scaled problems, SGD,
however, only exhibits sublinear convergence properties.
In this paper, we propose an efficient preconditioner
estimation method to improve the convergence rate
of SGD. Based on the observed distribution of voxel
displacements in the registration, we estimate the diagonal
entries of a preconditioning matrix, thus rescaling the
optimization cost function. The preconditioner is efficient
to compute and employ and can be used for mono-modal
as well as multi-modal cost functions, in combination
with different transformation models, such as the rigid,
the affine, and the B-spline model. Experiments on different
clinical datasets show that the proposed method, indeed,
improves the convergence rate compared with SGD with
speedups around 2∼5 in all tested settings while retaining
the same level of registration accuracy.

Index Terms— Optimization, preconditioning, stochastic
gradient descent, image registration.

I. INTRODUCTION

IMAGE registration is widely used in medical image analy-
sis and has ample applications, e.g. in radiation therapy and

segmentation [1]. This procedure can be used to align images
from different modalities or different time points following
a continuous deformation strategy. The strategy can be for-
mulated as a (parametric) optimization problem to minimize
the dissimilarity between a d-dimensional fixed image IF and
moving image IM :�μ = arg min

μ
C(IF , IM ◦ T (x,μ)), (1)
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in which x is an image coordinate and T (x,μ) is a coordinate
transformation parameterized by μ. For example, μ consists
of rotations and translations for a rigid transformation model,
and control point displacements for a nonrigid transformation
modeled by B-splines. For several clinical applications, for
example online adaptive radiation therapy [2], image regis-
tration runtime is crucially important. In particular, online
adaptive intensity-modulated proton therapy (IMPT) [3] is
very sensitive to treatment-related uncertainties, such as patient
set-up, inter-fraction and intra-fraction variations in the shape
and position of the target volume and organs at risk. These
uncertainties should be tackled at each treatment fraction by
re-optimizing the treatment plan based on a new CT scan-of-
the-day. Re-contouring of the daily CT scan can be done by
propagating the contour from the planning CT scan according
to the spatial correspondence obtained by image registration.
The registration should be performed within the time span
that new organ motion occurs (less than 30 seconds for the
prostate [4]), especially when a small margin is applied.
A computationally efficient optimization strategy for image
registration, that yields high accuracies at the same time,
is therefore required.

An iterative optimization scheme is typically used:

μk+1 = μk − γkDk, (2)

where k is the iteration number, γk is the step size at
iteration k, and Dk is a search direction in the parameter space.
Commonly used methods to determine the search direction
Dk are of first order (gradient descent) or second order
(Newton or quasi-Newton) descent type. Gradient descent,
however, only achieves a sublinear convergence rate for
nonconvex problems or a linear convergence rate for convex
problems [5], [6]. Especially for badly scaled problems, these
methods converge slowly. A common example of a badly
scaled problem is a rigid registration where the translational
parameters can have a magnitude in the order of 1-50 mm,
while the rotational parameters typically have a magni-
tude � 1. Second order derivative methods such as the quasi-
Newton method converge faster, however, the computation of
the Hessian matrix update is very time consuming, especially
when the number of image voxels and transformation
parameters are large [7]. For registration problems with a
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large number of degrees of freedom and a large image size,
it is not very efficient to calculate the search direction in a
deterministic way [6] (i.e. using all voxels to compute the
gradient). Klein et al. [8] proposed a stochastic gradient
descent method for image registration, which approximates the
gradient by only using a random subset of the image samples.
This approximation is much more efficient to compute, thereby
outperforming deterministic gradient descent and even quasi-
Newton methods [6]. For badly scaled problems, however,
SGD would suffer from a deteriorated convergence rate. To
overcome these shortcomings, preconditioning techniques
were proposed to turn a badly scaled optimization problem into
a properly scaled one, considering the curvature of the cost
function [5], [9]. The construction of these preconditioners can
however be computationally expensive in themselves, which
can easily mitigate the positive effect of faster convergence.

Two major groups of preconditioning techniques are widely
used in iterative optimization. One, sometimes named vari-
able preconditioning, uses the update rule: μk+1 = μk −
γkPkgk . The preconditioner Pk is updated at each iteration
(or at least regularly) to adapt to the local shape of the
cost function [10]–[14]. This group of methods is typically
used in machine learning to solve a linear system [10],
[12], [15], [16], but is also popular in image registration
[6], [17]. Popular preconditioners, such as Newton or quasi-
Newton methods [14], indeed exhibit superior convergence
rate compared to the standard gradient descent methods. These
improvements, however, come at a cost of the estimation of the
inverse Hessian, which alleviates some of the advantages and
can even lead to a net deceleration. Zikic et al. [14] proposed a
diagonal preconditioner for Demons registration. They applied
the preconditioner to the dense gradient of the energy function
using the inverse of the gradient magnitude. Besides its extra
computational effort at each iteration, its performance mainly
depends on the choice of a parameter ρ. This parameter is
problem specific for different dissimilarity measures, different
modalities and different transformation models, which may
limit its practicality. Another group of preconditioning tech-
niques, sometimes called traditional preconditioning, use a
static P, i.e. the preconditioner P is only calculated once before
the start of the optimization [5], [9], [10]. The Krylov subspace
method, sparse approximate inverse and Jacobi precondition-
ing techniques are often used [9]. Klein et al. [18] proposed
a preconditioner construction method only suitable for certain
cases of mono-modal image registration such as registration
of 3D chest CT scans (of approximately the same breathing
phase), which approximates the Hessian matrix of the cost
function based on an assumption that the intensity difference
between moving image and fixed image is zero after a perfect
registration. This method is additionally very time-consuming
when the number of transformation parameters and image size
increase: the required decomposition of the Hessian matrix
takes more than 3 hours for ∼105 parameters with an image
size of 450×300×150 voxels using an Intel Xeon E5620 CPU
with 8 cores running at 2.4 GHz.

In this paper we propose a novel fast preconditioned
stochastic gradient descent method (FPSGD) for image
registration. Based on a connection between the incremental

displacement of a voxel and the gradient change between
iterations, an efficient method to construct a diagonal
preconditioner for stochastic gradient descent methods is
derived. This diagonal preconditioner is different from
traditional methods which utilize the Jacobian as a diagonal
entry, and also does not rely on the Hessian matrix of the
cost function [18]. Experimental results on four different
datasets from different imaging modalities and different
organs show a promising performance of the proposed
method compared to the stochastic gradient descent method
and other preconditioner estimation methods.

II. BACKGROUND

A. Preconditioned Stochastic Gradient Descent

The PSGD is established as:

μk+1 = μk − γkPg̃k, (3)

where g̃k is a stochastic gradient evaluated on a random subset
of the image samples �s

F with a size of Ns and P is a positive
definite NP × NP matrix, with NP the number of parameters
that model the transformation, i.e. |μ|. When P = I, PSGD
will be reduced to the standard SGD method. The choice
of P = H−1 is another extreme where H−1 is the inverse
Hessian of the cost function at the optimal parameter �μ.
Obviously, the calculation of the inverse Hessian has the same
complexity as the original problem, and is not a time-efficient
preconditioner. The convergence of PSGD is guaranteed when
i) P is positive definite; and ii) the step size sequence is a
non-increasing and non-zero sequence with

�∞
k=1 γk = ∞

and
�∞

k=1 γ 2
k < ∞ [10], [11]. The step size sequence used

here is defined as follows [18]:

γk =
⎧⎨⎩1 if k = 0

η

(tk + 1)/A + 1
if k > 0

tk = max(0, tk−1 + sigmoid(−g̃T
k−1Pg̃k−2)), (4)

in which t0 and t1 equal to 0, η is a noise compensation factor
and A controls the decay speed of the step size sequence and
is typically set to 20. The noise introduced by the stochastic
procedure will influence the convergence rate, so inspired from
[18], [19] we use the following compensation factor:

η = E�gT Pg�
E�g̃T Pg̃� = E�gT Pg�

E�gT Pg� + E��T P�� , (5)

in which g is the exact gradient evaluated on all voxels in the
image, � the random noise added to the exact gradient and
E� ·� is the expectation of the norm. For the (preconditioned)
stochastic gradient descent method, the stop condition could
be chosen as the moment when the exact cost function value
does not decrease anymore. However, this would require an
exact calculation over all image samples, which would take
considerable time again. Therefore, the stop condition used
in this paper is simply a maximum number of iterations K ,
as is typically used [8], [19]. The details of PSGD are given
in Algorithm 1.
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Algorithm 1 Preconditioned Stochastic Gradient Descent
Require: Ns the number of samples for optimization, δ the

maximum allowed voxel displacement, K the number of
iterations

1: for k = 1, 2, . . . , K do
2: Randomly sample the whole image to get Ns samples
3: Calculate the gradient g̃k over Ns samples
4: Calculate the stepsize γk using Equation (4)
5: Estimate the preconditioner P
6: Update the parameter μk+1 using Equation (3)
7: Return μ̂

B. Related Work

There are several related works to estimate a preconditioner:

1) Hessian-type preconditioner (PSGD-H). The theoretical
optimal choice for the preconditioner is the inverse
Hessian at the optimal parameter �μ. However, it is
impossible to obtain the exact inverse Hessian before-
hand because �μ is unknown [18]. Based on the assump-
tion that the moving image is the same as the fixed image
after successful registration: F ≈ M(T(x;�μ)), and the
assumption that the deformation is small: ∂T/∂μ ≈ I,
Klein et al. [18] proposed a method to approximate
the Hessian-type preconditioner. However, a Cholesky
decomposition is needed for calculating the precondi-
tioner, with a computational complexity in the order of
O(N3

P ). Therefore, the computation time of this precon-
ditioner is very long when solving large scale problems,
which nullifies the improvements in the convergence.

2) Jacobi-type preconditioner (PSGD-J). For rigid and
affine registration problems, Klein et al. [18] assumed
that the rotation parameters were scaled by the average
voxel displacement caused by a small perturbation of
the rotation angle, and proposed a method to construct a
diagonal Jacobi-type preconditioner for PSGD. The ele-
ments pi of the diagonal preconditioner P are calculated
as follows:

pi =
��

�F

				 ∂T
∂θi

(x; μ0)

				2

dx/

�
�F

dx


− 1
2

. (6)

The complexity of this method is O(NP ), which is
very efficient. In this paper, we extend this method
to non-linear registration problems using a B-spline
parameterization.

3) AdaGrad [20] is a variable preconditioner estimation
method well known from the machine learning field.
This diagonal preconditioner is estimated as follows:

pk,i = 1�� j=k
j=0 g̃2

j,i + 	
, (7)

in which g̃ j,i is i -th entry of the stochastic gradient at
iteration j ( j ≤ k, with k the current iteration). The
complexity is the same as the Jacobi-type preconditioner,
i.e. O(NP ) for each iteration. Note that this precondi-
tioner changes at each iteration making it a variable

preconditioner, and that it becomes infinitesimally small
as k increases.

III. METHOD

A. Preliminaries

The aim of preconditioning is to scale the parameter space
so that the registration problem is easier to optimize. An ideal
preconditioner should take care of the relative scaling between
the parameters. Construction of a suitable preconditioner is a
challenge for a given problem. First, different transformation
models and different dissimilarity measures result in different
characteristic of the cost function, making the determination
of a preconditioner problem-specific. Second, the computation
of the preconditioner should be efficient performance-wise,
otherwise the overhead of the preconditioner computation will
consume the advantage in runtime reductions obtained from
the improvements of the convergence rate.

Inspired by our previous work [8, eq. (38)], [19, eq. (12)],
we found that the incremental voxel displacement relates to
the Jacobian of the transformation and the gradient of the cost
function. Also note that it is easier to estimate as well as
apply a diagonal preconditioner for image registration when
we recall Equation (3). Different from [8] and [19] where
only a scalar step size was proposed, here we construct a
vector preconditioner P = diag(p), with P of size NP . In the
following we will derive the i -th entry pi of the preconditioner
corresponding to the i -th entry of the transformation parame-
ters μ, such that the displacement induced by a change in that
parameter is equal to a predefined value δ. The incremental
displacement of a voxel x j in the fixed image domain �F

between iteration k and k + 1 for an iterative optimization
scheme is defined as:

dk(x j ) = T
�
x j ,μk+1


 − T
�
x j ,μk



. (8)

We approximate the incremental displacement dk using the
first-order Taylor expansion around μk :

dk(x j ) ≈ ∂T
∂μ

�
x j ,μk


 · �
μk+1 − μk



= J(x j ) · �μk+1 − μk



, (9)

in which J(x j ) = ∂T
∂μ

�
x j ,μk



is the Jacobian matrix of size

d × NP . All transformation models use the same derivations.
Using the optimization scheme (3), we obtain μk+1 − μk =
−γkPg̃k , and we can rewrite dk as:

dk(x j ) ≈ −γkJ(x j )Pg̃k . (10)

B. Diagonal Preconditioner Estimation

At iteration k = 0, i.e. prior to the start of the registration
process, the preconditioner is estimated. From Equation (4)
and Equation (10), we obtain d0(x j ) ≈ −J(x j )diag(p)g̃0.
In the remainder of the paper, we use the notation d and g̃
for simplification, instead of d0 and g̃0.

The Jacobi-type preconditioner from Equation (6) can be
rewritten to:

pi =
�

E�J i (x j )�2
�−1/2

, (11)
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where Ji (x j ) denotes the i -th column of the Jacobian matrix,
and � · � is the 
2 norm. Inspired by Equation (11), we can
create a diagonal preconditioner but in a different form. We
inspect the displacement �di� that is induced by a change 	μi

in the i -th transformation parameter, i.e. the displacement
generated by g̃i only:

�di (x j )� ≈
			−Ji (x j )pi g̃

i
			 = pi · �Ji (x j )� · �g̃i�. (12)

To constrain the voxel movement during the optimization, we
assume that the voxel displacement di is to be not larger than
δ: i.e �di (x j )� ≤ δ, ∀x j ∈ �F . In prior work [8] we found
that as a rule of thumb setting δ to the mean voxel size gives
satisfactory results, with the highest stable convergence rate.
Based on the distribution of the voxel displacements, there is
a weakened form for this assumption: P(�d i (x j )� > δ) < ρ,
where ρ is a small probability value often 0.05. According
to the Vysochanskij-Petunin inequality [21], we have the
following expression:

E�di (x j )� + 2
�

V ar�di (x j )� ≤ δ, ∀x j ∈ �F . (13)

Combined with Equation (12), we obtain the relationship
between the i -th entry pi of the preconditioner and the
maximum voxel displacement as follows:

pi

�
E(si (x j )) + 2

�
V ar(si (x j ))

�
≤ δ, (14)

where si (x j )= �Ji (x j )� · �g̃i�. The i -th entry of the precon-
ditioner is then defined as:

pi = δ

E(si (x j )) + 2
�

V ar(si (x j )) + ε
, (15)

where ε is a small number to avoid division by zero. Finally,
the full preconditioner P is obtained by repeating the above
procedure for each pi . Note that the number of samples Nsp

for preconditioner estimation is not equal to the total number
of voxels in the fixed image, but only a subset of all voxels
for computational efficiency.

C. Regularization

The assumption used to approximate a preconditioner, that
all transformation parameters should independently induce a
maximum voxel displacement δ, may be too strict or too
sensitive to noise in the measurements. For the B-spline
transformation, for example, this assumption forces all regions
to have a displacement δ, even regions that do not require
registration. Noise could come from an insufficient number of
samples x j used for the estimation, or from inexact evaluation
of the gradient. This could result in differences in the estimated
entries of the preconditioner that are expected to have similar
value. For the B-spline transformation model one would expect
that nearby control points would be scaled similarly, without
sudden sharp transitions. For the affine transformation on
the other hand, one would expect that scalings related to
translation parameters are more similar than those related
to rotational parameters. We therefore propose to optionally
regularize the procedure from Section III-B, such that the
i -th entry pi of the preconditioner is not treated completely

independent, but also takes into account the estimates of
the related parameters. Related parameters are those jointly
affected by a voxel x j (for an affine transformation these are
all parameters; for the B-spline only parameters in the compact
support region of x j ), and secondly by their similarity in
Jacobian contribution (for the affine transformation, intuitively
rotations and translations are to be treated separately). The
proposed regularization procedure is as follows:

si (x j ) = τ · si (x j ) + 1 − τ�
ωm

�
m �=i

sm(x j ) · ωm� �� �
regularization term

, (16)

where ωm weighs the contributions of similar parameters and
τ balances the contribution of entry i with the contributions
of the other parameters. We expect the weights ωm to hold the
property that a large weight is taken for similar Jacobian terms
and a small weight for dissimilar Jacobian terms (a larger
difference). Therefore, the weights ωm are chosen using a
Gaussian function:

ωm = exp

�
− (�Ji (x j )� − �Jm(x j )�)2

2σ 2



, (17)

in which σ is chosen as

σ = min(�Ji (x j )� − �Jm(x j )�)
max(�J i (x j )� − �Jm(x j )�)

, ∀m �= i. (18)

Note that ωm weighs the difference between rotation and trans-
lation. The selection of σ for the Gaussian function is based on
the observed range of Jacobian values for normalization. While
for the B-spline transformation model such a choice would
also be valid, a simplification is possible. For the B-spline
model the displacement of a voxel is only determined by the
control points in its support region. Furthermore, we expect
the influence on the displacement to be almost equal for each
control point in the support region. We therefore assume for
the B-spline model that the weights ωm = 1, simplifying
Equation (16) to si (x j ) = τ ·si (x j )+(1−τ )·�m �=i sm(x j )/Ncp ,
where Ncp is the number of control points.

D. Condition Number

Until now, we efficiently constructed a diagonal precon-
ditioner through the estimation from the Jacobian and the
gradient. However, the condition number of the estimated
preconditioner matrix P may still be high, which may influence
the stability of the optimization procedure. In the following,
we constrain the condition number of the preconditioner
matrix, to make the optimization procedure more robust and
stable [5], [9], [18]. The convergence rate of the registration
algorithm can be measured by the so-called condition number:
κ = λmax/λmin, where λmax and λmin are the largest and small-
est eigenvalue of P, respectively. It is common to constrain the
eigenvalues, such that the condition number will be closer to 1
[13], [18]. We introduce a user-defined maximum condition
number κmax for this purpose.

Define a diagonal eigenvalue matrix � =
diag(λ1, . . . , λNp ) for the preconditioner P. In this study,
as our preconditioner P is diagonal, the entries of P are
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equal to the eigenvalues of �: pi = λi ,∀i . To constrain the
eigenvalues, we replace small eigenvalues of P that make
κ > κmax using the following equation:

pi =
�

λmax/κmax, if λmax/λi > κmax,

λi , otherwise.
(19)

Then the constrained matrix from Equation (19) constitutes
the finally proposed static preconditioner.

E. Summary and Complexity Analysis

In summary, using P as defined in Equation (15), (16)
and (19), and γk as in Equation (4), Equation (3) results in
the Fast Preconditioned Stochastic Gradient Descent method
(FPSGD). The procedure is detailed in Algorithm 2.

Algorithm 2 Proposed Preconditioner Estimation
Require: Nsp the number of samples for preconditioner esti-

mation, δ the maximum allowed voxel displacement, τ the
regularization factor, κmax the maximum condition number

1: Compute the gradient g̃ on Nsp random samples
2: Randomly take Ns J samples {x j } from the fixed image
3: p = I, t = 0, z = 0, y = 0 
 initialization
4: for j = 1, 2, . . . , Ns J do 
 loop over the samples x j

5: Calculate the Jacobian J(x j )
6: for i = 1, 2, . . . , NP do 
 loop over the parameters
7: si = �J i (x j )� · �g̃i�
8: Regularize si with τ using Section III-C
9: zi = zi + si 
 update for the mean

10: yi = yi + s2
i 
 update for the variance

11: ci = ci + 1 
 increase counter
12: for i = 1, 2, . . . , NP do 
 loop over the parameters
13: qi = zi/ci + 2

�
(yi/ci ) − (zi/ci )2

14: pi = δ/(qi+ε)
15: Constrain the condition number of pi using κmax (see

Section III-D)
16: Return p

As we can see from Equation (15), each entry pi of
the proposed preconditioner is positive. Since the proposed
preconditioner is also diagonal and thus symmetric, it is easy
to derive that P is positive definite. P thus fulfills the necessary
conditions for a valid preconditioner, stated in Section II-A
and [5], [9]. After the condition number modification in
Equation (19), the proposed preconditioner makes the iterative
optimization more robust [5], [9], [18].

From Algorithm 2, we derive the time complexity of the
proposed method as follows:

• In step 1, the gradient g̃ is computed using Nsp samples.
Assuming that the cost function derivative for a single
sample has a constant and relatively low complexity,
the computational complexity of this step is O(Nsp).

• In step 4 to step 11, the Jacobian matrix J(x) of size
d × NP is computed using Ns J samples. Assuming that
the derivative of the transformation for a single sample
and a single parameter again has a constant and relatively
low complexity, the computational complexity of step 7 is

O(Ns J × NP ). The regularization term loops over all
other entries of the preconditioner and therefore has a
time complexity of O(Ns J × NP × NP ).

• From step 12 to 15, the time complexity of the condition
number modification is O(NP ).

• The total time complexity of the proposed FPSGD
method is then O(Nsp+Ns J ×NP +Ns J ×NP ×NP +NP ).
For rigid and affine transformations, NP and Ns J are
much smaller than Nsp , so the time complexity reduces
to O(Nsp), i.e. dominated by the number of samples.
For the B-spline transformation, due to the compact
support, there are only Ncp non-zero entries for each
sample. Then, the Jacobian calculation is O(Ns J Ncp),
and the regularization O(Ns J NP Ncp). In total for the
B-spline transformation, given that NP � Ncp , the time
complexity is O(Ns J NP ).

The PSGD-H method has a time complexity of O(N3
P ),

so for the same number of samples, the time complexity of
the proposed method is linear with respect to the number
of transformation parameters instead of a power of 3. The
FASGD and the proposed method both employ a linear time
complexity with respect to the number of parameters, whereas
empirically FASGD is about twice as fast to compute than the
proposed FPSGD.

IV. DATA SETS

A. Mono-Modal Data: SPREAD Lung CT Data

3D lung Computed Tomography (CT) images of 19 patients
were acquired during the SPREAD study [22]. A follow-
up scan was acquired for each patient after the baseline
scan with image sizes around 450 × 300 × 150 and voxel
sizes around 0.7 × 0.7 × 2.5 mm. The ground truth consists
of 100 anatomical corresponding points, which were semi-
automatically extracted using Murphy’s method [23]. The
algorithm first automatically selects 100 evenly distributed
landmarks within the pre-segmented lungs at characteristic
locations in the baseline image, and then predicts the cor-
responding points in the follow-up image. The corresponding
points are then inspected and corrected by two experts using
a graphical user interface.

B. Mono-Modal Data: Prostate CT Data

CT images of 18 patients treated for prostate cancer
with intensity-modulated radiation therapy were scanned
at Haukeland University Hospital in 2007 [3]. For each
patient, a planning CT image and 7-10 repeat CT images
were acquired out-of-room, resulting in a total of 179 CT
images. Each CT image contained 90 to 180 slices and
had a slice thickness of 2-3 mm. Each slice had an in-slice
pixel resolution in the range from 0.84 × 0.84 mm to
0.95 × 0.95 mm and totally 512 × 512 pixels. For each
CT image, the prostate was delineated by an expert, and
independently reviewed by another expert [3], and these
delineations serve as a ground truth for the evaluation.
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C. Multi-Modal Brain Data: RIRE

This brain dataset was acquired during the Retrospective
Image Registration Evaluation (RIRE) project. CT scans and
Magnetic Resonance Imaging (MRI-T1) are available for
9 patients. The CT images have sizes of 512 × 512 × 50 with
voxel sizes of 0.45×0.45×3 mm, while the MRI-T1 image is
of size 256×256×50 with voxel sizes of 0.85×0.85×3 mm.
Fiducial markers were implanted in each patient and served
as a ground truth [24]. These markers were manually erased
from the images and replaced with a simulated background
pattern.

D. Multi-Modal Brain Data: BrainWeb Simulated Data

T1 and T2 weighted 3D brain MR images were created
using the Simulated Brain Database from BrainWeb [25].
To generate brain image pairs, default settings provided by
BrainWeb were used with 3% noise and 20% intensity non-
uniformity. The brain images are of sizes 181×217×181 and a
voxel spacing of 1 mm isotropically. A mask of the brain was
extracted from the T1 image by FSL-BET [26] and the same
mask was used for the T2 image. 100 randomly generated
displacement vector fields (DVFs) serve as the ground truth
deformation fields. The DVFs are isotropically generated in
three dimensions within the brain mask and the maximum
magnitude of DVFs is chosen as 5, 8, 10 and 15 mm. These
DVFs are then smoothed by a Gaussian filter with a standard
deviation between 5 and 40 mm.

V. EXPERIMENTS

In this section, experimental settings are given to test the
performance of the proposed method. The proposed FPSGD
method is compared with the following methods:

1) Fast adaptive stochastic gradient descent (FASGD) [19],
which is a state-of-the-art first order stochastic opti-
mization method that does not use preconditioning.
For rigid and affine registration, the diagonal of the
preconditioner P is chosen as 1 for the translational
parameters and 1/100000 for the others. This reflects
that the parameters μ corresponding to rotation have in
general a much smaller range than parameters corre-
sponding to translation. This choice is the default setting
of elastix [27], shown to work well in practice.

2) Jacobi-type preconditioner (PSGD-J) [18], where a diag-
onal preconditioner is chosen according to Equation (6).
The stepsize is automatically estimated using the method
provided in [19].

3) Hessian-type preconditioner (PSGD-H) [18], see
Section II-B. This preconditioner is only suitable
for mono-modal registration, and therefore only
implemented for the mean squared intensity difference
(MSD) dissimilarity measure.

4) AdaGrad [20], see Section II-B, which is a variable
preconditioner estimation method well known from the
machine learning field.

All these methods, including the proposed method, were
implemented in C++ and are available as open source

software via the elastix package. All methods were
implemented using data parallelism by processing the
sampled image voxels concurrently. All experiments were
performed on a workstation with an Ubuntu Linux OS, which
has 12 cores running at 3.6 GHz and 64 GB of memory. All
experiments are carried out in multi-threaded mode. Detailed
settings are presented in Section V-A.

A. Experimental Setup

To validate the generality of the proposed preconditioner,
the experiments are performed on mono-modal as well as
multi-modal image registration. For each group, different
transformation models are used, namely the rigid, affine and
B-spline transformation models [27]. For rigid and affine
image registration, only one resolution of 500 iterations
is used, to be able to more easily compare convergence
properties. Adding more resolutions would yield different
optimization starting points at later resolutions, making
this comparison hard. For B-spline image registration,
a realistic three-level multi-resolution framework is used on
the SPREAD and prostate CT data with a standard deviation
of the Gaussian smoothing filter of 2, 1 and 0.5 mm, and
500 iterations for each resolution. For the BrainWeb data, we
used only one resolution for B-spline registration, where one
resolution is easier for comparing convergence rates between
methods than when using multiple resolutions. 1000 iterations
were taken to ensure the registration converges.

The number of samples Ns used for computing g̃k was the
same for all methods and set to 5,000 [19]. Different methods
used different number of samples Nsp for the preconditioner
estimation or step size estimation. The influence of the number
of samples for the preconditioner estimation was tested for
the proposed FPSGD method (see Section VI-A.3), and in
the remainder experiments, Nsp was chosen as 50,000 for
FPSGD. For PSGD-J and FASGD, Nsp is 5,000 for each
resolution. For PSGD-H the number of samples Nsp were set
to 100,000 in resolution 1 and 2, and 500,000 in resolution 3,
according to previous study [18]. The number of samples Ns J

has a same setting for FASGD, PSGD-J and the proposed
FPSGD method, which was chosen equal to the number
of transformation parameters NP at each resolution, while
1000 samples were chosen when rigid or affine transformation
was applied. For instance in the SPREAD experiment NP

is around 4,000, 15,000 and 90,000 samples for the three
resolutions, respectively. The user pre-defined value δ for
FASGD and the proposed FPSGD method is chosen as the
mean length of the voxel size. A = 20 is used for all tested
methods.

In Section III, there are two free parameters which would
affect the performance of the proposed FPSGD method: the
regularization factor τ and the maximum condition number
κmax. To assess the influence of these two parameters, we first
vary the regularization factor τ using a fixed κmax, and then
vice versa. The regularization factor τ was selected between
0 and 1, using increments of 0.2, so there were 6 variations.
For these tests, κmax = 2 was chosen for the B-spline
registration, while for rigid and affine registration no restriction
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TABLE I
THE INFLUENCE OF THE REGULARIZATION PARAMETER τ IN AFFINE REGISTRATION FOR THE SPREAD LUNG CT DATA, FOR THE PROPOSED

FPSGD METHOD. WE USED THE MSD DISSIMILARITY MEASURE, 1 RESOLUTION, 500 ITERATIONS AND κMAX = ∞. NOTE THAT

1 REGISTRATION FAILED FOR FPSGD τ = 1.0

is needed on the condition number, i.e. κmax = ∞. In the
second group of tests, a fixed τ = 0.6 was chosen and
κmax ∈ {1, 2, 4, 8, 16} were tested for the B-spline registrations
of the SPREAD data and the BrainWeb data. The results are
reported in Section VI-A.

B. Convergence and Runtime Performance

The performance of the tested methods is first evaluated
in terms of the convergence rate and the resulting speed-up
in runtime. To measure the convergence rate, the dissimilarity
measure (MSD or MI) was calculated at each 5th iteration. This
calculation was performed deterministically using all samples
from the fixed image. FASGD is chosen as the baseline method
and we compare the exact cost function value of all other
methods against the exact cost function value of FASGD at its
final solution �μref . For each method, we counted the number
of iterations I required to obtain a cost function value that
is equal to or smaller than that of the baseline method using
C(μk) ≤ C(�μref) for the first time.

To assess runtime performance, several computations are
timed and recorded: the time test it takes to estimate the
preconditioner P and the time titer each iteration takes. When
I equals the number of iterations needed for reaching the same
cost function value as FASGD, then the pure registration time
is defined as tpure = titer · I . The total registration time is
then ttotal = test + tpure. The time test consists of the time
to estimate the preconditioner and/or the step size γ0 for the
different methods, i.e. for FASGD test is the estimation time of
the step size, for PSGD-J and PSGD-H both are included and
for the proposed FPSGD method test is the estimation time of
the preconditioner.

C. Evaluation Measures

We used three measures to evaluate the registration accu-
racy, namely the Euclidean distance (ED) of corresponding
points, the Dice similarity coefficient (DSC) of manual delin-
eations, and the average residual deformation of random initial
deformations. All registration accuracy results were analyzed
with the Wilcoxon signed-rank test to evaluate statistical
differences of these methods compared to the FASGD method.

The Euclidean distance between corresponding points is
computed using ED = 1

Z p

�Z p
i=1 �T�μ(pi

F ) − pi
M�, with

pF and pM the corresponding points, and T the transformation
at iteration I . Z p is the number of corresponding points,

TABLE II
THE INFLUENCE OF THE REGULARIZATION PARAMETER τ IN B-SPLINE

REGISTRATION FOR THE SPREAD LUNG CT DATA, FOR THE

PROPOSED FPSGD METHOD. WE USED THE MSD DISSIMILARITY

MEASURE, 3 RESOLUTIONS, 500 ITERATIONS, AND κMAX = 4

which is 100 and 8 for SPREAD lung CT data and RIRE
brain data, respectively. This measure was used for SPREAD
data and RIRE brain data, which had 100 corresponding points
and 8 corner points, respectively. The DSC was chosen as a
quantitative evaluation measure of the registration accuracy
for the delineated prostate region: DSC = 2|RM ∩RF |

|RM |+|RF | , where
RF and RM are the manually delineated region in the repeat
CT scan and the propagated region in the planning CT scan,
respectively. The average residual deformation inside the brain
mask �F was used to measure the recovery performance of
initial deformation T init for BrainWeb data: Resi(T init, T�μ)=

1
|�F |

�
xi∈�F

�T�μ(T init(xi ) − xi )�.

VI. RESULTS

A. Parameter Sensitivity Analysis

In this section we evaluate the influence of several important
parameters on SPREAD lung CT data: the regularization
factor τ , the condition number κmax and the number of samples
Nsp . After the evaluation, we chose the optimal parameters for
the remainder of the paper.

1) Regularization Factor τ : Here we evaluate the influence of
the parameter τ , using the SPREAD data. The results can be
found in Table I and Table II. It can be seen from Table I that
the regularization factor τ = 1.0 (no regularization) gave the
worst performance for affine registration, and in some cases
resulted in failed registrations. Setting the regularization factor
τ = 0.0 is another extreme meaning that the regularization
term completely determines the estimation of the precondi-
tioner. From the B-spline results in Table II, it can be seen
that the convergence rate is much slower for τ = 0 than for



QIAO et al.: EFFICIENT PRECONDITIONER FOR SGD OPTIMIZATION OF IMAGE REGISTRATION 2321

TABLE III
THE INFLUENCE OF κMAX ON B-SPLINE REGISTRATION ON THE SPREAD LUNG CT DATA, FOR THE PROPOSED FPSGD METHOD.

WE USED THE MI DISSIMILARITY MEASURE, 3 RESOLUTIONS, 500 ITERATIONS, AND τ = 0.6

Fig. 1. Convergence plots in the experiments of the SPREAD lung CT data, showing the cost function value (MSD) against the iteration number.
(a) Example of κmax difference. (b) Example of affine registration. (c) Example of B-spline registration.

TABLE IV
THE INFLUENCE OF THE NUMBER OF SAMPLES Nsp ON THE SPREAD LUNG CT DATA, FOR THE PROPOSED FPSGD METHOD.

WE USED THE MSD DISSIMILARITY MEASURE, B-SPLINE TRANSFORMATION, 3 RESOLUTIONS,
500 ITERATIONS, κMAX = 4 AND τ = 0.6. K INDICATES THE NUMBER OF THOUSANDS

other choices of τ , even though the registration accuracy is
almost similar. The experimental results show that there was
no statistical difference (p < 0.001) between the different
choices of τ (0.0 < τ < 1.0) regarding the accuracy. This
reflects that the proposed preconditioner estimation method is
quite robust to the selected τ in this application with respect
to registration accuracy. With respect to the convergence rate
larger values of τ give better results. We therefore conclude
that a regularization factor τ between 0.6 and 0.8 gives the best
overall results. In the remainder of the paper we use τ = 0.6.

2) The Condition Number κmax: The maximum condition
number κmax is especially important for non-rigid registration.
Table III presents the registration accuracy with respect to κmax
for the SPREAD study. As we can see, different κmax obtained
a similar accuracy. However, fewer iterations were needed
for a larger κmax. From the convergence plot in Figure 1a,
it can be observed that the optimization converged faster for
κmax ≥ 2. However, for κmax ≥ 8, the plot exhibits more
oscillating behavior, suggesting a less stable optimization.
In the remainder of the paper we set κmax = 4 for B-spline
registration (and κmax = ∞ for rigid and affine registration).

3) The Number of Samples Nsp: To reduce the computation
time of preconditioner estimation, we select a subset of sam-
ples from all image voxels. This approach would inherently
influence the estimation accuracy and speed. To validate this
influence, we performed an experiment with a varying number
of samples. The experiment was performed on SPREAD lung
CT data, with MSD and the B-spline transformation model.
Three resolutions and 500 iterations at each resolution are
applied. The results of the influence of the number of samples
are given in Table IV. It can be clearly seen that the estimation
time increases when increasing Nsp . The accuracy improves
for larger Nsp , but only slightly. In summary, Nsp = 50, 000
samples gives a good trade-off between estimation time and
accuracy, and is chosen in the remainder of this paper.

B. Comparison of Different Methods

In this section we compare different preconditioner esti-
mation methods on four datasets: SPREAD lung CT data,
prostate CT data, RIRE brain data and BrainWeb simulated
data.
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TABLE V
METHOD COMPARISON FOR AFFINE REGISTRATION ON THE SPREAD LUNG CT DATA. WE USED THE

MSD DISSIMILARITY MEASURE, 1 RESOLUTION, 500 ITERATIONS, τ = 0.6 AND κMAX = ∞

1) SPREAD Lung CT Data: The overall results of the exper-
iments on affine registration for the SPREAD lung CT data
comparing the different methods are given in Table V. It shows
that the proposed FPSGD method took fewer iterations to
obtain the same cost function value C(�μref ) than FASGD and
PSGD-J. The speed-up in terms of number of iterations of
the proposed FPSGD method is about 10. The improvements
of the proposed FPSGD method compared to FASGD and
PSGD-J in the convergence rate are also shown in Figure 1b.
PSGD-H required fewer iterations than the proposed FPSGD
method. The computation of the preconditioner however took
somewhat longer, because the self-Hessian is calculated at
each voxel and the number of samples used for the self-
Hessian is larger than for the other methods, resulting in
an overall decrease in performance. The overall speed-up
in terms of runtime is about 5 for the proposed FPSGD
method, compared to 1.6, 1.0 and 1.6 for PSGD-J, PSGD-H
and AdaGrad, respectively. The Euclidean distance error of
FASGD and the proposed FPSGD method is around 5 mm,
while about 10 mm for other methods. The p-value of the
Wilcoxon signed-rank test of all methods compared to FASGD
is smaller than 0.001, indicating a statistically significant
difference. The differences are very small for the proposed
FPSGD method, i.e. smaller than 0.5 mm, while quite large
for PSGD-J, PSGD-H and AdaGrad, i.e. more than 5mm.

The overall results of the experiments on B-spline registra-
tion for the SPREAD lung CT data are given in Table VI. For
all three resolutions, the proposed method took fewer iterations
to obtain the same cost function value as FASGD. Although
the proposed method took somewhat longer to estimate the
preconditioner compared to FASGD, fewer iterations were
required, resulting in an overall improvement of runtime. For
the proposed FPSGD method, the overall speed-up is of a
factor of 2. The number of iterations used for PSGD-H to
obtain the same cost function value as FASGD is lower than
both FASGD and the proposed FPSGD method, which can also
be observed from the convergence plots in Figure 1c. However,
the overhead of computing the preconditioner increased sub-
stantially for the PSGD-H method: around 300 seconds for
∼105 parameters in resolution 3, while the FPSGD method
required ∼1s. The speedup factor in terms of overall runtime to
obtain the same cost function value as FASGD is consequently
much smaller than 1 for PSGD-H. The ED errors in Table VI
are evaluated at the end of resolution 3. All methods FASGD,
PSGD-H and the proposed FPSGD method obtained a mean
ED error around 1.6 mm (within one voxel), while PSGD-J is
around 6.9 mm (about 5 voxels). The p-value of the Wilcoxon

TABLE VI
METHOD COMPARISON FOR B-SPLINE REGISTRATION ON THE

SPREAD LUNG CT DATA. WE USED THE MSD DISSIMILARITY

MEASURE, 3 RESOLUTION, 500 ITERATIONS,
τ = 0.6 AND κMAX = 4

signed-rank test of PSGD-H, AdaGrad and the proposed
FPSGD method compared to FASGD is smaller than 0.05,
indicating statistical difference.

2) Prostate CT Data: The overall results of the experiments
on B-spline registration for the prostate CT data are given in
Table VII. Note that PSGD-H is only suitable for the MSD
measure which is not used for this dataset. The proposed
FPSGD method took fewer iterations to obtain the same cost
function value C(�μref) than FASGD and PSGD-J. The speed-
up in terms of number of iterations of FPSGD is about 5. The
proposed FPSGD method took fewer iterations than AdaGrad
in the first two resolutions while FASGD and PSGD-J have
almost the same number of iterations. However, the estimation
time of the preconditioner for the proposed FPSGD method
is about 1.3 seconds longer than AdaGrad, which resulted in
a smaller speedup factor than AdaGrad compared to FASGD.
The improvements of the proposed FPSGD method compared
to other methods in the convergence rate are also shown in
Figure 2a.

The Dice overlap of all methods is around 0.87. The p-value
of the Wilcoxon signed-rank test of PSGD-J, AdaGrad com-
pared to FASGD is smaller than 0.05, indicating a statistically
significant difference. Although significant, the differences
are very small for AdaGrad, i.e. less than 0.01, while the
performance of PSGD-J is really worse being 9 percent point
smaller than FASGD.

3) RIRE Brain Data: Table VIII presents the runtime dif-
ferences and the mean Euclidean distance error of the RIRE
experiments for all methods. We can observe that much
fewer iterations are required for the proposed FPSGD method
compared to FASGD, while PSGD-J and AdaGrad used almost
all number of iterations. The speed-up of the proposed FPSGD
method in iterations is a factor of 5. It can also be seen that the
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Fig. 2. Convergence plots for different datasets, showing the negative cost function value (MI) against the iteration number. (a) The prostate CT
data example. (b) The RIRE brain data example. (c) The BrainWeb simulated data example.

TABLE VII
METHOD COMPARISON FOR B-SPLINE REGISTRATION ON THE

PROSTATE CT DATA. WE USED THE MI DISSIMILARITY MEASURE,
3 RESOLUTIONS, 500 ITERATIONS, τ = 0.6 AND κMAX = 4

speedup in runtime is around 7 for the FPSGD method. The
convergence plots in Figure 2b show substantial improvement
in convergence rate for the proposed FPSGD method.

The median Euclidean distance of 9 patients before reg-
istration is 21.7 mm. PSGD-J and AdaGrad is inferior to
the other methods, with a ED around the initial ED, which
means that these two methods failed in registration. Although
the proposed FPSGD obtained a smaller ED than FASGD,
the Wilcoxon signed-rank test shows no statistical difference
(p > 0.05). PSGD-J and AdaGrad have a significantly larger
ED than FASGD.

4) BrainWeb Simulated Brain Data: The results of the Brain-
Web experiment are shown in Table IX and Figure 2c. The
number of iterations for the proposed FPSGD method to obtain
the same cost function value (MI) as FASGD is around 300,
resulting in a runtime speed-up of about a factor of 3.3.
Both PSGD-J and AdaGrad used about the same number
of iterations as FASGD. These improvements can also be
observed from the convergence plots in Figure 2c.

The mean residuals of the different methods show a sim-
ilar result, except for PSGD-J. The Wilcoxon signed-rank
test between FASGD and other methods shows a significant
statistical difference ( p < 0.05). However, the difference is
very small (around 0.1) for the proposed FPSGD method and
AdaGrad, while very large for PSGD-J which means that most
registrations of PSGD-J failed.

VII. DISCUSSION

The experimental results show that the proposed FPSGD
method works well in both mono-modal as well as

multi-modal image registration, in combination with
different transformation models and dissimilarity measures,
showing that the proposed method is generic for different
registration problems. Compared to FASGD which is not
preconditioned, the proposed FPSGD method not only obtains
the same registration accuracy, but moreover improves the
convergence. The performance of PSGD-J is not good
as FASGD for affine registration, which might be not a
suitable preconditioner for image registration. Without the
computational burden of the Hessian matrix calculation and
decomposition, the proposed FPSGD method takes much less
time than PSGD-H to construct a preconditioner. Additionally,
the proposed method requires only a cost function gradient
and a set of transformation Jacobians, while PSGD-H also
needs the implementation of the self-Hessian. Compared to
AdaGrad [20], the proposed method has a slightly longer
estimation time but converges faster, resulting in a shorter
overall runtime. The proposed method does not need to store
and accumulate the squared gradients in the previous step and
avoids infinitesimally small updates for later iterations. Most
importantly, the proposed FPSGD method is more generic for
different modalities and not limited to mono-modal problems
like PSGD-H. Note that in this paper the preconditioning
methods are discussed in a stochastic setting, however,
in principle they can be applied in a deterministic setting also.

Compared to FASGD, the main improvement of the pro-
posed FPSGD method is in the convergence rate, inducing
a speedup in runtime of a factor of 2.0-6.0 depending on
the application. Specifically, the proposed FPSGD method
used 0.25 seconds to obtain the same registration accuracy as
FASGD for the affine registration on the SPREAD lung CT
data with image sizes of 450 ×300 ×130, while FASGD took
1.45 seconds. For the prostate CT dataset, the proposed method
achieved a speedup of around 2 times compared to FASGD for
B-spline based registration, resulting in a total runtime of 5.3 s.
This enables near real-time daily treatment adaptation, and
thus a reduction in treatment margins and robustness criteria
that are included in the dosimetric treatment planning. The
proposed FPSGD method needs much less computation time
for the preconditioner estimation than PSGD-H: ∼2 seconds
vs ∼330 seconds for ∼105 transformation parameters. This
large difference between different methods in the computation
time of preconditioner estimation can be attributed to the
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TABLE VIII
METHOD COMPARISON FOR RIGID REGISTRATION ON THE RIRE BRAIN DATASET. WE USED THE MI DISSIMILARITY MEASURE,

1 RESOLUTION, 500 ITERATIONS, τ = 0.6 AND κMAX = ∞

TABLE IX
METHOD COMPARISON FOR B-SPLINE REGISTRATION ON THE BRAINWEB DATASET. WE USED THE MI DISSIMILARITY MEASURE,

1 RESOLUTION, 1000 ITERATIONS, τ = 0.6 AND κMAX = 4

complexity of different methods. For PSGD-H, the complexity
is high, mainly due to the Cholesky decomposition of O(N3

P ),
i.e. depending on the number of transformation parameters,
while for the FPSGD method the complexity is only linear to
the number of parameters O(NP ). In addition, the runtime per
iteration for the PSGD-H method increased to ∼780 ms for
NP ≈ 105 transformation parameters, due to the multiplication
of a full matrix P instead of only a diagonal matrix for
FPSGD (∼45 ms per iteration for the MSD dissimilarity
measure). We therefore conclude that the proposed FPSGD
method converges faster than the FASGD method and is more
time-efficient than the PSGD-H method.

The proposed preconditioner shows favorable performance
characteristics in terms of runtime, which has tremendous
benefits in many applications. This might for example enable
real-time daily adaptation of radiation therapy, which has
benefits for the patient in terms of adjusted robustness setting
and/or reduced treatment margins for the dosimetric treatment
planning, potentially resulting in a reduction of adverse
side effect of the treatment [2]. In addition, e.g. atlas-based
segmentation approaches can gain in performance [1].

There are two parameters that influence the performance
of the proposed FPSGD method: the regularization factor τ
and the maximum condition number κmax. We validated the
influence of both parameters experimentally. We showed that
the extreme cases (τ = 0 and τ = 1) yielded suboptimal
results, indicating that regularization of the preconditioner
is required. The proposed regularization method performs
a Gaussian smoothing, considering entries with a similar
Jacobian response. This choice reflects the observation that
transformation parameters that have a similar effect on the
displacement, require similar preconditioning, and vice versa.
For example, for the affine transformation, rotation and trans-
lation require different scaling. The experiments showed that
the choice τ = 0.6 yielded good results for all applications.
For ill-scaled problems, κmax serves as a safe guard to prevent
extreme values in the preconditioner. In the experiment on the
SPREAD data, different κmax obtained a similar registration
accuracy, however, the convergence has some oscillations for

κmax > 4 in the second and third resolution in Figure 1a. For
the BrainWeb data, best results were acquired with κmax = 4
and the convergence plots are also very stable. Overall, the best
choice of κmax is between 2 and 4 for nonrigid registration,
while κmax = ∞ can be used for rigid and affine registration.

To further improve the proposed FPSGD method the follow-
ing may be considered. Firstly, the proposed preconditioning
scheme detailed in Algorithm 2 is very suitable for further
acceleration on a Graphics Processing Unit (GPU). It could be
easily applied for the parallel computation of the gradient and
the preconditioner, therefore this will be beneficial when going
to variable preconditioning. Secondly, our method can be com-
bined with the variable preconditioning techniques for difficult
problems where the curvature of the cost function changes
iteratively, for example just to minimize the expectation of
g̃T

k Pg̃k + μT
k Pμk recently proposed by Li [16]. Furthermore,

a stopping condition other than the number of iterations will
be required to practically take advantage of the convergence
improvements. An interesting option suitable in a stochastic
setting is a moving average of the noisy gradients over a few
iterations.

VIII. CONCLUSION

In this paper, we proposed a generic preconditioner esti-
mation method for the stochastic gradient descent optimizers
used in medical image registration. Based on the observed
distribution of the voxel displacements, this method auto-
matically constructs a diagonal preconditioner, avoiding the
time-consuming calculation of the Hessian matrix. All tested
methods obtained a similar final registration accuracy in all
tested datasets. The proposed FPSGD optimizer, however,
outperforms FASGD and PSGD-J in terms of convergence
rate, while yielding a similar computational overhead. While a
previous method (PSGD-H) even further reduces the required
number of iterations, it comes at a substantial overhead in
computing the preconditioner, especially for high dimensional
transformations. Additionally, PSGD-H can only be used in
mono-modal problems and requires the implementation of a
Hessian matrix computation.
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We conclude that the proposed method can act as a generic
preconditioner for optimization in registration methods,
yielding similar accuracy as gradient descent routines while
substantially improving the convergence rate.

ACKNOWLEDGMENTS

The RIRE project is acknowledged for providing a platform
for rigid registration evaluation. Dr. M.E. Bakker and J. Stolk
are acknowledged for providing a ground truth for the
SPREAD study data used in this paper.

REFERENCES

[1] M. A. Viergever, A. Maintz, S. Klein, K. Murphy, M. Staring, and
J. P. W. Pluim, “A survey of medical image registration—Under review,”
Med. Image Anal., vol. 33, pp. 140–144, Oct. 2016.

[2] W. Li, D. A. Jaffray, G. Wilson, and D. Moseley, “How long does it
take? An analysis of volumetric image assessment time,” Radiotherapy
Oncol., vol. 119, no. 1, pp. 150–153, 2016.

[3] S. Thörnqvist et al., “Degradation of target coverage due to inter-
fraction motion during intensity-modulated proton therapy of prostate
and elective targets,” Acta Oncol., vol. 52, no. 3, pp. 521–527, 2013.

[4] P. Kupelian et al., “Multi-institutional clinical experience with the
calypso system in localization and continuous, real-time monitoring of
the prostate gland during external radiotherapy,” Int. J. Radiat. Oncol.
Biol. Phys., vol. 67, no. 4, pp. 1088–1098, 2007.

[5] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed. New York,
NY, USA: Springer, 2006, pp. 497–528.

[6] S. Klein, M. Staring, and J. P. Pluim, “Evaluation of optimization
methods for nonrigid medical image registration using mutual infor-
mation and b-splines,” IEEE Trans. Image Process., vol. 16, no. 12,
pp. 2879–2890, Dec. 2007.

[7] V. Cevher, S. Becker, and M. Schmidt, “Convex optimization for
big data: Scalable, randomized, and parallel algorithms for big data
analytics,” IEEE Signal Process. Mag., vol. 31, no. 5, pp. 32–43,
Sep. 2014.

[8] S. Klein, J. P. W. Pluim, M. Staring, and M. A. Viergever, “Adaptive
stochastic gradient descent optimisation for image registration,” Int. J.
Comput. Vis., vol. 81, no. 3, pp. 227–239, 2009.

[9] M. Benzi, “Preconditioning techniques for large linear systems: A sur-
vey,” J. Comput. Phys., vol. 182, no. 2, pp. 418–477, 2002.

[10] C. Li, C. Chen, D. Carlson, and L. Carin, “Preconditioned stochastic
gradient langevin dynamics for deep neural networks,” in Proc. 30th
Conf. Artif. Intell. (AAAI), 2015, pp. 1788–1794.

[11] H. Jiang, G. Huang, P. A. Wilford, and L. Yu, “Constrained and pre-
conditioned stochastic gradient method,” IEEE Trans. Signal Process.,
vol. 63, no. 10, pp. 2678–2691, May 2015.

[12] D. E. Carlson, E. Collins, Y.-P. Hsieh, L. Carin, and V. Cevher,
“Preconditioned spectral descent for deep learning,” in Proc. Adv. Neural
Inf. Process. Syst., 2015, pp. 2971–2979.

[13] Y. Dauphin, H. De Vries, and Y. Bengio, “Equilibrated adaptive learning
rates for non-convex optimization,” in Proc. Adv. Neural Inf. Process.
Syst., 2015, pp. 1504–1512.

[14] D. Zikic, M. Baust, A. Kamen, and N. Navab, “A general precondition-
ing scheme for difference measures in deformable registration,” in Proc.
Int. Conf. Comput. Vis., Nov. 2011, pp. 49–56.

[15] R. H. Byrd, S. L. Hansen, J. Nocedal, and Y. Singer, “A stochastic quasi-
Newton method for large-scale optimization,” SIAM J. Optim., vol. 26,
no. 2, pp. 1008–1031, 2016.

[16] X. Li, “Preconditioned stochastic gradient descent,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 29, no. 5, pp. 1454–1466, May
2018.

[17] Y. Qiao, Z. Sun, B. P. Lelieveldt, and M. Staring, “A stochas-
tic quasi-Newton method for non-rigid image registration,” in Proc.
Int. Conf. Med. Image Comput. Comput.-Assist. Intervent, 2015,
pp. 297–304.

[18] S. Klein, M. Staring, P. Andersson, and J. P. Pluim, “Preconditioned
stochastic gradient descent optimisation for monomodal image registra-
tion,” in Proc. Int. Conf. Med. Image Comput. Comput.-Assist. Intervent.,
2011, pp. 549–556.

[19] Y. Qiao, B. van Lew, B. P. F. Lelieveldt, and M. Staring, “Fast
automatic step size estimation for gradient descent optimization of image
registration,” IEEE Trans. Med. Imag., vol. 35, no. 2, pp. 391–403,
Feb. 2016.

[20] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization,” J. Mach. Learn. Res.,
vol. 12, pp. 2121–2159, Jul. 2011.

[21] D. Vysochanskij and Y. I. Petunin, “Justification of the 3σ rule
for unimodal distributions,” Theory Probab. Math. Statist., vol. 21,
pp. 25–36, 1980. [Online]. Available: http://probability.univ.kiev.ua/tims/
and https://www.statindex.org/journals/1862/21.bib?action=volume&
controller=journals&id=1862&vol=21

[22] J. Stolk et al., “Progression parameters for emphysema: A clinical
investigation,” Respiratory Med., vol. 101, no. 9, pp. 1924–1930, 2007.

[23] K. Murphy et al., “Semi-automatic construction of reference standards
for evaluation of image registration,” Med. Image Anal., vol. 15, no. 1,
pp. 71–84, 2011.

[24] J. West et al., “Comparison and evaluation of retrospective intermodality
brain image registration techniques,” J. Comput. Assist. Tomogr., vol. 21,
no. 4, pp. 554–568, 1997.

[25] C. A. Cocosco, V. Kollokian, R. K.-S. Kwan, and A. C. Evans,
“BrainWeb: Online interface to a 3D MRI simulated brain database,”
NeuroImage, vol. 5, no. 4, p. S425, 1997.

[26] S. M. Smith, “Fast robust automated brain extraction,” Hum. Brain
Mapping, vol. 17, no. 3, pp. 143–155, Sep. 2002.

[27] S. Klein, M. Staring, K. Murphy, M. A. Viergever, and J. P. Pluim,
“Elastix: A toolbox for intensity-based medical image registration,”
IEEE Trans. Med. Imag., vol. 29, no. 1, pp. 196–205, Jan. 2010.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


