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1
Introduction

1.1 Pulmonary anatomy and respiratory physiology

The human lungs consist of a right and left lung, located in the thoracic cavity on
either side of the heart [1]. The right lung, with three lobes, is generally larger than
the left, which consists of two lobes. The lungs are surrounded by a thin tissue layer
called the pleura. Pulmonary blood vessels and airways pass into the lungs at the root,
a central recession called the hilum [2]. Pulmonary blood vessels can be divided into
arteries and veins, as shown in Figure 1.1. Pulmonary arteries deliver oxygen-poor
blood from heart to the lungs, and the pulmonary veins drain oxygen-rich blood from
the lung to the heart. The main pulmonary artery is connected to the right ventricle
of the heart by the pulmonary trunk, and branches into the right and left pulmonary
artery. There are four main pulmonary veins, two for each lung, connected to the
left atrium of the heart. The pulmonary airways, called bronchi, branch out from
the trachea into lungs. The bronchi divide into smaller and smaller branches, and
eventually end in cluster of small sacs, called alveoli, where gasses are exchanged.
The thin layer of cells between the alveoli is called the interstitium, which contains
blood vessels and cells that help support the alveoli.

The lungs are the major organs of the respiratory system, and their primary
function is gas exchange [1]. With each breath, air first enters the nose or mouth,
passes through the larynx and the trachea, and splits into the bronchi. Within the
lungs, the bronchial trees deliver the air to the terminals of the alveoli [3]. In the
alveoli, oxygen from the air diffuses through the walls of the alveoli into the blood
of the pulmonary capillaries. Carbon dioxide, a waste production of the metabolism,
transfers from the blood to the alveoli, where it can be breathed out through the
airway [4], as shown in Figure 1.2. Oxygenated blood is collected from the capillaries
through the pulmonary veins back to the heart, and deoxygenated blood is carried by
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Figure 1.1: Lung anatomy which (modified and adopted from the website of https:
//en.wikipedia.org/wiki/File:2119_Pulmonary_Circuit.jpg)

the pulmonary arteries from the heart to the lungs. This makes the pulmonary blood
circulation unique [5]. since blood circulation in all other organs carries oxygenated
blood through the arteries and deoxygenated blood through the veins.

1.2 Pulmonary diseases

The lung is an organ with a complex structure, expanding and shrinking thousands
times a day, during inhalation and exhalation [6]. The lung can be affected by a
variety of diseases in specific parts of the complex system influencing its function.
There are several diseases, such as asthma, bronchiectasis, bronchitis and chronic
obstructive pulmonary disease, that affect the airways and obstruct gas delivery [7].
Some lung diseases, like pneumonia and asbestosis, could can cause the damage of
in alveoli [8]. Various lung diseases, for example interstitial lung disease, affect the
interstitium, which is the thin layer between the lungs’ alveoli. Diseases, such as pul-
monary embolism, pulmonary hypertension and chronic thromboembolic pulmonary
hypertension, affect the pulmonary blood vessels. Gas exchange and blood circulation
can be influenced by damage in any structure of the lungs. Two diseases that can
affect the lungs have a special focus in this thesis: systemic sclerosis and chronic
thromboembolic pulmonary hypertension.

Systemic sclerosis (SSc) is an autoimmune connective tissue disease that can
involve multiple organs, including skin, musculoskeletal, pulmonary, renal and other
complications [9]. Pulmonary disease, which is the leading cause of mortality in
patients with SSc [10], mainly consist of interstitial lung disease (ILD) and pulmonary
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Figure 1.2: Respiratory physiology (modified and adopted from https://commons.

wikimedia.org/wiki/File:Respiratory

hypertension (PH) [11]. In SSc-related ILD, structural changes in the parenchyma,
i.e. fibrosis, is known to affect pulmonary function. For assessing ILD, pulmonary
function tests, such as diffusion capacity for carbon monoxide (DLCO) and forced
vital capacity, and high-resolution chest computed tomography (HRCT) are commonly
used. PH is characterized by abnormally high blood pressure in the pulmonary vessels,
which can cause remodeling of pulmonary arteries [12]. In SSc-related PH, DLCO
decreases years before diagnosis of PH [13]. Conversely, gas transfer can be mildly or
moderately impaired in the absence of detectable pulmonary fibrosis and pulmonary
hypertension.

Chronic thromboembolic pulmonary hypertension (CTEPH) is characterized by
the occurrence of unresolved thromboembolism undergoing fibrotic organization
[14], which is caused by persistent obstruction of pulmonary arteries after pulmonary
embolism [15]. The mechanical obstruction of pulmonary arteries is produced by
fibrotic transformation of pulmonary thrombius, which canould lead to pulmonary
hypertension and increasing pulmonary vascular resistance (PVR) [16]. CTEPH
patients have poor prognoses: 2-years survival rate is 20% in patients with mean

3
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pulmonary artery pressure higher than 50 mmHg [17, 18, 19]. The prognosis can be
improved by pulmonary endarterectomy [20] or balloon pulmonary angioplasty (BPA)
[21], combined with optimal medication. Pulmonary endarterectomy is a curative
treatment for CTEPH, leading to nearly normalized hemodynamics in the majority of
patients [22]. However, for patients with inoperable CTEPH, BPA can be an alternative
treatment to improve the clinical status and hemodynamics with a low mortality [23].

1.3 Clinical measurements for assessing SSc and CTEPH

Evaluation of the disease severity and assessment of treatment effects play an important
role in the diagnosis and therapy of any disease. The higher risk patients, who may
benefit from treatment, could be selected by accurate prognostic evaluation [11, 24].
There are several clinical measurements for evaluating the severity of diseases and
response to treatment, such as 6-minute walk distance, pulmonary function tests,
invasive right-sided heart catheterization (RHC) and chest computed tomography
(CT).

Pulmonary function tests, such as the diffusion capacity for carbon monoxide
(DLCO) and force vital capacity (FVC), are key measures for evaluating the response
to treatment of interstitial lung disease [25]. DLCO is a measurement of the extent of
gas transfer in the lungs. As the affinity and absorption capacity of red blood cells for
carbon monoxide (CO) is strong, gas uptake by the capillaries are less dependent on
cardiac output [26]. Generally DLCO is measured in ‘ml/min/mmHg’, which involves
measuring the rate of CO uptake (ml/min) divided by the alveolar pressure (mmHg).
FVC (L) which is the volume of air that can forcibly be expired after full inspiration,
as demonstrate in Figure 1.3 (b) [27]. The FVC can be influenced by many factors,
including body mass index (BMI), physical condition, and smoking status. FVC can be
compared to the normal value standardized for age, sex, height, etc. For follow-up
studies the raw FVC measurements are used to compare with previous measurements
to determine whether a pulmonary condition improved or deteriorated.

Right heart catheterization (RHC) is the gold standard for measuring the pulmonary
artery pressure (PAP) [28]. For monitoring the right sided pressure, a catheter is
inserted into the pulmonary artery. The hemodynamic parameters are examined via
RHC, including (systolic, diastolic and mean) PAP, systolic right ventricular pressure,
right atrial pressure, cardiac output, cardiac index and pulmonary capillary wedge
pressure [16]. According to the European society of cardiology (ESC) guideline on
diagnosis and treatment of PH, RHC is the diagnostic gold standard for pulmonary
hypertension (PH), defined by a mean PAP ≥ 25 mm Hg [29, 30]. In evaluating the
severity of CTEPH and assessing treatment effects, the invasive RHC serves as the
standard criterion [31].
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(a) (b) 

Figure 1.3: (a) DLCO test (adopted from https://www.pftforum.com/blog/), (b)
breathing curve, VC is vital capacity, TLC is total lung capacity and FRC is functional
residual capacity.

Figure 1.4: Illustration of right heart catheterization. The normal pressure waves with
normal value is demonstrated, which is measured at the pulmonary artery during
right heart catheterization. (adopted and modified from https://www.pcipedia.

org/wiki/Right_heart_catheterization
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(a) (b) (c) 

Figure 1.5: Slices of HRCT scans from a normal case (a), a patient with ILD (b), and a
slice of CTPA from a patient in CTEPH.

1.4 Chest CT

Currently, non-invasive imaging techniques play a key role in both diagnosis the lung
diseases and assessment of treatment effects [11, 32, 33]. High-resolution computed
tomography (HRCT) of the chest is considered the most accurate imaging method for
assessing ILD [25]. Computed tomography pulmonary angiography (CTPA) is used
in diagnosis and evaluation the severity of CTEPH [34]. A chest CT scan, which is a
more detailed type of chest X-ray, takes many projections of lungs, and a computer
can combine these projections to create three-dimensional cross-sectional images to
show the organs’ size, shape, and structures. CT allows imaging of the entire chest
during a single breath hold [35]. The multiple parallel rows of x-ray detector of CT
scanners increases from 4, 16, 64 to 320.

Dual-energy CT can be performed with a dual-source scanner or with a single-
source scanner with fast kilovoltage switching [36], which has ushered in the ability
of material differentiation and tissue characterization beyond the traditional CT [37].
Radiographic contrast agents, such as injected iodine media or inhaled xenon gas, can
be specified at two different energies, subsequently, the specific content of contrast
agents in tissues can be visualized and quantified in the dual-energy CT [38]. Both
anatomical and functional information about the lungs can be provided with dual-
energy CT, in a variety of pulmonary diseases. Applications in the thorax, including
detection and prognostication of acute or chronic pulmonary embolism (PE), and
characterization of parenchymal disease, benefit from this imaging technique [37, 19,
39].

1.5 Outline of the thesis

With the development of CT scanners, nowadays, a high-resolution CT scan may
contain around 500 slices, which significantly improves the accuracy of diagnosis.
However, the huge amount of data from CT obviously increases the diagnostic
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workload for clinicians and is difficult to interpret in some cases, e.g. SSc patients
without fibrosis in CT who still suffer from impaired gas transfer, and CTEPH patients
with CTPA before and after treatment are difficult to quantify objectively by clinicians.
Therefore, developing automatic computer aided methods is important in order
to investigate pathology of pulmonary vascular diseases and quantitatively assess
treatment effects.

The aim of this thesis is to develop these methods focusing on quantifying pul-
monary vascular diseases and assessing treatment effects, based on CT images.
Particularly, the following objectives have been pursued in this thesis: 1) to develop an
accurate lung vessel segmentation method; 2) to propose and validate an automatic
method for quantifying pulmonary vascular morphology; 3) to investigate pulmonary
vascular remodeling in SSc patients with impaired DLCO, but in the absence of
pulmonary fibrosis; 4) to investigate changes in the pulmonary vascular densitometry
and morphology in patients with CTEPH, treated with BPA. These objectives are
described in this thesis, with the following structure:

Chapter 2 presents a method for extracting lung vessels, based on graph-cuts,
where the appearance and shape features are combined into a newly designed cost
function. To cope with memory requirements of a graph representation for voxels in
chest CT, an efficient strategy was proposed by extracting sparse graphs with a low
threshold and generating an adjacency matrix with diagonal vector assignments.

In Chapter 3 an automatic method is proposed and validated, for the quantification
of pulmonary vascular morphology in CT images. The proposed method consists of
pulmonary vessel extraction and quantification, where the vessel extraction method
from Chapter 2 was extended, by incorporating CT intensity, vesselness and the
distance map to airways, and the quantification method is based on a radius histogram
analysis. The proposed method was validated with a public data set, a data set of a
3D-printed vessel phantom and a clinical data set.

Chapter 4 investigates the association between pulmonary vascular morphology
and gas exchange in patients in systemic sclerosis without lung fibrosis. Pulmonary
vessels were detected and quantified automatically in CT images, and subsequently
two images biomarkers (α and β) were calculated, where α reflects the relative
contribution of small vessels compared to large vessels and β represents the vessel
tree’s capacity. The correlations between imaging biomarkers and gas transfer (DLCO)
were evaluated with Spearman’s correlation.

Chapter 5 presents a method for visualizing and quantifying changes in pulmonary
perfusion by automatically comparing CTPA before and after BPA treatment. Fourteen
CTEPH patients were involved in the study, who underwent CTPA and RHC, before and
after BPA treatment. The quantification of perfusion changes was validated against
hemodynamic changes.

7



In Chapter 6 a method is proposed for quantifying morphological changes, which
consists of three processing steps: constructing vascular trees from the detected
pulmonary vessels, matching vascular trees with preserving local tree topology and
quantifying local morphological changes based on Poiseuille’s law. The vascular tree
matching method was validated with a data set of synthetic trees and the relation
between the quantification of morphological changes and clinical RHC parameters
was investigated in CTEPH patients.

Chapter 7 summarizes and discusses the overall achievements of this thesis.
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2
Lung vessel segmentation in CT images using

graph-cuts

This chapter was adapted from:

Z. Zhai, M. Staring and B. C. Stoel. Lung vessel segmentation in CT images using
graph-cuts, International Society for Optics and Photonics Medical Imaging, Pages
97842k, Volume 9784, 2016 March.
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Abstract

Accurate lung vessel segmentation is an important operation for lung CT analysis.
Filters that are based on analyzing the eigenvalues of the Hessian matrix are
popular for pulmonary vessel enhancement. However, due to their low response
at vessel bifurcations and vessel boundaries, extracting lung vessels by thresholding
the vesselness is not sufficiently accurate. Some methods turn to graph-cuts for
more accurate segmentation, as it incorporates neighbourhood information. In this
work, we propose a new graph-cuts cost function combining appearance and shape,
where CT intensity represents appearance and vesselness from a Hessian-based filter
represents shape. Due to the amount of voxels in high resolution CT scans, the memory
requirement and time consumption for building a graph structure is very high. In order
to make the graph representation computationally tractable, those voxels that are
considered clearly background are removed from the graph nodes, using a threshold
on the vesselness map. The graph structure is then established based on the remaining
voxel nodes, source/sink nodes and the neighbourhood relationship of the remaining
voxels. Vessels are segmented by minimizing the energy cost function with the graph-
cuts optimization framework. We optimized the parameters used in the graph-cuts cost
function and evaluated the proposed method with two manually labeled sub-volumes.
For independent evaluation, we used 20 CT scans of the VESSEL12 challenge. The
evaluation results of the sub-volume data show that the proposed method produced
a more accurate vessel segmentation compared to the previous methods, with F1
score 0.76 and 0.69. In the VESSEL12 data-set, our method obtained a competitive
performance with an area under the ROC curve of 0.975, especially among the binary
submissions.
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2.1 Introduction

Lung vessel detection is a key research topic in pulmonary CT image processing, since
accurate vessel segmentation is an important step in extracting imaging bio-markers of
vascular lung diseases. For example, systemic sclerosis (SSc) is related to pulmonary
hypertension (PH) [40], which is related to narrowing of the small vessels, and
therefore vessel analysis could be used as an imaging bio-marker for PH analysis in
SSc. A few methods have been proposed for lung vessel segmentation. According
to the VESSEL12 challenge [41], Hessian-based methods are popular and perform
well in lung vessel enhancement. Hessian-based filters, such as the Frangi filter [42]
and Sato filter [43], enhance tube-like structures by modeling the eigenvalues of the
Hessian matrix with cylindrical properties. However, these filters tend to give a low
response at the vessel bifurcations and at the vessel boundaries. In our previous work,
a strain energy filter [44] overcomes the problem in detecting bifurcations to some
degree by analyzing the shape-tuned strain energy density. However, thresholding
the strain energy filter’s vesselness does not provide accurate binary results either.
In order to improve vessel segmentation, we turn to graph-cuts where we can more
easily combine different sources of information via the cost function, and additionally
include neighboring information.

Graph-cuts methods consider the segmentation a labeling problem [45, 46, 47].
The voxel nodes are labeled to object or background, according to nodes neighbor
connections and their weights [48]. Several approaches using graph-cuts for vessel
segmentation have been proposed. Chen et al. [49] proposed a regional graph-cuts
based method for liver vessel segmentation with quick shift clustering for initialization.
Bauer et al. [50] proposed a tube detection filter for a rough vessel segmentation,
then the shape prior from centerline and radius of the initial vessel trees were used to
constrain the graph-cuts. Freiman et al. [51] proposed a graph-cuts based method
for carotid artery segmentation by coupling Frangi’s vesselness and intensity into cost
function. In order to cope with memory and computational challenges, they divided
the scan volume into several block regions with a small overlap, computed graph-cuts
for each block independently, and merged the binary segmentations results.

In this paper, an automatic lung vessel segmentation method is proposed based on
graph-cuts. The Hessian-based strain energy filter is adopted to enhance vessels. A
conservative threshold is applied on the vesselness to label voxels that are certainly part
of the background, the remaining voxels are included as nodes in the graph. Instead of
using vesselness as the vessel data cost term directly [51], we take it as a shape feature
and compute the vessel data term with prior distribution. CT intensity represents
appearance. Combining appearance and shape, the cost function is calculated. To
deal with memory requirements of graph structure representations, we removed those

11



voxel nodes that are considered clearly background and employed a low overhead
sparse matrix implementation to record the remaining voxel nodes neighborhood
connections and their weights. After the graph structure is established, the graph-
cuts optimization framework is applied for vessel segmentation. The proposed lung
vessel segmentation method was optimized and evaluated on two manually labeled
sub-volumes and evaluated independently on the VESSEL12 challenge data-set.

2.2 Methods

Our segmentation method consists of three steps: 1) application of the strain energy fil-
ter for lung vessels enhancement, 2) construction of the graph structure representation,
and 3) vessels segmentation based on graph-cuts.

2.2.1 Vessel enhancement filter

The response of traditional Hessian-based vesselness filters is low at the vessel
bifurcations and boundaries, due to an overly simplified cylindrical model. The strain
energy filter, which is based on strain energy density theory from solid mechanics,
aims to remedy this. The Hessian matrix is considered a stress tensor, and three tensor
invariants (measures) can be derived from orthogonal tensor decomposition, each
measuring an independent descriptor of material distortion. Turning to images, they
can be used to formulate distinctive functions for shape discrimination, brightness
contrast and structure strength. Based on an intensity continuity assumption, and a
relative Hessian strength measure to ensure the dominance of second-order over first-
order derivatives to suppress undesired step edges, the final vesselness was calculated
as follow:

ϕ(σ, x) =
0, if 1

3 (λ1 +λ2 +λ3) >−ζλm

exp
(
−η ||OI ||

λm

)
V κ(x)ρ(H , v), otherwise,

(2.1)

in which σ is scale, λi are the eigenvalues with λm the maximum eigenvalue, λ1 +λ2 +λ3

is the brightness contrast term, ||OI ||
λm

measures relative Hessian strength, V κ(x) is a
measure for vessel shape and ρ(H , v) measures structure strength. The parameters
0 < ζ< 1,η> 0,κ> 0 and −1 < v < 0.5 are user-defined. More details can be found in the
original paper [44].

2.2.2 Graph representation

For high resolution pulmonary CT scans, there are around 500 slices per patient with
512*512 voxels per slice. Even when only considering the lung region for computing,
the graph would consist of almost ten million nodes and hundred million edges (26-
connectivity in a 3D grid). To cope with memory requirements, previous works used a
block region strategy [49, 51]. However, this introduces discontinuities in the merged
part of detected vessel. Therefore we used an alternative method to reduce the graph
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Figure 2.1: Graph structure representation of this method, (a) original image, (b) pre-
labeling the background with the threshold strategy, (c) graph structure construction
of the remaining voxel nodes.

size by a thresholding strategy. As illustrated in Figure 2.1a, there are several voxels
with lowest gray values that are certainly part of the background. Then, we can use
a low threshold to label these voxels as background, see Figure 2.1b. The graph
structure can be established using the remaining voxels (unlabeled voxels).

In Figure 2.1c, the nodes of the graph consist of the remaining voxels, source
and sink nodes. The edges between the source/sink node and voxel nodes are called
t-edges and the edges between neighboring voxel nodes are n-edges. The t-edges
and their weights can be represented easily with a dense matrix. For the n-edges, a
sparse matrix was adopted to record the adjacent connections and their weights. If
we use 1 and 0 to represent the relationship ‘adjacency’ and ‘non-adjacency’ of the
voxels respectively, all the 1s locate in several diagonals of the sparse adjacency matrix.
The sparse adjacency matrix can be determined memory efficiently by assigning the
diagonal vectors. The diagonal vectors can be generated easily by analyzing the type
of adjacency. Then, the n-edge’s adjacency matrix can be extracted from the whole 3D
grid sparse adjacency matrix with the remaining voxels’ indices.

To illustrate the sparse adjacency matrix analysis method, we take a 3 by 4 2D
image as an example and only consider 4-connectedness. For 4-connectedness, there
are only two types of adjacency (if considering adjacency with direction, there would
be four types of adjacency), up-down adjacency and left-right adjacency, see Figure
2.2b. Taking the up to down adjacency, the sparse matrix can be generated efficiently
by assigning the single diagonal with one vector. The vector can be determined by a
rule that the (k ×3)th element is zero. The left to right adjacency sparse matrix can be
calculated in a similar way. After combining these two sparse adjacency matrices, and
making the combined matrix symmetric, so that the down to up adjacency and right to
left adjacency are included, we obtain the final sparse adjacency matrix, Figure 2.2c.
For a 3D image, the calculation of a sparse adjacency matrix is similar.
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(a) 

(b) 
(c) 

Figure 2.2: 2D image sparse adjacency matrix, (a) is a 3 by 4 2D matrix with the value
of the voxel index inside, (b) is the adjacency type analysis, (c) is the sparse adjacency
matrix of the 2D image.

2.2.3 Proposed cost function for the graph-cuts

In this work, we present a method for lung vessel segmentation based on graph-cuts,
by combining appearance and shape features. Segmentation is treated as a labeling
problem, solved by graph-cuts L = {Lp |p ∈ P }. The energy function of a labeling
problem can be optimized by finding the max-flow/min-cut algorithms [46]. The
energy function of our method is:

E(L) = ∑
p∈P

(
wDC T

p (Lp )+ (1−w)Dv sl
p (Lp )

)
+γ

∑
(p,q)∈N ,Lp 6=Lq

Vp,q (Lp ,Lq ), (2.2)

where the data term consists of appearance (CT intensity) DC T
p (Lp ) and shape (ves-

selness) Dv sl
p (Lp )) and w is a weight balancing the two parts. Vp,q (Lp ,Lq ) is the cost

function for cutting the edge (p, q) and γ is a user-defined positive coefficient for
adjusting the smoothness.
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Commonly Gaussian functions are used in the data term [51], but this would cause
voxels with high intensity or vesselness, i.e. far away from the center of the Gaussian
distribution, to obtain a low vessel probability. Therefore we employed a sigmoid
function for both the appearance term and the shape term. So, voxels with high a
intensity or vesselness obtain a high vessel likelihood, as follows:

DC T
p (Ip |Lp = l ) = 1

1+e−α
C T
l (Ip−βC T

l )
(2.3)

Dv sl
p (Ip |Lp = l ) = 1

1+e−α
v sl
l (Ip−βv sl

l )
. (2.4)

The choice for the free parameters of the sigmoid function in Equation (2.3) and (2.4),
is given in Sec. 2.3.1. The cost function Vp,q (Lp ,Lq ) for the n-edge (p, q) is calculated
based on the similarity in appearance of two voxels nodes p q, and weighted by their
spatial distance:

Vp,q (Lp ,Lq ) =
e−|Ip−Iq |·di st (p,q), if Lp 6= Lq and (p, q) ∈N

0, otherwise
(2.5)

If two nodes of the n-edge (p, q) have similar appearance but are labeled differently,
the boundary cost of this n-edge will be high, weighted by the spatial distance of nodes
p and q.

2.3 Experiments and results

This work were implemented in Matlab for the graph structure construction and mixed
with C++ for the cost function optimization, which is benefiting from GCmex 1.9
(1). The source code of the vessel enhancement filters is publicly available via the
toolkit ITKTools (2), see the tool pxenhancement. The entire processing pipeline was
designed in MeVisLab 2.7.1 (VC12-64). The runtime of the proposed method for a
typical 400×512×512 size 3D CT image is around 650s on our computer, configured
with a 2.67 GHz CPU, 24 GB memory and a 64-bit Windows 7 operating system.

2.3.1 Parameter estimation

The parameters used in the strain energy vesselness filter were set according to
the literature [44]: ζ = 0.5, η = κ = 0.2, v = 0.0, and using scales σ ∈ {1,2,3}. After
construction of the graph structure, the parameters in the graph-cuts energy function
were trained with sub-volume data which was labeled by an expert. More details
about the sub-volume data can be found in Sec. 2.3.2. Due to the complex structure
of the vessel trees, the smoothness parameter γ was set to 0.01. After optimizing

1http://www.wisdom.weizmann.ac.il/~bagon/matlab_code/GCmex1.9.tar.gz
2https://github.com/ITKTools/ITKTools
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on the training data, the appearance and shape balance parameter w in the data
term was set to 0.6. For the parameters of the sigmoid function in the data term,
we designed an algorithm to estimate them automatically. Before estimation, we
removed voxels that had high vesselness or intensity, because these voxels can affect
the parameters estimation severely. Afterwards, the mean value was taken as the
initial threshold to separate the initial background and foreground. The Gaussian
distribution of the intensity of the foreground can be estimated by calculating the
mean µ and the standard deviation std . Then, we fitted the sigmoid function to the
Gaussian function in the way that Si g moi d(β) = Gaussi an(β) = 0.5. For estimating
the fuzziness parameter α we did several experiments and finally found that the best
fitting curve was obtained by: Si g moi d(µ) = 0.95. So, all the parameters used in the
sigmoid function for the foreground intensity term are estimated, and the parameters
used in the cost function for the vesselness term can be calculated similarly.

2.3.2 Data and results

Clinical image data was acquired of two patients on a Toshiba Aquilion 16 detector
row CT scanner without contrast media. Due to the complexity of the pulmonary
vessel trees, it is unrealistic to manually extract the entire vessel trees. In order to
evaluate the proposed lung vessel segmentation method, we chose two sub-volumes
on the boundary of pulmonary lobes, where the bright plane-shaped fissure and plenty
of vessel details make it a challenging detection task. Subsequently, a technical expert
and a pulmonologist were asked to manually label the data, using the interactive tools
of ITK-snap [52]. In total, two reference segmentations, Data1 with size 65*60*120
and Data2 with size 91*70*121, were extracted. The original CT and extracted
sub-volume region of Data1 is shown in Figure 2.3.

Centerline-based evaluation was applied to these two sub-volumes. The vessel
centerlines were extracted from the binary masks using a skeletonization method
based on the distance transform [53]. As shown in Figure 2.4, the centerline of the
segmentation result was compared with the centerline of the reference standard. If
the distance between the voxels on the two centerlines are less than the vessel radius
at that point, i.e. the voxels on the segmentation centerline fall inside the reference
standard vessel region, they would be counted as true positive. The number of false
negatives was calculated by the number of voxels on the reference standard centerline
minus the number of true positives. The number of false positives was calculated using
the number of voxels on segmented centerlines minus the number of true positives, i.e.
the number of voxels falls outside the vessel regions of the reference standard. The
pr eci si on = T P/(T P +F P ) and r ecal l = T P/(T P +F N ) were calculated, and the F 1

score, 2 pr eci si on∗r ecal l
pr eci si on+r ecal l , was taken as the main evaluation measurement. We compared

the performance of the proposed graph-cuts vessel segmentation method with the
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(a) (b)

(c) (d)

Figure 2.3: Segmentation result on a reference region, (a) reference region in the CT,
(b) one slice of the extracted region, (c) manually segmented reference standard, (d)
segmentation result of the proposed method.

TP 

FP 

FN 
centerline of the segmentation result 

the ground truth 

centerline of the ground truth 

the segmentation result 

Figure 2.4: Centerline-based evaluation method.

result from thresholding the Frangi’s vesselness [42], thresholding the strain energy
filter’s vesselness [44] and the Freiman’s based method [51]. For the optimization of
the threshold-based vesselness methods, 70 thresholds ranging from the minimum to
the maximum vesselness were used and the best evaluation result was selected. For
the Freiman’s based method, we implemented the method according to the literature
[51] and optimized the parameters with the sub-volume Data1. The evaluation results
are shown in Table 2.1. According to the evaluation results, our proposed method
achieved a better segmentation.
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Table
2.1:

Evaluation
results

ofm
ethods

on
reference

standard
data

sets

M
ethods

D
ata1

D
ata2

Enhancem
ent

binarization
R

ecall
Precision

F1
score

R
ecall

Precision
F1

score

Frangi[42]
threshold

0.7344
0.5082

0.6007
0.6285

0.5147
0.5660

Freim
an’s

m
ethod

[51]
graph-cuts

0.8233
0.4781

0.6048
0.6428

0.4868
0.5541

Strain
energy

[44]
threshold

0.7082
0.7287

0.7183
0.6223

0.7119
0.6641

Strain
energy

graph-cuts
0.7331

0.7917
0.7613

0.6673
0.7145

0.6901
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Table 2.2: Evaluation results of the VESSEL12 data-set: Az score, Specificity and
Sensitivity of our submission across all categories. (Categories 1: Principal, 2: Small
Vessels, 3: Medium Vessels, 4: Large Vessels, 5: Vessel/Airway Wall, 6: Vessel/Dense
Lesion, 7: Vessel/Mucus-filled bronchi, 8: Vessel-in-lesion/Lesion, 9: Vessel/Nodules).

1 2 3 4 5 6 7 8 9

Az 0.975 0.953 0.977 0.993 0.867 0.481 0.331 0.661 0.238
Spe 0.910 0.865 0.910 0.979 0.588 0.239 0.112 0.451 0.038
Sen 0.929 0.966 0.953 0.960 0.929 0.929 0.929 0.829 0.929

Az, for area under ROC cure; Spe, for specificity; Sen, for sensitivity.

For an independent evaluation, we used the VESSEL12 challenge data-set, which
consists of 20 anonymized CT scans from three hospitals [41]: University Medical
Center Utrecht, the University Clinic of Navarra and Radboud University Nijmegen
Medical Center. The scans have been selected such that in approximately half of
the scans contrast agent was used. About half of the scans contained abnormalities
such as nodules, emphysema or pulmonary embolisms. The CT scan size was around
512*512*400, with voxel size around 0.7*0.7*0.7mm3. This represents a variety of CT
scanner types and image acquisition settings, and a wide range of clinical images. The
scan data and lung masks were provided by the organizers. The manual labeling was
performed on pre-generated points, and only those points were kept when the labels
from three independent observers were the same. There were nine categories in the
reference standard to perform a comprehensive evaluation of vessel segmentation. The
vessel segmentation result from the participating algorithms were evaluated against
the manually annotations.

For our study, we downloaded the CT scans and lung mask data, we applied the
graph-cuts vessel segmentation, after shape feature extracting with the strain energy
filter. We submitted our binary segmentation results to the VESSEL12 organizers, and
the organizers made the independent evaluation and sent the evaluation results to us.
Our method obtained an area under the ROC curve (Az) of 0.975 score, which is a
competitive performance on VESSEL12, especially among the binary submissions. The
evaluation results of our method is shown in Table 3.1. The evaluation results of the
other submissions can be found in the VESSEL12 study paper [41] and the VESSEL12
website http://vessel12.grand-challenge.org.

2.4 Conclusion and discussion

A graph-cuts based segmentation method was proposed to extract the pulmonary
vessels in thoracic CT images. By combining appearance and shape features, a
new cost function was designed. An efficient strategy was adopted to cope with
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the memory requirements of a graph representation. We performed training and
evaluation with own sub-volume data, and independently evaluated our method with
the VESSEL12 challenge data. From the evaluation results, the proposed method
obtained a competitive performance.

From the results on the in-house data, see Table 2.1, the F1 score of our method
was higher than the threshold-based vesselness methods and the Freiman’s based
method. The performance of strain energy filter was better than Frangi’s filter, which
has been reported in literature [44], and we reproduced the previous results. The
Freiman’s based method was not a lot better than the threshold-based Frangi’s method.
This is likely caused by the fact that the Freiman’s based method uses a Gaussian as
a cost function. This means that high intensity and vesselness values produce low
vessel likelihood, which may cause under-segmentation. Additionally, the Freiman’s
based method does not use a parameter to balance between appearance and shape
features. In our method, we designed a new cost function in the graph-cuts for vessels
segmentation, which is better than the threshold-based strain energy method. In
general, the graph-cuts could perform better than the thresholding, but one should
be careful with designing this, since the graph-cuts may give poorer results by a
suboptimal choice of cost function (as seen in Data2 in Table 2.1). From the results on
the VESSEL12 data (Table 3.1), the proposed method obtained a good performance
on the overall categories 1-4. However, the segmentation method did not perform
very well in distinguishing airway walls from vessels (category 5), because some
airway walls had similar intensities as vessels and parts of the airway walls were
attached to the pulmonary artery. The lower score in category 7 was caused by
mucus-filled bronchi that have similar appearance and shape features as vessels. To
compensate for this, a separate algorithm would be needed for detecting the bronchial
tree and extending this tree by mucus-filled bronchi, to be used as an exclusion method.
Because in categories 6, 8 and 9, lesions and nodules are mostly attached to vessel
trees, the graph-cuts method was not able to separate them from vessel trees. For the
other participating methods in the VESSEL12, distinguishing these bronchi, lesions and
nodules were also challenges for pulmonary vessel segmentation. Comparing with the
other submissions, we obtained a competitive score, which was the highest compared
to the other binary submissions. This method could be improved by combining more
information in the data term, such as a distance map to vessel centerlines of initial
segmentation, and designing a more precise boundary cost function with multiple
features.
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3
Automatic quantitative analysis of pulmonary

vascular morphology in CT images

This chapter was adapted from:

Z. Zhai, M. Staring , I. Hernandez-Giron , W. J. H. Veldkamp , L. J Kroft , M. K Ninaber
, B. C. Stoel. Automatic quantitative analysis of pulmonary vascular morphology
in CT images, Medical Physics, Page 3985-3997, Volume 46 (9), 2019 September.
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Abstract

Purpose Vascular remodeling is a significant pathological feature of various pulmonary
diseases, which may be assessed by quantitative CT imaging. The purpose of this
study was therefore to develop and validate an automatic method for quantifying
pulmonary vascular morphology in CT images.

Methods The proposed method consists of pulmonary vessel extraction and
quantification. For extracting pulmonary vessels, a graph-cuts based method is
proposed which considers appearance (CT intensity) and shape (vesselness from a
Hessian-based filter) features, and incorporates distance to the airways into the cost
function to prevent false detection of airway walls. For quantifying the extracted
pulmonary vessels, a radius histogram is generated by counting the occurrence of
vessel radii, calculated from a distance transform based method. Subsequently, two
biomarkers, slope α and intercept β, are calculated by linear regression on the radius
histogram. A public data set from the VESSEL12 challenge was used to independently
evaluate the vessel extraction. The quantitative analysis method was validated
using images of a 3D printed vessel phantom, scanned by a clinical CT scanner
and a micro-CT scanner (to obtain a gold standard). To confirm the association
between imaging biomarkers and pulmonary function, 77 scleroderma patients were
investigated with the proposed method.

Results In the independent evaluation with the public date set, our vessel
segmentation method obtained an area under the ROC curve of 0.976. The median
radius difference between clinical and micro-CT scans of a 3D printed vessel phantom
was (0.062±0.020 mm), with interquartile range of (0.199±0.050 mm). In the
studied patient group, a significant correlation between diffusion capacity for carbon
monoxide and the biomarkers, α (R=-0.27, p-value=0.018) and β (R=0.321,
p-value=0.004), was obtained.

Conclusion In conclusion, the proposed method was highly accurate, validated with a
public data set and a 3D printed vessel phantom data set. The correlation between
imaging biomarkers and diffusion capacity in a clinical data set confirmed an associa-
tion between lung structure and function. This quantification of pulmonary vascular
morphology may be helpful in understanding the pathophysiology of pulmonary
vascular diseases.
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3.1 Introduction

Pulmonary vascular remodeling is a significant characteristic of pulmonary diseases,
such as chronic obstructive pulmonary disease, interstitial lung disease (ILD), and
pulmonary hypertension (PH) [54, 55, 14, 56, 57, 12, 29, 58]. Systemic sclerosis
(SSc, also called scleroderma), is an autoimmune connective tissue disease affecting
several organs, and its pulmonary involvement can cause ILD or PH, which may
involve pulmonary vascular alterations [25, 59]. Pulmonary vascular alterations have
been described as narrowing and pruning of distal vessels, which increases vascular
resistance and cause hypertension [60, 61, 62]. The dilation of proximal vessels is also
an essential morphological feature, as increasing pulmonary vascular resistance affects
proximal vessels [63]. Investigation of changes in pulmonary vascular morphology,
such as pruning of small vessels or dilation of large vessels, may provide assessments
of pulmonary vascular remodeling.

Some studies based on the analysis of computed tomography (CT) images have
shown promising results for quantifying pulmonary vascular remodeling in pulmonary
diseases, using different approaches. Matsuoka et al. [12, 60] introduced a CT
measurement by quantifying the 2D cross-sectional area of small pulmonary vessels
for assessing vessel pruning of COPD. Estepar et al. [64, 62] extended the pruning
measurement into 3D by quantifying the volume ratio between small vessels and the
total vessels, and applied these measurements within each lobe. Rahaghi et al. [65,
63] introduced the concepts of imaging biomarkers, the volume ratio of small vessels
to total vessels and ratio of proximal vessels to total vessels, for quantifying pruning
of distal vessels and dilation of proximal vessels, respectively. Rather than assessing
vascular morphology based on vessel size, Helmberger et al. [66] calculated tortuosity
as well as 3D fractal dimension of segmented pulmonary vessels for characterizing
vascular remodeling of patients with pulmonary hypertension.

In the pulmonary vessel quantification methods mentioned above, accurate pul-
monary vessel segmentation is an important step. A few approaches have been
proposed for extracting pulmonary vessels, and a challenge called VESSEL12 with
a public data set and independent evaluation has been organized for comparing
vessels extraction methods, among which Hessian-based methods have shown a good
performance [67, 68, 69]. Tube-like structures can be enhanced by Hessian-based
methods, such as the Frangi filter [70] and the Sato filter [71], where the eigenvalues
of the Hessian matrix describe cylindrical properties. However, the response of Hessian-
based filters is low at vessels’ edges and bifurcations [72]. The ‘strain energy’ filter [68]
can partly overcome this problem of low responses at vessels’ bifurcations by analyzing
the shape-tuned strain energy density. According to the VESSEL12 challenge [69],
simply using a threshold or local thresholds [73] on the vesselness map (which is the
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vessel likelihood map enhanced with Hessian-based methods) can not extract binary
vessels accurately. In our previous work [74], a graph-cuts based method was proposed
for accurately extracting lung vessels by combining the appearance (CT intensity) and
shape (vesselness) features into a single cost function, and achieved a competitive
performance among the submitted methods of VESSEL12 that produce binary results.
Nevertheless, the separation between airway wall and vessels was still inaccurate,
which could also affect the quantification of pulmonary vascular morphology, due to
the similar CT intensities of airway walls and vessels.

Validating pulmonary vessel quantification methods is a challenging task, as manu-
ally annotating the ground-truth in patient images is extremely time consuming and it
is hard to determine the quality and robustness of the annotated data quantitatively.
As a possible alternative to validate the quantification methods, anthropomorphic
phantoms containing known distributions of vessels can be considered. These phan-
toms can be created using 3D printing, a technique with applications in different
imaging modalities, including CT, for imaging and dosimetry purposes [75, 76, 77, 78,
79, 80]. In this work, a 3D printed phantom with vessel-like structures designed in
a similar way to the lung, was used to validate the proposed method for quantifying
vessel morphology. A sufficiently high-resolution micro-CT scan of the lung phantom
was acquired and used as the ground truth for the vessel distribution.

In this study, we present an automatic and quantitative approach to assess pul-
monary vascular morphology alternations, based on an adjusted graph-cuts vessel
segmentation and a novel histogram-based quantitative analysis. The automatic
method consists of two steps: pulmonary vessel extraction and pulmonary vessel
quantification. For pulmonary vessel extraction, we extended our previous graph-
cuts based method [74] by incorporating the distance map to airways into the cost
function, for separating airway walls from vessels. For pulmonary vessel quantification,
a method is proposed by quantifying the radius histogram of pulmonary vessels, where
all pulmonary vessels are included in the analysis, instead of only a specific part. The
accuracy and robustness of the automatic method were validated with three data
sets: (1) a public data set of the VESSEL12 challenge to test the accuracy of the
vessel segmentation; (2) a data set of a 3D printed vessel phantom to evaluate the
accuracy of vessel sizing and robustness to protocol settings of the CT scanner; (3)
and finally a data set of SSc patients to confirm the correlation between pulmonary
vessel morphology and pulmonary function.

3.2 Materials and Methods

3.2.1 Pulmonary vessel extraction

The segmentation task can be treated as a labeling problem L = {Lp |p ∈P ,Lp ∈ {0,1}},
where P is the set of voxels from an image and p ∈P [81]. A voxel is labeled as object

26



C
H

A
P

T
E

R
3

Q
U

A
N

T
IF

Y
IN

G
P

U
LM

O
N

A
R

Y
V

A
S

C
U

LA
R

M
O

R
P

H
O

LO
G

Y

or background according to its own properties and the connections with its neighbors.
In the labeling problem of graph-cuts, the general energy function formulates the
connection weights of voxel nodes, object (source) node and background (sink) node,
as described in Equation (3.1). The energy function can be optimized by finding the
max-flow/min-cut [82, 83]. To extract pulmonary vessels, we developed a graph-cuts
based method by combining appearance features, shape features and the distance map
to airway (as shown in Fig. 1(a)). The energy function of the proposed method is
specified by formulating the data term Dp (Lp ) and neighbor term Vp,q (Lp ,Lq ), with a
weight γ:

E(L) = ∑
p∈P

Dp (Lp )+γ
∑

(p,q)∈N

Vp,q (Lp ,Lq ). (3.1)

The data term Dp (Lp ) consists of three parts:

Dp (Lp ) = wDCT
p (Lp )+ (1−w)DVSL

p (Lp )+waDDTA
p (Lp ). (3.2)

The appearance term DCT
p (Lp ) is calculated based on the CT intensity; the shape term

DVSL
p (Lp ) is calculated based on the vesselness of the strain energy filter [68]; and

the distance-to-airway (DTA) term DDTA
p (Lp ) is determined by the distance map to the

airways. These three terms are then balanced with weights w and wa , where w is a
global balance between appearance and shape terms, and wa is the weight for airway
wall elimination.

Since voxels with a high CT intensity or vesselness obtain a high vessel likelihood,
sigmoid functions are employed for both the appearance term and the shape term.
The appearance term DCT

p (Lp ) and the shape term DVSL
p (Lp ) are formulated as follows:

DCT
p (I CT

p |Lp = l ) = 1

1+e−α
CT
l (I CT

p −βCT
l )

;

DVSL
p (I VSL

p |Lp = l ) = 1

1+e−α
VSL
l (I VSL

p −βVSL
l )

, (3.3)

where I CT
p and I VSL

p represent the CT intensity and vesselness of voxel p, respectively;
αCT

l , βCT
l , αVSL

l and βVSL
l are the parameters of the corresponding sigmoid function.

The determination of the parameters in these sigmoid functions is described in Section
2.D.1.

The distance-to-airway map is employed in order to eliminate false detection of
airway walls. Therefore, the lumen of the airway of each chest CT scan is detected
by a region-growing method where a seed point was searched in the trachea and an
optimal threshold was selected by iteratively growing before the leakage of airway
volume [84]. Then, a Euclidean distance transform is applied for generating the
distance map. The thickness of airway walls is approximately 2 mm [73, 85], thus, the
response range of the distance-to-airway term is limited to (0, 3) mm. For determining
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the response to airway walls, a Gaussian function is adopted as the kernel that centers
on µ and scales with σ, as follows:

DDTA
p (dp |Lp = l ) =

(−1)l ·e−
(dp−µ)2

2σ2 , if 0 < dp < 3mm

0, otherwise.
(3.4)

The neighbor term Vp,q (Lp ,Lq ) from Equation (3.1) is the cost for cutting a neigh-
borhood edge (p, q) on the basis of their similarity and γ is a positive coefficient for
controlling the smoothness of detected objects. It is calculated based on the similarity
in CT intensity of two neighborhood voxels (p, q ∈N ), and corrected by the spatial
distance between them:

Vp,q (Lp ,Lq ) =
e−dp,q ·|I CT

p −I CT
q |, if Lp 6= Lq

0, otherwise,
(3.5)

where dp,q represents the spatial distance between voxels p and q. In other words, if
two neighboring voxels (p, q) have similar CT intensities and are close together but
are labeled differently, the cost of the n-edge (p, q) will be high.

3.2.2 Pulmonary vessel quantification

Based on the segmented pulmonary vessels, the centerlines of vessel trees are extracted
using a skeletonization method [86]. This method successively erodes the border
voxels for locating the vessel centerline where a refinement step was adapted for
eliminating the side branches; the distance between boundary voxels and central voxel
are calculated and the minimum distance is used to estimate the corresponding radius.
This estimated radius is subsequently assigned to that central voxel, producing a 3D
skeleton map with radius value embedded in the centerline voxels, as illustrated in
Fig. 3.1(b).

The number of voxels in the vessel skeleton with a specific radius on the vessel
skeleton are counted as Nr . The vessel radius frequency is normalized for voxel size
(Vl ) to make the histogram comparable across CT scans, i.e. instead of simply using
the counted number, the accumulated length was estimated with the number of voxels
and their size. In order to obtain a linear relation between frequency and radius, a
logarithmic transformation is applied to the normalized frequency in the histogram.
Afterwards, a ‘radius histogram’ is generated for pulmonary vessels of each CT scan,
in which the i th bin’ index represents the vessel radius, ri , and its height characterizes
the logarithm of the normalized frequency of occurrence, l og (Nri ·Vl ).

y =α · x +β

where y = l og (Nr ·Vl ) and x = r .
(3.6)

29



For quantifying the pulmonary vessel morphology, the ‘robustfit’ method (in
MATLAB R2016a Mathworks, Natick, MA [87]) was applied to solve the linear
regression in Equation (3.6). For each patient, two biomarkers, α and β, are calculated,
which correspond to the slope and intercept of the linear regression, respectively, see
Fig. 3.1 (b). The slope parameter α quantifies the occurrence of vessels with small
radius relative to those with large radius, which may indicate pruning of small vessels
and/or dilation of larger vessels. The intercept parameter β is an extrapolation of the
radius histogram to radius 0, which estimates the number of pulmonary capillaries
and may relate to the pulmonary vascular tree’s capacity.

3.2.3 Implementation and parameter settings

The graph-cuts based vessel segmentation method was implemented in Matlab and
its cost function was optimized with a mixed C++ code 1. This proposed vessel
segmentation method was made publicly available by the authors 2. The strain energy
filter for vessel enhancement is also open source and can be found via ITKTools 3. The
quantitative method for analyzing the pulmonary vascular morphology benefited from
the DtfSkeletonization module of MeVisLab and the robust linear regression method in
MATLAB. The entire processing pipeline was completed in MeVisLab 2.7.1 (VC12-64),
on a personal computer configured with 24 GB of memory, a 2.67 GHz CPU (Intel
Xeon W3520) and a 64-bit Windows 7 operating system.

The parameters used in the segmentation method were optimized on the VESSEL12
training set. The appearance and shape features were normalized to ranges of [0,
1], before incorporation in the cost function. The strain energy filter’s parameters
were set according to the literature [68, 74]. Before construction of the graph, a
very low threshold of 0.0009 was used on the vesselness map to exclude voxels that
almost certainly belong to the background. This resulted in a relatively small sparse
graph structure, which was constructed with the remaining voxel nodes, object and
background nodes, and allowed processing of high resolution CT scans.

The balance parameter w between appearance and shape terms was set to 0.6 [74],
and the parameter wa of the distance to airway term was set to 0.4, optimized with
a grid search approach on the training data set. Because the response region of the
distance to airway term was limited to a local region around the airways, the parameter
wa was not set as a global balance, in comparison to the global balance parameter w .
The parameters of the sigmoid function in the appearance term DCT

p (Lp ) and shape
term DVSL

p (Lp ) were automatically estimated with the following algorithm. The mean
value of the appearance feature was picked as the initial threshold to initially separate
the background and object. The appearance feature inside the object region was fitted

1http://www.wisdom.weizmann.ac.il/ bagon/matlab_code/GCmex1.9.tar.gz
2https://github.com/chushan89/Lung-Vessel-Segmentation-Using-Graph-cuts
3https://github.com/ITKTools/ITKTools

30



C
H

A
P

T
E

R
3

Q
U

A
N

T
IF

Y
IN

G
P

U
LM

O
N

A
R

Y
V

A
S

C
U

LA
R

M
O

R
P

H
O

LO
G

Y

with a Gaussian distribution, by calculating the mean µ and standard deviation std .
Then, the parameters of the sigmoid function were estimated by fitting a Gaussian
distribution, such that Si g moi d(β) =Gaussi an(β) = 0.5 and Si g moi d(µ) = 0.95. The
parameters used in the cost function for the shape term were calculated in a similar
way.

For the parameters of the DtfSkeletonization module, the ‘object min value’
parameter was set to 1, as the graph-cuts output was set to binary. The ‘cavity
value’, which controls the closing of cavities in binary objects before detecting the
skeleton, was set to 10 voxels (default value). The limitation of maximum erosion
distance (by ‘max distance’ parameter) was turned off. The ‘skeleton only’ option
was checked, therefore, only the voxels on the vessel skeleton were coded with the
estimated radius in the output image. A vessel radius can obtain a value from only
a limited number of possible distances, due to the limited and constant voxel size.
To capture all these unique radii in the histogram, the bin size was set to as small as
0.001. To calculate the imaging biomarkers α and β, a linear regression was applied to
the radius histogram. In the regression analysis, the first non-empty bin was excluded
as this might be influenced by the noise of small branches in vessel skeleton extraction.

3.2.4 Data sets used for validation

3.2.4.1 Data set of VESSEL12

The proposed pulmonary vessel segmentation method was validated on the VESSEL12
challenge data set [69], which contains three CT scans in a training set and 20 CT
scans in a testing set. These anonymous scans were collected from three hospitals: the
University Medical Center Utrecht (Utrecht, The Netherlands), the University Clinic of
Navarra (Pamplona, Spain), and the Radboud University Nijmegen Medical Centre
(Nijmegen, The Netherlands). In the 20 testing CT scans, points of interest were
annotated individually by three trained medical students with four possible labels:
vessel, lung parenchyma, airway wall or lesion [69]. Only the points on which all
three annotators agreed were included in the ground truth. In the three training CT
scans, the annotations were labeled in a similar way, however, there were only two
label categories (vessel and non-vessel). Furthermore, the lung masks for each of
these scans were provided by the VESSEL12 challenge organizers.

For the three CT training scans, we performed lung vessel segmentation and the
corresponding evaluation results can be found in the Appendix. For the 20 CT scans
in the testing data set, the binary pulmonary vessels, which were extracted using the
graph-cuts based method, were uploaded to the VESSEL12 challenge website and
independent evaluation results were calculated by the organizers. The area under the
ROC curve (Az) was used as the main score for validation. Binary segmentations were
applied to a distance transform for generating probabilistic maps, subsequently, the
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(a) (b) (c) 

Figure 3.2: 3D printed vessel phantom (a), together with one slice of the micro-CT
scans (b) and one slice of a clinical CT scan (c).

ROC curve was calculated based on the probabilistic maps.

3.2.4.2 Data set of vessel phantom

To validate the proposed method for quantifying vessel morphology, a 3D printed
phantom, representing vessel-like structures with similar sizes as in the lung, was
used. This phantom was designed based on the work by Weibel et al. who performed
a microscopic study of lungs from human cadavers [88, 89]. An algorithm was
developed in MATLAB (Mathworks, Natick, MA) to generate a model of a vessel
tree structure, with decreasing length and diameter for the vessels, modelled as
cylinders, in each vessel generation iteration [90, 91]. The model was constrained to
an elliptically shaped frame (150x103x26 mm), as it was intended for manufacturing a
small phantom for image quality in CT [90, 91]. The vessel tree started growing at the
center of one of the sides of the ellipse (Fig. 3.2 (a)). At each vessel segment ending,
there could be a bifurcation or an elongation. The bifurcation chance increased after
each elongation step. The direction of the two generated branches after a bifurcation
was randomly taken but limited within 45°, with regard to the parent vessel direction.
The lung model was printed using a ProJet HD 3000 3D printer with multi jet modeling
(MJM) technique in ultrahigh definition mode, selecting Visijet EX200 as material.
This mode enables to print very thin layers (32 µm) of material. The total number
of generated vessel segments was in the order of 20000 being the biggest 10 mm
diameter and the smallest in the order of 0.2 mm [91].

The 3D printed vessel phantom was imaged with a clinical CT scanner (Aquilion
ONE, Toshiba Medical Systems, Otawara, Japan) with the following acquisition
parameters: 0.5×64 mm collimation, 120kV, pitch 0.828, 0.5 s rotation time, FOV of
195.1 mm, and various tube currents (10, 20, 50, 100 mA). Images were reconstructed
with 0.5 mm slice thickness and interval, selecting FC30 as convolution kernel with
two reconstruction methods, filtered back projection (FBP) and AIDR3D standard. The
voxel dimensions were 0.38×0.38×0.5 mm. In total, 8 CT scans were available to be
analyzed (4 dose levels, 2 reconstruction methods). To obtain the ground truth of
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the 3D printed vessel phantom, the phantom was scanned with a Zeiss Xradia 520
Versa micro-CT scanner, selecting 80 kV, 7 W and a 0.4 X objective and no additional
filtration. The total scanning time was 36 hours and vertical stitching was applied
to obtain the image volumes (1894×1903 px by 2922 images). The voxel size was
52×52×52 µm and the micro-CT images, in TIFF format, were 8-bits depth. The images
were reformatted and rotated in MeVisLab, in order to obtain the same cross-sections
as in the CT scans.

3.2.4.3 Data set of SSc patients

Patients with systematic sclerosis (SSc) were selected from the biobank of the Leiden
Combined Care in SSc (77 patients; 67 women and 10 men; mean age ± STD,
49.9±14.2 years). The images were obtained with a thorax protocol and the patients
took pulmonary function tests (PFT) [92]. All patients were scanned with the same
CT scanner (Aquilion 64, Toshiba Medical Systems, Otawara, Japan), during full
inspiration and without contrast medium. The CT protocol settings were: tube current
140 mA without modulation; tube voltage 120kV; rotation time = 0.4 s; collimation =
64×0.5 mm; images were reconstructed with 0.5 mm slices [25]. The local Medical
Ethical Committee approved the protocol. Written informed consent was obtained
from each patient prior to enrollment. The fibrosis scorings of these patients were
established by two experts (a radiologist, L.K. and a rheumatologist, A.S.) on the basis
of CT scans and blinded to the clinical information [11]. PFTs were tested including
total lung capacity (TLC), forced vital capacity (FVC), forced expiratory volume in
1 second (FEV1) and single-breath diffusion capacity for carbon monoxide corrected
for haemoglobin concentration (DLCOc), and the PFT results were expressed as a
percentage of the predicted value [93, 94]. Patients who had no fibrosis were selected,
however the gas transfer (DLCOc %predicted) of them were impaired. Thus, we
hypothesized that pulmonary vascular changes could partly explain the impaired gas
transfer, for patients without lung fibrosis.

3.3 Results

The proposed graph-cuts based method obtained an Az of 0.976, which is a compet-
itive performance among 31 submitted methods and the best result among binary
submissions of VESSEL12, where the average and range for Az were 0.83 and (0.671,
0.976), respectively. The evaluation results of three binary submissions with top
ranking performance are shown in Table 3.1: the binary submissions (LT) of van
Dongen et al. [73] who extracted vessels with local thresholds on Frangi filter’s
vesselness and excluded airway walls by dilating the airway segmentation; the binary
submissions (AS) of our previous method which segmented vessels with a graph-cuts
based method by combining only appearance and shape features into the cost function;
the binary submissions (ASD) of the newly proposed method which detected vessels
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Table 3.1: Area under the ROC curve (Az) score of three binary submissions to the
VESSEL12 challenge across all categories (Categories 1: Principal, 2: Small Vessels,
3: Medium Vessels, 4: Large Vessels, 5: Vessel/Airway Wall, 6: Vessel/Dense Lesion,
7: Vessel/Mucus-filled bronchi, 8: Vessel-in-lesion/Lesion, 9: Vessel/Nodules). The
binary submission using local threshold on Frangi’s vesselness (LT, [73]), the graph-
cuts based method combining the appearance and shape feature (AS, [74]), and the
method proposed in this work incorporating appearance, shape and distance to airway
(ASD).

Categories 1 2 3 4 5 6 7 8 9

LT 0.932 0.885 0.954 0.955 0.912 0.688 0.404 0.649 0.517
AS 0.973 0.952 0.973 0.992 0.861 0.485 0.297 0.658 0.255
ASD 0.976 0.958 0.977 0.993 0.930 0.484 0.305 0.661 0.254

with a graph-cuts based techniques by incorporating appearance and shape features
and distance to airway. The evaluation results of all submissions are also available
online on the VESSEL12 website 4.

The vessels in the 8 CT scans of the phantom were segmented with the proposed
graph-cuts based method. The supporting oval frame surrounding the 3D printed
vessels in the phantom was removed using a cylinder mask. As there were no airways
designed in this phantom, the distance map to the airway was set to zero. The vessels
in the micro-CT scan were extracted using a threshold, which was determined by
density histogram analysis, see Fig. 3.3(a). The distribution of the voxel density in
the micro-CT scan had two peaks, the peak with lower density value corresponds
to the background (air) and the peak with higher density value corresponds to the
vessels. Thus, the density value with minimum frequency between these two peaks
was selected as threshold to extract vessels from the micro-CT scan. The threshold
T = 156 was used to segment vessels in this study. The 3D and 2D view of the extracted
vessels are illustrated in Fig. 3.3 (b) and (c). For testing the robustness of this ground
truth vessel extraction, we selected a range of thresholds (156±4) to extract vessels
(see Appendix).

Based on the extracted vessels in the micro-CT scan and the 8 CT scans, the corre-
sponding vessel size was calculated with the DtfSkeletonization module of MeVisLab,
where the estimated radius was recorded at the vessel centerlines. The micro-CT
scan was registered to the 8 CT scans of the phantom using Elastix registration
[95], separately, with the following settings: four-level pyramid, adaptive stochastic
optimizer, B-spline interpolator, Euler transformation, and maximum number of
iterations 250. The skeletons in the micro-CT scan were extended into a ‘radius tube’
by assigning the voxels on each cross section with the radius that was recorded on its

4https://vessel12.grand-challenge.org/results/
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(a) (b) (c) 

Figure 3.3: Histogram and extracted vessels of the vessel phantom in the micro-CT
scan, (a) the histogram of the micro-CT scan of 3D printed vessel phantom, (b) 3D
view of the extracted vessels in the micro-CT scan, (c) 2D view of the extracted vessels.

centerline, in order to overcome the mismatching between skeletons of micro-CT scan
and clinical CT scans. With the transformation parameters, the radius tube obtained in
micro-CT scan was transferred to each CT scan. For each CT scan, we got a mapping
vector with two columns: one contained the radius value of vessels in the clinical
CT scan and the other contained the radius value of the corresponding vessels in
the micro-CT scan. The median (M) and IQR of radius differences (radius of CT -
radius of micro-CT) were on average of 0.062 and 0.199, with STD of 0.02 and 0.05,
respectively, which shows high robustness. The correlations (R) between radius in
CT and micro-CT scans were calculated with Pearson’s correlation. The correlations
are presented in Table 3.2. The correlations were all statistically significant and the
average correlation was 0.909 (p-value< 0.001). Furthermore, linear regression was
applied to the radii from the clinical CT scans and those from the micro-CT scan. All
regression analysis results are shown in Table 3.2, with an average slope and intercept
of 1.018 and -0.058, respectively. The 2D histograms and linear regressions between
radius of CT scans and micro-CT scan are shown in Fig. 3.4.

The vascular morphology in the clinical CT scans of the phantom was studied with
the proposed radius histogram analysis method, based on the extracted vessels. For
each CT scan, two imaging biomarkers (α and β) were obtained for quantifying the
vascular morphology of the phantom, where the intercept β estimates the number
of small vessels and the slope α quantifies the relative contribution between small
and large vessels. The results of the biomarkers are presented in Table 3.2. The STD
(average) of biomarker α is 0.034 (-1.785), and the STD (average) of biomarker β is
0.049 (7.03), which implies that the proposed method is robust against CT scanner
settings, in particular variation in dose (mAs) and for two reconstruction methods
(FBP and AIDR 3D). The vascular morphology was investigated in the micro-CT scan
with the proposed method, based on the vessels extracted with a threshold of 156.
The imaging biomarkers α and β were -1.803 and 7.265, respectively. The average of
difference in α and β between micro-CT scan and clinical CT scans was -0.019 and
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0.235, respectively.

With regard to the patient images from the Leiden Combined Care biobank, the
lung masks were detected with a multi-atlas based method and pulmonary vascular
morphology was investigated with the proposed method. The imaging biomarkers (α,
β) were collected for all these patients. The average ± STD of α and β are (−1.49±0.2)
and (9.58± 0.61), respectively. The correlations between imaging biomarkers and
DLCOc %predicted were studied with Spearman’s rho correlation. In the studied
patient group, the imaging biomarkers, α (R=-0.27, p-value=0.018) and β (R=0.321,
p-value=0.004), were significantly correlated with DLCOc %predicted (with average
± STD, 70.4±16.7 ). The processing results of two patients in this SSc patient group,
who were quantified with the proposed method, are illustrated in Fig. 3.5.

3.4 Discussion

In this work, we proposed an automatic method, which consisted of two processing
steps: a graph-cuts based pulmonary vessel extraction and a radius histogram based
pulmonary vessel quantification, for investigating pulmonary vascular morphology
in CT images. The accuracy of the graph-cuts based vessel segmentation method
was validated with a public data set, and a competitive result was obtained among
other submissions. The robustness of the pulmonary vessel quantification method was
validated with a 3D printed vessel phantom data set, demonstrating a robust measure-
ment by comparing CT and micro-CT scans. The pulmonary vascular morphology in
each CT scan was quantified into two biomarkers, α and β. The association between
pulmonary vascular morphology and gas transfer was investigated with a data set
of 77 patients in SSc. The biomarkers, α and β, were significantly correlated with
DLCOc % predicted, indicating that the impaired gas transfer is associated with the
remodeling of pulmonary vascular morphology.

Extracting pulmonary vessels accurately is an essential processing step for quan-
tifying pulmonary vascular morphology. In this work, a graph-cuts based method
was proposed for vessel segmentation, by including voxel’s appearance and shape
features into a cost function. In comparison with methods using simply threshold or
local-threshold on vesselness, the proposed vessel segmentation method performed
well according to the independent validation of VESSEL12. This might be due to the
fact that the graph-cuts based method considers multiple features for each voxel and
assigns voxel’s label incorporating its neighbouring information. For separating the
airway walls and vessels, the distance map was integrated into the graph-cuts cost
function. In the method proposed by van Dongen et al. [73], the airway walls were
excluded by dilating the airway with a spherical element with a specific size, which
might remove partially vessels touching airway walls. Our method obtained slightly
better performance in separating the airway walls, as illustrated in Table 3.1, category

37



FBP AIDR3D 

1
0

m
A

 
2

0
m

A
 

5
0

m
A

 
1

0
0

m
A

 

Figure 3.4: Comparison between the vessel radius estimated from the micro-CT scan
and those from the clinical CT scans, for a range of dose levels and two reconstruction
algorithms (FBP and AIDR3D). In each sub-figure, the x-axis contains the radii from
the clinical CT and y-axis contains the radii from the micro-CT scan; the color scale
implies the logarithm transformed frequency of the joint histogram; the white line is
the identity line and the red line is the line of linear regression.
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5. Our method performed slightly worse, on the other hand, in distinguishing vessels
from dense lesions or nodules, categories 6 and 9, which may be due to the fact that
intensity of lesions and nodules are similar to vessels. These are however not expected
in patients with SSc.

The quantitative analysis of the extracted pulmonary vessels was performed on
the radius histogram, where the vessel radii were calculated by a distance transform
based method. The accuracy of vessels sizing and the robustness of vessel morphology
quantification were validated using a data set of a 3D printed vessel phantom, which
was scanned with a micro-CT scanner and a clinical CT scanner. The geometry model of
the phantom was not used as a gold standard or ground truth for comparisson, because
the accuracy of the 3D printing process (which depends on the printer, technique
and selected material) can introduce differences between the model and the actual
final printed object. Establishing robust methods to determine the accuracy and
reproducibility of 3D printing, in particular for phantoms is still under investigation
[91]. The characteristics and limitations of the material used in the lung phantom
compared to human vessels were discussed elsewhere [91]. The use of 3D printing
has grown in the past years in different areas in medicine, such as biocompatible
prosthesis development, surgery planification with models based on patient images
and educational purposes 5. One of its applications is the development of affordable
customized test objects or phantoms that can be used in image quality assessment in
different medical imaging modalities [96, 76]. O’Dell et al. validated the accuracy of
sizing vessels using a 3D printed vascular phantom made of acrylonitrile butadiene
styrene plastic. The vessel sizes (with diameters ranging from 1.2 to 7 mm) were
evaluated by manual measurements at 64 branches [77]. Due to the complexity of our
3D printed vessel phantom, however, the vessel sizes were not manually measurable.

For out study, a micro-CT scan with sufficiently high resolution was used for
calculating the ground truth of vessel sizes. Thus, we validated the accuracy of sizing
vessels by comparing clinical CT scans with micro-CT scan, and evaluated the vessel
size in all vessel trees by matching the clinical and micro- CT scans. The differences
of vessel radii calculated from clinical CT scans and micro-CT scan were very small;
therefore, these radii were highly correlated; and the regression analysis between
radius from clinical CT scans and micro-CT scan obtained average slope approximated
to 1 and average intercept approximated to 0, implying that the radii detected in CT
scans and in micro-CT scan are almost equal. As presented in Table 3.2, the IQR of
radius differences is smaller by increasing the dose (mA) for reconstruction kernel
FBP, while it is much more stable for the kernel AIDR3D, which implies the kernel
AIDR3D performed well for reconstructing images, with low mA settings.

5AAPM Special Interest Group in 3D printing (https://www.rsna.org/3D-Printing-SIG/)
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The vascular morphology of the extracted vessels was characterized by two
biomarkers, α and β. The biomarker α, which is the slope of the radius histogram,
reflects the related contributions between small vessels and large vessels, quan-
tifying small vessels pruning and large vessel dilation. The intercept β, which
was calculated by extrapolation to radius 0, estimates the vascular tree capacity,
without actually detecting pulmonary capillaries. The robustness of the automatic
quantification method was validated with CT scans acquired with various settings,
while the variation in biomarkers was quite small. The average difference in between
micro-CT scan and clinical CT scans is 0.025 by |αmi cr o−C T −αC T | and 1.4 % by
|(αmi cr o−C T −αC T )/αmi cr o−C T |∗100, while that in β is 0.235 and 3.2 %, respectively,
i.e., comparing clinical CT scans to micro-CT scan, the biomarker about relative
contribution between small vessels and large vessels were similar, in comparison with
the biomarker of vessel tree capacity, which might be due to the fact that the micro-CT
performed better in detecting small vessels. The relation between gas transfer and
biomarkers was validated with a data set of 77 SSc patients. The α and β showed
significant correlations with DLCOc % predicted, which implied that the vascular
remodeling (pruning/dilation and vascular tree capacity) is associated with impaired
gas transfer. Vascular remodeling as assessed in HRCT may precede changes in gas
transfer and may therefore be important in the clinical evaluation and treatment
decisions of SSc patients. Although, the correlations between imaging biomarkers and
gas transfer were moderate, these were comparable results in the relevant study [62].

There are some limitations in this work. The lung vessel segmentation method
did not work well for separating vessels and lung nodules, as the latter are mostly
attached to vessel trees and have a high intensity, eliminating the response of nodules
by considering the shape properties may be helpful for separating vessels and nodules,
however, detecting / extracting lung nodules is not the goal of this study. The 3D
printed vessel phantom used in this study contained a wide range of vessel radii and
lengths. A future development in using this type of phantoms to test algorithms could
be to control the number of vessels that are generated per diameter or length, during
the design process. In this way, a robust ground truth based on the model could
be compared. One of the limitations for the phantom is that the attenuation of the
material used to print the vessels is slightly higher compared to human vessels [90,
91]. Nonetheless, when comparing the the relative contrast between the lung phantom
vessels and the background (air) with values measured in vessels and parenchyma
in patients, the difference is relatively small (around 10%). This limitation could be
overcome in the future if other materials become available that could be printed with
the required resolution and a lower attenuation. Nonetheless, these differences in
attenuation don’t influence the results in the present study, as the presented method
for pulmonary vascular morphology analysis can be adapted to assess the target
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characteristics, in this case. In this work, the automatic quantification method was
applied on both lungs together. Applying the quantification method on separate lungs
or lung lobes may allow more localized assessments of vascular remodeling. In the
future, we will investigate deep-learning techniques in pulmonary analysis, as these
techniques generally perform well in medical images analysis. We did not separate
the arteries and veins for specific analysis. Developing a deep-learning based method
for separating arteries and veins is also a challenging but interesting topic for our
future work [97, 98, 99], as pulmonary vascular diseases may affect arteries and veins
differently. For validating the association between biomarkers and gas transfer, only
the SSc patient group was involved without a control group. Quantifying the vascular
morphology of healthy people may improve the detection of lung vasculopathy in SSc
patients. However, even without these specific analyses or a control group, we already
found a significant association between vascular morphology and gas transfer.

3.5 Conclusions

In conclusion, an automatic method has been proposed for quantifying pulmonary
vascular morphology in CT images. The accuracy of vessel segmentation has been
evaluated independently with the public data set of VESSEL12, and the robustness
of the quantification method has been validated with the image data set of a 3D
printed vessel phantom. The imaging biomarkers for quantifying pulmonary vessel
morphology in CT images are correlated with gas transfer in the studied SSc patients.
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Supplementary

Evaluation with three CT scans of VESSEL12 training set

In the VESSEL12 challenge, there are three CT scans in the training set, with the
corresponding lung masks and annotations files. In each CT scan, points were
annotated into 0 or 1 by three annotators, where 0 means non-vessel and 1 means
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(a) (b) 

Figure 3.6: A1. ROC evaluation of method AS and ASD. The cure of p21, p22 and p23
are corresponding to three CT scans in training set.

vessel. Only points which 3 annotators agreed on the label were included in the
annotation file. Finally, there are around 300 points with positions <x, y, z> and labels
included in the annotation file, for each CT scan.

For each CT scan, the AS and ASD methods were used for segmenting lung vessels
within lung region, separately. For these binary segmentation results, a signed distance
transform was applied to for generating a probabilistic mask. Finally, the ROC cure
were calculated based on the probabilistic mask and annotated points, see Figure, 3.6.
The method ASD obtained an average AZ of 0.946 which is slightly better than method
As, 0.945. Furthermore, the AZ of vessel segmentation in training set is worse than
that in testing set, which might because that the in-house used distance transform
method is not exactly the same with the method used by VESSEL12 organizers, and
the annotation categories are not the same between training and testing sets.

Vessel extraction in micro-CT scan

As presented in the Fig 3 (a). of main text, there are two clear peaks in the density
histogram of the micro-CT scan, where the peak with lower density corresponds to the
background, and the one with higher density corresponds to the vessels. The density
value (T=156) is the minimum frequency and selected as threshold to segment vessels.
For testing the robustness of vessel extraction, we selected a range of thresholds 156±4
to extract vessels, and the segmentation results was compared with the reference
segmentation (T=156). The radius difference histogram between vessels of threshold
i and reference were presented in Figure 3.7. The results of comparing radius analysis
between threshold i and reference were presented in Table 3.3, where the median M
radius difference is 0, IQR is also 0, the average correlation (R) is 0.980, and slope
(intercept) is 1.018 (0.003).
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Figure 3.7: A2. Radius difference frequency histogram between threshold i and
reference threshold.
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Table 3.3: Results of comparing radius analysis between threshold i and reference
threshold

T reference

T i M (IQR) R (p-value) slope intercept
152 0 (0) 0.981 (0.000) 1.015 -0.006
153 0 (0) 0.978 (0.000) 1.019 -0.004
154 0 (0) 0.979 (0.000) 1.020 -0.004
155 0 (0) 0.987 (0.000) 1.013 -0.001
157 0 (0) 0.986 (0.000) 1.014 0.004
158 0 (0) 0.981 (0.000) 1.018 0.008
159 0 (0) 0.975 (0.000) 1.021 0.011
160 0 (0) 0.976 (0.000) 1.025 0.013

Average 0 0.980 1.018 0.003
STD 0 0.004 0.004 0.007
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Pulmonary vascular morphology associated

with gas exchange in systemic sclerosis

without lung fibrosis

This chapter was adapted from:

Z. Zhai, M. Staring, M. K. Ninaber, J. K. de Vries-Bouwstra, A. A. Schouffoer, L. J. Kroft,
J. Stolk, and B. C. Stoel. Pulmonary Vascular Morphology Associated With Gas
Exchange in Systemic Sclerosis Without Lung Fibrosis, Journal of Thoracic Imaging,
Page 373-379, Volume 34(6), 2019 November.
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Abstract

Purpose Gas exchange in systemic sclerosis (SSc) is known to be affected by fibrotic
changes in the pulmonary parenchyma. However, SSc patients without detectable
fibrosis can still have impaired gas transfer. We aim to investigate whether pulmonary
vascular changes could partly explain a reduction in gas transfer of systemic sclerosis
(SSc) patients without fibrosis.

Materials and Methods We selected 77 patients, whose visual CT scoring showed no
fibrosis. Pulmonary vessels were detected automatically in CT images and their local
radii were calculated. The frequency of occurrence for each radius was calculated,
and from this radius histogram two imaging biomarkers (α and β) were extracted,
where α reflects the relative contribution of small vessels compared to large vessels
and β represents the vessel tree capacity. Correlations between imaging biomarkers
and gas transfer (DLCOc %predicted) were evaluated with Spearman’s correlation.
Multivariable stepwise linear regression was performed with DLCOc %predicted
as dependent variable and age, BMI, sPAP, FEV1 %predicted, TLC %predicted,
FVC %predicted, α, β, voxel size and CT-derived lung volume as independent variables.

Results Both α and β were significantly correlated with gas transfer (R=-0.29,
p-value=0.011 and R=0.32, p-value=0.004, respectively). The multivariable
step-wise linear regression analysis selected sPAP (coefficient=-0.78, 95%CI=[-1.07,
-0.49], p-value<0.001), β (coefficient=8.6, 95%CI=[4.07, 13.1], p-value<0.001)
and FEV1 %predicted (coefficient=0.3, 95%CI=[0.12, 0.48], p-value=0.001) as
significant independent predictors of DLCOc %predicted (R=0.71, p-value<0.001).

Conclusions In SSc patients without detectable pulmonary fibrosis, impaired gas
exchange is associated with alterations in pulmonary vascular morphology.
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4.1 Introduction

Systemic sclerosis (SSc) is an autoimmune connective tissue disease that involves
multiple organs [9]. Pulmonary disease in SSc mainly consists of interstitial lung
disease (ILD) and pulmonary hypertension (PH) [10]. For evaluating severity of
disease and response to treatment, pulmonary function tests (PFTs), such as diffusion
capacity for carbon monoxide (DLCO) and forced vital capacity (FVC), are key outcome
measures which play an important role as a surrogate for ILD and PH-related mortality
[100]. In SSc-related ILD, structural changes of lung parenchyma, i.e. fibrosis, is
known to affect PFTs [10, 101, 102, 103, 104]. In SSc-related PH, DLCO decreases
years before diagnosis of PH [13]. Conversely, gas transfer can be mildly or moderately
impaired in the absence of detectable pulmonary fibrosis and pulmonary hypertension.
Since gas transfer studies measure the alveolar capillary membrane gas exchange
efficiency [105], we hypothesized that pulmonary vascular changes might partly
explain this impaired DLCO, in the absence of pulmonary fibrosis.

Chest CT is considered the most accurate non-invasive imaging method for pul-
monary disease assessment [106]. Some studies on quantifying vascular tree mor-
phology based on CT show promising performances for assessing pulmonary vascular
disease [12, 60, 62, 66, 63, 58]. Understanding the relation between vascular
structure and pulmonary function may provide specific measurements for evaluating
the response to treatment or measuring the severity of pulmonary vascular disease.
The aim of this study was to test whether vascular changes were related to impaired
gas transfer in SSc patients without fibrosis. To this end, we developed an objective
and automatic method to quantify the pulmonary vascular morphology and studied the
association between these CT-derived imaging biomarkers and pulmonary function.

4.2 Materials and Methods

4.2.1 Patients

We studied a cohort of 333 consecutive patients who had participated in our annual
care program, between April 2009 and October 2015 [92]. The local Medical Ethical
Committee approved the protocol and all patients gave written informed consent for
collection of clinical and diagnostic data contributing to the biobank of the Leiden
Combined Care in SSc (CISS) cohort. From this cohort, 83 patients had a chest CT
scan where visual CT scoring showed no fibrosis and had PFTs measured within 8 days
of the CT scan. Among these patients, image quality was insufficient for six patients to
perform an accurate vascular analysis. Thus, 77 patients were selected for this study.
Based on the degree of skin involvement, three subtypes of patients were classified:
diffuse cutaneous SSc (DcSSc) with skin involvement proximal to the elbows and
knees; limited cutaneous SSc (LcSSc) with skin involvement distal to the elbows and
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knees; limited non-cutaneous SSc (LSSc) without skin involvement [107]. The group
consisted of 43 never-smokers, 31 ex-smokers and three current smokers.

PFTs were performed under ERS/ATS guidelines [94, 93], including total lung ca-
pacity (TLC), forced vital capacity (FVC), forced expiratory volume in 1 second (FEV1)
and single-breath diffusion capacity for carbon monoxide corrected for haemoglobin
concentration (DLCOc). PFT results were expressed as a percentage of the predicted
value (%predicted) [94, 93]. The DLCOc percentage of predicted (DLCOc %predicted)
was selected as key outcome measure of gas transfer.

The systolic pulmonary artery pressure (sPAP) was estimated using echocardiogra-
phy with a commercially available system (Vingmed Vivd7, General Electric Vingmed
Ultrasound, Milwaukee, WI, USA). The sPAP was calculated from the tricuspid
regurgitation peak gradient and the addition of right atrial pressure [108]. Patients
with suspected pulmonary hypertension (PH, echocardiographic sPAP>40 mmHg)
were tested by right heart-catheterization (RHC). If the mean pulmonary artery
pressure (mPAP) was > 25 mmHg, the individual was diagnosed with PH [109, 110].
Furthermore, the mPAP, cardiac output (CO), pulmonary vascular resistance (PVR) and
pulmonary artery wedge pressure (PAWP) were collected and used for determining
the type of PH, under the 2015 ESC/ERS guidelines [29]. All patients were scanned
with the same CT scanner (Aquilion 64, Toshiba Medical Systems, Otawara, Japan),
with full inspiration and without contrast enhancement. The CT settings were: tube
voltage = 120kV; tube current=140mA without modulation; rotation time = 0.4s;
collimation = 64Ö0.5mm; helical beam pitch = 0.8; images were reconstructed with
0.5 mm slices [25]. Two observers (L.K. and A.S.), who were blinded to the patients’
clinical information, scored the CT scans in consensus [11], at five levels: 1) origin of
the aortic arch branches; 2) main carina; 3) pulmonary venous confluence; 4) halfway
between the third and fifth section; 5) immediately above the right hemi-diaphragm.
At each level, six variables were scored as percentages: total disease extent; proportion
of ground-glass; extent of reticular pattern; coarseness of reticular disease; extent of
emphysema; and presence of bronchiectasis. Patients with 0 percent in all 30 variables
were considered to have no parenchymal abnormalities. Patients involved in this
study were without any suspicion of pulmonary veno-occlusive disease (PVOD), as
the CT scans did not show any signs of ground glass opacities, septal thickening or
lymphadenopathy.

4.2.2 CT analysis

For lung segmentation, we employed multi-atlas based methods to flexibly capture
anatomical variations, using Elastix registration toolbox [95]. Details on the atlas-
based segmentation method can be found in the online supplements. The final
segmentation included both left and right lungs. Within each lung, the vascular
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Table 4.1: Patient group characteristics

Number of subjects 77
Female n [%] 67 [87]
Age (year) 49.9 ± 14.2
BMI (kg/m2) 24.6 ± 5.24
sPAP (mmHg) <n=77> 26.9 ± 10.4
mPAP (mmHg) <n=3> 40.3 ±11
CO (L/min) <n=3> 5.17 ± 0.9
PVR (dyn·s/cm5) <n=3> 405.3 ± 149
PAWP (mmHg) <n=3> 11 ± 2.6
MRSS 3.38 ± 4.28
Type of SSc n [%]

DcSSc 8 [10.4]
LcSSc 51 [66.2]
LSSc 18 [23.4]

Autoantibodies, n [%]
ANA 74 [96.1]
Anti-Scl-70 # 4 [4.2]
Anticentromere * 53 [68.8]
RNA polymerase III 1 [1.3]

Pulmonary function (% predicted)
DLCOc 70.4 ± 16.7
FVC 107 ± 17.4
FEV1 98.9 ± 16.8
TLC 95.7 ± 12.2

CT-derived measurements
α -1.44 ± 0.2
β 10.1 ± 0.62
Lung Volume (L) 4.73 ± 1.24

# 1 patient with doubtful Anti-Scl-70; * 1 patient with missing
data; sPAP, systolic pulmonary arterial pressure, obtained from
echocardiography; DcSSc, diffuse cutaneous SSc; LcSSC, limited
cutaneous SSc; LSSC, limited non-cutaneous SSc; ANA, antin-
uclear antibody; Anti-Scl-70, nti-topoisomerase; DLCOc, single-
breath diffusion capacity for carbon monoxide corrected with the
haemoglobin concentration; FVC, forced vital capacity; FEV1, forced
expiratory volume in 1 second; TLC, total lung capacity.
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trees were detected by a graph-cuts method [83], where ‘vesselness’ and CT intensity
were combined into a single cost function. Previously, we evaluated this graph-cuts
method using the public data-set from VESSEL12 [69] and obtained accurate vessel
segmentation results [111]. 3D views of extracted pulmonary vascular trees are
shown in Figure 4.1 (a-c). The entire vascular tree, i.e. both arteries and veins, was
automatically extracted and subsequently analysed. In this automatic analysis, the
distribution of the different radii of the entire vascular tree was quantified by first
calculating the radius within each vessel, then construct a histogram from these data
and finally analyse the shape of this histogram, as detailed below.

At each location in the vascular tree, the radius was calculated by a skeletonization
method (DtSkeletonization method of Mevislab 2.7 [53]). This method selects voxels
that are located at the centre of a blood vessel by eroding the extracted vessels, and
the corresponding radius is estimated by measuring the distance between the vessel
boundary and the centre. Examples of ’skeletonized’ vascular trees are shown in
Figure 4.1 (d-f). Subsequently, the number of voxels in the vascular skeleton with a
specific radius were counted, producing a histogram of the measured vascular radii.
A logarithmic transformation was applied to the frequency of occurrence in order to
obtain a linear relation between frequency and radius [112] (Figure 4.1 (g-i)). Thus,
the index of each histogram bin represents the vessel radius and the height of the bin
represents the logarithm of the number of voxels with that specific radius. We used
robust linear regression (robustfit method of MATLAB R2016b [87]) to analyse each
radius histogram, and obtained two biomarkers (α, β) corresponding to the slope
and intercept of the linear regression, respectively. The slope parameter α reflects the
relative contribution of small vessels compared to large vessels (quantifying pruning
of small vessels and dilatation of larger vessels) and the intercept β is related to
the number of pulmonary capillaries estimated by extrapolation to radius 0, which
reflects the vascular tree’s capacity. To normalize for inspiration level and lung size,
CT-derived lung volume was measured from the lung segmentations. As the vessel
radius calculation might be affected by voxel size, the voxel size was also recorded for
each patient.

4.2.3 Statistical analysis

For patient characteristics, continuous variables were expressed as means with stan-
dard deviations (SD) unless stated otherwise, and categorical variables were expressed
as frequencies and percentages. Correlation between DLCOc %predicted or FVC
%predicted and age, BMI, sPAP, α, β, CT-derived lung volume were expressed in terms
of Spearman’s rho correlation. Multivariable linear regression was used to determine
independent predictors of DLCOc %predicted. DLCOc %predicted was entered as
a dependent variable; age, BMI, sPAP, FEV1 %predicted, TLC %predicted, FVC %
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(a)  (b)  (c)  

(d)  (e)  (f)  

(h)  (g)  (i)  

Figure 4.1: Three examples of vascular tree segmentation (a-c), vascular skeleton
extraction from the corresponding vascular tree (d-f) and radius frequency histogram
analysis of the vascular skeleton trees (g-i). Patient A, B and C had a DLCOc of 46%,
69% and 101.5% predicted, respectively, and lung volumes of 3.81, 6.2 and 4.23 litres,
respectively. The loss of vascular tree capacity, i.e., a low intercept β and a flat slope
α, is related to impaired gas transfer.
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predicted α, β, voxel size and CT-derived lung volume were used as independent
variables. A stepwise method was used for selecting significant independent predictors.
The same analyses were performed on the subgroup of patients without PH (n=74),
i.e. by excluding the three patients with PH confirmed by RHC. All statistical analyses
were performed by using SPSS (version 20.0.0, Armonk, NY: IBM Corp.), and a 2-tailed
p-value below 0.05 was considered statistically significant.

4.3 Results

The patient characteristics are shown in Table 4.1. In this study, 77 patients (mean age,
49.9 ± 14.2, including 67 females) were investigated, and the time difference between
their CT and PFT is 1.19 ± 1.24 days. Among this studied patient group, three patients
were confirmed with PH and were classified as pulmonary arterial hypertension (group
1), according to their CO, PVR and PAWP measurements. The average value of α and
β were -1.44 ± 0.2 and 10.1 ± 0.62, respectively. Individually, age, α, β and sPAP
were moderately but significantly correlated with DLCOc %predicted, as presented
in Table 4.2. The age and sPAP were significantly and negatively correlated with
DLCOc %predicted. The biomarker α had a significant negative correlation with
DLCOc %predicted (R=-0.29, p-value=0.011), which implies that a less negative α

(small-vessel pruning or large-vessel dilation) corresponds to a more impaired gas
exchange (lower DLCOc %predicted). β had a positive significant correlation with
DLCOc %predicted (R=0.32, p-value=0.004), which implies that a lower β (a low
capacity of the vascular tree) corresponds to a more impaired gas exchange. The
corresponding scatter plots are presented in Figure 4.2.

The results of the multivariable stepwise linear regression analysis for DLCOc
%predicted as dependent variable are shown in Table 4.3. The multivariable step-
wise regression analysis selected sPAP (coefficient=-0.78, 95%CI=[-1.07, -0.49],
p-value<0.001), β (coefficient=8.6, 95%CI=[4.07, 13.12], p-value<0.001) and FEV1
%predicted (coefficient=0.3, 95%CI=[0.12, 0.48], p-value=0.001 as significant and
independent predictors of DLCOc %predicted (R=0.71, p-value<0.001). By including
β in the model, an additional 10% of variation in gas transfer could be explained
(from R=0.56 to R=0.66).

For additional analysis, we evaluated the relationships between imaging biomarkers
and pulmonary ventilation i.e. FVC % predicted. As presented in Table 2, the
correlation between age, BMI, sPAP, α, β and FVC % predicted was not significant,
whereas CT-derived lung volume was significantly correlated with FVC % predicted
(R=0.41, p-value<0.001). Furthermore, the correlations between image biomarkers
and sPAP were investigated. The correlation between sPAP and BMI (R=0.05, p-
value=0.676), α (R=0.08, p-value=0.509), β (R=-0.01, p-value=0.92) and lung
volume (R=-0.11, p-value=0.333) were not significant, while age had a significant
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(a) (b)

Figure 4.2: Correlation between imaging biomarkers and lung function (A, B and C are
corresponding to patient A, B and C in Figure 1, respectively). (a) Correlation between
α and DLCOc % predicted (R=-0.29, p-value=0.011); (b) Correlation between β and
DLCOc % predicted (R=0.32, p-value=0.004)

Table 4.2: Correlations, R (p-value), between CT imaging biomarkers and PFTs.

DLCOc % predicted FVC % predicted

α -0.29 (0.011) -0.14 (0.243)
β 0.32 (0.004) 0.15 (0.187)
sPAP -0.38 (0.001) -0.01 (0.909)
BMI 0.19 (0.105) 0.26 (0.023)
Age -0.29 (0.01) 0.14 (0.23)
Lung Volume 0.18 (0.12) 0.41 (<0.001)

correlation with sPAP (R=0.53, p-value<0.001). In the statistical analyses on the
subgroup of patients without PH (n=74), α (R=-0.34, p-value=0.003) and β (R=0.42,
p-value<0.001) were significantly correlated with DLCOc %predicted; β was the first
selected independent predictor of DLCOc %predicted, followed by sPAP and FEV1
%predicted, in multivariable stepwise regression. The results of the subgroup analyses
are shown in the online supplements.

4.4 Discussion

We studied the pulmonary vascular morphology among SSc patients without pul-
monary fibrosis. An automatic method was applied to CT images (without contrast
medium), for characterizing the pulmonary vasculature by quantifying the vascular
system with a radius histogram analysis. To our knowledge, this is the first report on
the relationship between pulmonary vascular tree capacity (the number of pulmonary
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Table 4.3: Multivariable stepwise linear regression analysis for DLCOc %predicted
(n=77).

Multivariable regression

Parameter Regression Coefficient
[95% CI]

p-value

Age - -
BMI - -
sPAP -0.78 [-1.07, -0.49] <0.001
FVC %predicted - -
FEV1 %predicted 0.3 [0.12, 0.48] 0.001
TLC %predicted - -
α - -
β 8.6 [4.07, 13.1] <0.001
Voxel size - -
Lung Volume - -

capillaries estimated from CT) and gas transfer. Two CT-derived imaging biomarkers
were introduced that are significantly correlated with DLCOc % predicted, demonstrat-
ing that gas transfer is associated with changes in vascular morphology. This may be
useful in understanding the pathophysiology of this subgroup of SSc patients whose
gas transfer deteriorates in the course of their disease without detectable pulmonary
fibrosis.

Pulmonary vasculature was quantitatively assessed by two measurements, α and β.
Biomarker α, the histogram slope, reflects the relative contribution of small vessels
compared to large vessels, quantifying pruning of distal vessels and dilatation of the
proximal vessels. Biomarker β, the histogram intercept, is estimated by extrapolation
to radius 0 which provides an estimate of the vascular tree capacity, without actually
detecting pulmonary capillaries. The biomarker α was significantly correlated with
biomarker β (R=-0.91, p-value<0.001), implying that the reduction of vascular tree
capacity could result in a change in the relative contribution of small vessels compared
to large vessels. sPAP, β, FEV1 %predicted were selected by the stepwise method,
whereas α, was excluded as it didn’t explain additional DLCOc %predicted variation,
probably due to the high correlation between α and β. To illustrate the effect of α
and β (pruning/dilatation and vascular tree capacity), three patients are discussed
in more detail (see Figure 4.1 and 4.2). Patient A with a low DLCOc % predicted
obtained a flat slope α and a low intercept β, indicating vessel pruning/dilatation
and a loss of vascular tree capacity, as compared to the other patients. This was
confirmed by visual inspection of the vascular tree in Figure 4.1. Compared to patient
B who had a moderate DLCOc %predicted, α and β, patient C had a higher DLCOc %
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predicted, lower α value and higher β value, which implied that a better gas transfer
corresponds to a lower vessel pruning/dilatation and higher vascular tree capacity.
As the studied patient group consisted of SSc patients without pulmonary fibrosis,
CT-derived lung volume was considered to reflect the total lung capacity. Since the
voxel size might affect the vascular morphology measurements, voxel size was entered
as independent variable in the multivariable linear regression. It proved, however, to
be a non-significant factor in predicting gas transfer.

DLCOc % predicted and FEV1 % predicted correlated significantly in our study
population (R=0.4, p-value=0.001). In the multivariable linear regression, the FEV1 %
predicted was a significant independent predictor of DLCOc % predicted, which implies
that pulmonary gas transfer was associated with pulmonary ventilation (air flow). The
sPAP had a negative and significant correlation with DLCOc % predicted, and the sPAP
was a significant predictor of DLCOc % predicted in the multivariable linear regression,
which indicates that pulmonary pressure (blood flow) could affect gas transfer. In the
subgroup of patients without PH, the performance of the biomarkers in predicting gas
transfer was similar to those of the whole patient group, which implies that excluding
or including these three PH patients did not change the validity of the biomarkers.

Several aspects of the correlation between β and DLCOc % predicted as well as
the influence of FVC require some clarification. The correlation between DLCOc %
predicted and β may be influenced by the position of the patient in both measurements
(i.e. the sitting position during gas transfer studies and the supine position during chest
CT). Two determinants of DLCO, membrane diffusing capacity (Dm) and capillary
blood volume (Vc), have been known to be affected by posture and gravity. A postural
change from sitting to the supine position in normal gravity, where some degree
of heterogeneity between dependent and nondependent lung region persists, can
result in an increase in Vc and not Dm, and an overall increase in DLCO up to
15% [105, 113]. Therefore, it seems plausible that this could have weakened the
correlation between β and DLCOc % predicted. Furthermore, since α and β have
not been evaluated in normal subjects, values between the “upper and lower limit of
normal” of α and β may exist in our study population. This may be another factor
that could have led to weakening the correlation between β and DLCOc % predicted.
However, the protection of healthy individuals against radiation exposure prevents
us from prospectively measuring α and β in CT images from normal controls, and
retrospectively collecting negative CT examinations generally lacks confirmation by
pulmonary function tests and these CT scans are usually contrast enhanced affecting
the vascular morphology analysis.

Currently, studies on quantifying vascular tree morphology with CT imaging also
showed promising results for assessing pulmonary vascular pathology associated with
other pulmonary diseases. In COPD related studies [12, 60], the pulmonary vessel
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morphology was quantified using CT scans without contrast as the percentage of
small vessels i.e. vessels with cross-section area less than 5 mm2 (%CSA<5 mm2).
The quantification had a weak but significant correlation with PFTs [60], and a
significant negative correlation with mPAP [12]. Furthermore, smoking-related COPD
is characterized by distal pruning of the small vessels which was assessed with the
ratio between small vessel volume with CSA<5 mm2 and total blood vessel volume
(BV5/TBV) [62]. In one pulmonary hypertension study [66], pulmonary vascular
morphology was quantified with contrast-enhanced chest CT in 24 patients (18 with
and 6 without PH). Vascular remodelling characterized by vessel tortuosity and 3D
fractal dimensions correlated significantly with RHC measurements. Furthermore, in
chronic thromboembolic pulmonary hypertension (CTEPH), the disease was quantified
as pulmonary morphologic changes with CT scans [65], including pruning of the
distal vessel and dilation of the proximal vessels which were measured with the ratio
BV5/TBV and the ratio BV>10/TBV (where BV>10 is the blood volume for all vessels
with a CSA>10 mm2), respectively. These biomarkers differed significantly between
CTEPH patients and control individuals, and they correlated with RHC measures. In
this study quantification on portions of pulmonary vascular system based on CSA or
quantification of the pulmonary vascular fractal dimension was performed. In our
study, however, we considered the pulmonary vessels as a continuous system, by
quantifying vascular changes including all vessel radii by histogram analysis, instead
of analysing only parts of the vascular tree. This yielded two biomarkers, α and β, that
characterized the vascular tree in a more global approach and showing an association
with gas transfer.

There are some limitations in our analysis. The automatic method used in the
present study could not distinguish arteries from veins. As vascular changes may
differ between arteries and veins, improved correlation may be expected with arteries
evaluated separately from veins. However, even without this distinction, we already
found a significant association with gas transfer. Also, we assessed both lungs together
for each patient. More specific analysis of separate lungs or lung lobes may provide a
more localized assessment of vascular changes. All patients in this study were scanned
by the same scanner, thus, when adopting the automatic method to other CT scanners,
the parameters for vessel extraction might need to be adjusted. The studied group
only included SSc patients without a control group. Data on normal vasculature
morphology of healthy people would enhance our understanding. Nevertheless, our
method was still able to detect variances in the pulmonary vasculature. Due to a lack
of pathology specimens in these SSc patients, validation of the imaging measurements
against pathology was not possible. In the future, we aim to prospectively follow-
up changes in the pulmonary vascular morphology in these patients over time, and
evaluate if these subtle changes precede functional changes in pulmonary testing.
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Studying the morphological changes of pulmonary vasculature in the patients with
PH related diseases, such as chronic thromboembolic pulmonary hypertension, is also
an interesting point of our future work, as the metric of morphological changes could
help to predict an early development or monitor effects of treatment.

4.5 Conclusion

In conclusion, we characterized the pulmonary vasculature by two CT-derived imaging
biomarkers from vascular radius analysis. These two imaging biomarkers, indicating
small-vessel-pruning/large-vessel-dilation and loss of vascular tree’s capacity, are
associated with decreased gas transfer in the studied SSc patient group. The method
may help understand the relationship between pulmonary vascular changes in SSc
and lung function, in the absence of detectable fibrosis.

Supplementary

Segmentation methods

Three atlases that were labelled manually by pulmonary experts with Pulmo CMS
software [114] were taken as moving image, and patient images were taken as fixed
images. The torso masks were generated automatically using Pulmo-CMS, and were
used to eliminate the influence of external objects on image registration quality. The
registrations included an affine registration to tackle differences in the body positioning
and a B-spline deformable registration to tackle anatomical differences in lung shape.
The B-spline transformation model was subsequently used to transform the lung mask
from the moving to the fixed image. After these procedures, three candidate lung
masks corresponding to three atlases were fused by majority voting.

For lung vessels segmentation, a number of methods have been proposed in
the literature. According to the challenge “Vessel Segmentation in the Lung 2012”
(VESSEL12) [41], vesselness filters based on analysing the eigenvalues of the Hessian
matrix were most successful. However, due to the low response at vessel boundaries
and bifurcations, and the non-uniform response between vessels of different radii,
extracting lung vessels by simply thresholding the vesselness is not sufficiently accurate
for pulmonary vessel radius analysis. In this study, we therefore used a graph-cuts
based method for the ultimate lung vessel segmentation, with a specifically designed
cost function. The details on this vessel segmentation method have been described
previously [111]. All image processing experiments were performed on a local PC
with 24 GB RAM memory, Intel Xeon W3520 CPU with 4 cores, with 64-bit Windows 7
Professional OS.
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Table A1. Evaluation of the multi-atlas based lung volume
segmentation method.

ID Dice HausdorffD AveSurfaceD StdSurfaceD

1 0.987 23.431 0.355 0.895
2 0.986 23.791 0.431 1.077
3 0.986 27.677 0.466 1.210
4 0.960 39.064 1.468 2.521
5 0.986 19.672 0.515 0.986
6 0.989 24.062 0.423 1.015
7 0.984 23.622 0.490 1.061
8 0.982 23.087 0.593 1.410
9 0.988 21.633 0.497 1.056
10 0.987 32.265 0.508 1.150
11 0.987 21.749 0.435 0.929
12 0.977 30.887 0.905 2.135
13 0.977 26.926 0.818 1.982
14 0.989 22.226 0.403 0.894
15 0.980 24.000 0.643 1.259
16 0.987 24.352 0.394 1.132
17 0.988 20.518 0.455 1.166
18 0.987 23.043 0.442 1.092
19 0.986 27.586 0.458 1.075
20 0.987 23.622 0.491 0.986

Average 0.984 25.161 0.559 1.252

The unit of distance measurements is mm

Evaluation of lung segmentation

For the evaluation of our automatic lung segmentation method, 20 patients, who
were randomly selected from SSc patients group, with manually labelled lung volume
were used. Volume overlap similarity (Dice), maximum surface distance (Hausdorff
distance HausdorffD), average surface distance (AveSurfaceD) and standard deviation
of the surface distance (StdSurfaceD) were used for evaluating the multi-atlas-based
lung segmentation method. As shown in Table A1, the average Dice of 20 patients
was 0.984, the average Hausdorff distance was 25.161 mm, average AveSurfaceD
was 0.559 mm and average StdSurfaceD was 1.252. From the Dice, AveSurfaceD and
StdSurfaceD, it can be concluded that the segmentation method generally performed
quite well. For the large Hausdorff distance, we visually checked the segmentation
results and the maximum surface distance occurred at the border and corner of the
lung region. Since vessels are rarely located at the lung boundary, these errors are not
relevant and the ultimate segmentation results were reliable.
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Evaluation of lung vessel segmentation

The public data-set of 20 CT scans from the VESSEL12 challenge was used for evaluat-
ing the vascular tree extraction method. The extracted lung vessels were submitted to
the challenge organizer and evaluations were sent back. Our method obtained an area
under the ROC curve (Az) of 0.975, which is a competitive performance on VESSEL12,
especially among the binary submissions. The method performed well for the small
vessels, medium vessels and large vessels, but for separating the airway wall, dense
lesion and bronchi from the lung vessels, performance was less successful.

Results of subgroup (n=74) without PH

Among the patient group in this study, three patients out of 77 were confirmed in
Pulmonary Hypertension (PH). To understand the biomarkers’ effect in predicting
gas transfer, the same statistical analyses were carried out in the subgroup (n=74)
by excluding three PH patients. The results of Spearman’s correlation analysis are
presented in Table A3, where α (R=-0.34, p-value=0.003) and β (R=-0.42, p-
value<0.001) were significantly correlated with DLCOc %predicted. From the results
of multivariable stepwise regression, as demonstrated in Table A4, the biomarkers
β (coefficient=8.33, 95% CI=[3.72, 12.9], p-value=0.001), was the firstly selected
significant independent variables of DLCOc %predicted (R=0.65, p-value<0.001).
Thus, in comparison with the statistical results of whole patient group, the performance
of biomarkers in predicting gas transfer was the same, which implies that excluding or
including three PH patients does not change the validity of biomarkers.

Discussion

For the automatic image processing methods used in this study, the atlas-based
lung segmentation method was evaluated using 20 patients of in-house data against
manually segmented lung fields labelled by experts. The results (Table A1) showed
that the average Dice index was 0.984 and the average mean-surface-distance was
0.55 mm, which implies that our lung segmentation method is reliable. The lung
segmentation method may be improved further by including more atlases. The graph-
cuts based method, which was applied for vascular tree extraction, was evaluated
with the public data set and obtained accurate results, especially among the binary
vessel extraction methods. The graph-cuts method performed quite well for vessel
segmentation for the small vessels, medium vessels and large vessels, but it failed
to separate touching airway walls and vessels, which was caused mainly by similar
intensity and adjacency between airway walls and vessels. Taking CT intensity into
the cost function of the graph-cuts method made the detection of vascular boundaries
and bifurcations more accurate, but the noise in CT produces a rough surface. To
address this shortcoming, the subdivision method [115], which is a tube surface
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Table A2. Characteristics of subgroup patients

Number of subjects 74
Female n [%] 65 [87.8]
Age (year) 49.2 ± 13.9
BMI (kg/m2) 24.6 ± 5.34
sPAP (mmHg) 25.3 ± 5.95
MRSS 3.34 ± 4.36
Type of SSc n [%]
DcSSc 8 [10.8]
LcSSc 48 [64.9]
LSSc 18 [24.3]

Autoantibodies, n [%]
ANA 71 [95.9]
Anti-Scl-70 # 4 [5.5]
Anticentromere * 51 [68.9]
RNA polymerase III 1 [1.4]

Pulmonary function (% predicted)
DLCO 71.9 ± 15.3
FVC 108 ± 16.6
FEV1 100 ± 14.9
TLC 96.3 ± 11.7

CT-derived measurements
α -1.44 ± 0.2
β 10.1 ± 0.61
Lung Volume (L) 4.73 ± 1.23

# 1 patient with doubtful Anti-Scl-70. * 1 patient with missing data.

Table A3. Correlations, R (p-value) between CT imaging
biomarkers and PFTs.

DLCO % predicted FVC % predicted

α -0.34 (0.003) -0.17 (0.154)
β 0.42 (<0.001) 0.24 (0.041)
sPAP -0.30 (0.009) 0.11 (0.372)
BMI 0.22 (0.063) 0.29 (0.013)
Age -0.22 (0.063) 0.24 (0.038)
Lung Volume 0.18 (0.133) 0.42 (<0.001)
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Table A4. Multivariable stepwise linear regression analysis for
DLCOc %predicted (n=74).

Multivariable regression

Parameter Regression Coefficient [95% CI] p-value

Age - -
BMI - -
sPAP -0.99 [-1.46, -0.53] <0.001
FVC %predicted - -
FEV1
%predicted

0.33 [0.14, 0.52] 0.001

TLC %predicted - -
α - -
β 8.33 [3.72, 12.9] 0.001
Voxel size - -
Lung Volume - -

fitting algorithms with centreline as reference, might provide better surfaces and more
accurate radius estimation. The skeletonisation method, which was carried out by a
symmetric distance transform, would then provide accurate centres of the skeleton
and estimate the radius reliably. However, with the current rough surface, some side
branches may still remain, despite the removal of easily-distinguished side branches
by the skeletonisation method [86]. Therefore, centreline tracing methods may be
beneficial for removing these side branches.
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Treatment Effect of Balloon Pulmonary

Angioplasty in CTEPH, Quantified by

Automatic Comparative Imaging in CTPA

This chapter was adapted from:

Z. Zhai, H. Ota, M. Staring, J. Stolk, K. Sugimura, K. Takase, and B. C. Stoel. Treatment
effect of balloon pulmonary angioplasty in chronic thromboembolic pulmonary
hypertension quantified by automatic comparative imaging in computed tomog-
raphy pulmonary angiography, Investigative Radiology, Page 286-292, Volume 53(5),
2018 May.
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Abstract

Objectives Balloon pulmonary angioplasty (BPA) in patients with inoperable chronic
thromboembolic pulmonary hypertension (CTEPH) can have variable outcomes.
To gain more insight into this variation, we designed a method for visualizing
and quantifying changes in pulmonary perfusion by automatically comparing CT
pulmonary angiography (CTPA) before and after BPA treatment. We validated these
quantifications of perfusion changes against hemodynamic changes measured with
right-heart catheterization (RHC).

Materials and Methods We studied 14 consecutive CTEPH patients (12 females;
age:70.5 ± 24), who underwent CTPA and RHC, before and after BPA. Post-treatment
images were registered to pre-treatment CT scans (using the Elastix toolbox) to obtain
corresponding locations. Pulmonary vascular trees and their centerlines were detected
using a graph-cuts method and a distance transform method, respectively. Areas
distal from vessels were defined as pulmonary parenchyma. Subsequently, the density
changes within the vascular centerlines and parenchymal areas were calculated
and corrected for inspiration level differences. For visualization, the densitometric
changes were displayed in color-coded overlays. For quantification, the median and
inter-quartile range (IQR) of the density changes in the vascular and parenchymal
areas (∆VD and ∆PD) were calculated. The recorded changes in hemodynamic
parameters, including changes in systolic, diastolic, mean pulmonary artery pressure
(∆sPAP, ∆dPAP and ∆mPAP, respectively) and vascular resistance (∆PVR), were used
as reference assessments of the treatment effect. Spearman’s correlation coefficients
were employed to investigate the correlations between changes in perfusion and
hemodynamic changes.

Results Comparative imaging maps showed distinct patterns in perfusion changes
among patients. Within pulmonary vessels, the IQR of ∆VD correlated significantly
with ∆sPAP (R=-0.58, p=0.03), ∆dPAP (R=-0.71, p=0.005), ∆mPAP (R=-0.71,
p=0.005) and ∆PVR (R=-0.77, p=0.001). In the parenchyma, the median of ∆PD
had significant correlations with ∆dPAP (R=-0.58, p=0.030) and ∆mPAP (R=-0.59,
p=0.025).

Conclusions Comparative imaging analysis in CTEPH patients offers insight into
differences in BPA treatment effect. Quantification of perfusion changes provides
non-invasive measures that reflect hemodynamic changes.
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5.1 Introduction

Chronic thromboembolic pulmonary hypertension (CTEPH) is caused by persistent
obstruction of pulmonary arteries following pulmonary embolism [15]. The me-
chanical obstruction of pulmonary arterials is produced by fibrotic transformation of
pulmonary thrombus [32], which could lead to pulmonary hypertension and increasing
pulmonary vascular resistance (PVR). Without treatment, CTEPH patients have poor
prognoses: 2-years survival rate is less than 50% in patients with mean pulmonary
artery pressure (PAP) > 30 mmHg [18, 17]. The prognosis can be improved by
pulmonary endarterectomy (PEA) [20] or balloon pulmonary angioplasty (BPA) [21],
combined with optimal medications. PEA is the curative treatment for CTEPH, with
nearly normalized hemodynamics in the majority of patients [22]. However, for
patients with inoperable CTEPH, BPA can be an alternative treatment to improve the
clinical status and hemodynamics with a low mortality [23].

Evaluation of disease severity and assessment of treatment effects play an important
role in the therapy of CTEPH. In evaluating the severity of CTEPH and assessing treat-
ment effects, invasive right-heart catheterization (RHC) serves as gold standard [31].
The 6-min walk distance (6MWD) [116] and the brain natriuretic peptide (BNP) level
[117] are the most frequently used non-invasive measurements to quantify treatment
effect. Non-invasive imaging techniques play a key role in both diagnosis of CTEPH and
assessment of the treatment effect [32]. Radionuclide ventilation/perfusion (VQ) scans
are recommended as an initial step in the diagnosis of CTEPH [31], but it is difficult to
quantify treatment effects with VQ scans. CT pulmonary angiography (CTPA) is used
in the evaluation of severity of CTEPH [34]. Compared with conventional pulmonary
angiography, CTPA has benefits for providing additional details in high-resolution
3D images [118]. Recently, dual-energy CT has shown its capability in visualizing
pulmonary vascular disease and assessing severity of CTEPH [119, 19].

BPA treatment can improve the hemodynamics of pulmonary vascular systems [23]
and may contribute to the improvements of pulmonary vascular and parenchymal
perfusion. We hypothesized that the perfusion changes achieved by BPA might reflect
densitometric changes in CTPA. Thus, an objective and automatic method was designed
to quantify the density changes in pulmonary vascular and parenchymal areas by
comparatively analyzing CTPA before and after BPA. Moreover, we validated these
image quantifications of perfusion changes against hemodynamic changes measured
via RHC.
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5.2 Materials and Methods

5.2.1 Patients

We studied a cohort of 14 consecutive patients (age, 70.5 ± 24, including 12 females)
who were diagnosed with inoperable CTEPH and were treated with BPA between May
2013 and April 2016, referred to the Tohoku University Hospital. All studied patients
underwent both CTPA and RHC examinations, before and after BPA treatment. All
patients underwent several sessions of BPA procedures besides standard medication
such as anticoagulants and vasodilators. As a vasodilator for symptoms prior to BPA,
Riociguat, Tadarafil, Ambrisentan and Beraprost were used in 7, 5, 2 and 2 patients,
respectively. During one procedure, the target lesion was limited to one or two
segments in one lobe to minimize complications of BPA. We repeated BPA sessions at a
4–8 weeks interval [21]. Seven patients underwent the initial CTPA scan before the
first BPA session; the other seven subjects had undergone a part of BPA sessions before
the initial CTPA scan. The number of BPA sessions between the two CTPA exams
ranged between 1 and 4 (median: 3). The intervals between CTPA and RHC were 0 to
37 days (median: 2 days). This prospective study was approved by the local ethics
committee, and written informed consent was obtained from all patients.

All patients were scanned with a second generation dual-source CT scanner
(SOMATOM Definition Flash; Siemens Healthcare GmbH, Forchheim, Germany)
with inspirational breath-hold and contrast enhancement. Contrast enhancement
containing 350 mg/mL iodine was injected at a speed of 0.075 mL/s/kg × body-weight
(in kg) over a period of 6 s, and subsequently a 40 mL saline flush was delivered
at the same injection speed via a 20-gauge intravenous catheter, placed in the right
antecubital vein using a double-headed power injector. A test injection technique was
used to determine the scan delay: 12 mL iodine-containing contrast medium followed
by 20 mL saline. For each patient, a region of interest (ROI) was placed within main
pulmonary artery and the time-density curve within the ROI was recorded. The dual-
source CT scan commenced 1 s after the test injection-mediated enhancement peaked
[19]. The X-ray tube settings (with automatic tube current modulation) were for tube
A: voltage 80 kVp with a quality reference mAs of 141; and for tube B with a tin (Sn)
filter: 140 kVp with a quality reference mAs of 60. Gantry rotation speed was 0.28 s
per rotation, collimation 64 × 0.6 mm, pitch 1.00. Data was reconstructed with a slice
thickness of 1 mm using a standard soft-tissue iterative reconstruction kernel (I30f,
Sinogram Affirmed Iterative Reconstruction, [SAFIRE], strength 3). The 80 kVp and
140 kVp voltage images were fused into mixed images with a single energy of 120 kVp
and with a mixing ratio of 0.6 : 0.4, using the dual-energy application software on a
commercially available workstation (syngo CT Workplace, VA44A; Siemens Healthcare
GmbH) [19]. Only the mixed CTPA images were investigated in this study.
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The hemodynamic parameters were examined at the main pulmonary artery
via RHC in all patients both before and after BPA treatment. These included PAP
(systolic, diastolic and mean), systolic right ventricular pressure (RVP), right atrial
pressure (RAP), cardiac output (CO), cardiac index (CI) and pulmonary capillary
wedge pressure (PCWP). The PVR was calculated using the following formula: PVR
= (mean PAP − PCWP)/CO × 80 (dyne.s/cm5) [120]. The RHC examinations were
used as gold standard to evaluate the severity of CTEPH [31], the changes in PAP
(∆sPAP, ∆dPAP and ∆mPAP) and in PVR (∆PVR) after BPA treatment were calculated
as the reference assessments for the treatment effects. 6MWD data were recorded
for 13 out of 14 patients. BNP and mean transit time (MTT) were collected for all
patients. The diameter of the pulmonary artery (PA) trunk was measured on axial
images. Short axis measurements of the left and right ventricle (LV and RV, resp.) were
performed in 4-chamber images, and the ratio between RV and LV short axes (RV/LV)
was calculated. The interventricular septum was assessed on the mid-chamber short
axis images. Interventricular septal angle (ISA) was measured by determining the
angle between the mid-point of the interventricular septum and the two hinge points.
These CT measurements were performed on a commercially available workstation
(Aquarius Net; TeraRecon, San Mateo, CA).

5.2.2 Image analysis

CTPA scans were pre-processed with lung volume segmentation using multi-atlas based
methods. Three atlases that were labeled semi-automatically by pulmonary experts
using Pulmo-CMS software [114] were registered to each CTPA scan with Elastix [95].
Majority voting was used to fuse the labels and extract the final lung segmentation.
Pulmonary vessels were extracted within the lung volume, using a graph-cuts based
method [111], where the vessel-likelihood (so-called ‘vesselness’, measured by the
strain-energy filter [68]) and CT intensity were combined into a single cost function.
Both pulmonary arteries and veins were included as the entire pulmonary vascular
trees.

For each patient, pairwise image registration was employed between CT images of
post- and pre-BPA, using Elastix, as reported previously [121]. The volume correction
in this method was originally designed for parenchymal areas only, as a measure to
correctly assess emphysema progression, where a proportional local increase in volume
(estimated by the determinant of the Jacobian) was compensated by a proportional
decrease in density (called the ‘dry sponge model’):

∆D (x) = Ipost (T (x))− Ipr e (x)• [det JT (x)]−1 , (5.1)

where ∆D (x) is the estimated density change at position x; Ipr e (x) and Ipost (x) are
the image intensities of the pre- and post-BPA CT scan; T (x) is the transformation
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function from the image registration, mapping the coordinate x in the pre-BPA scan to
the corresponding position in the post-BPA scan; and det JT (x) is the determinant of
the Jacobian of the transformation field at position x.

As the ‘dry sponge model’ is not applicable for the pulmonary areas with high
density, where pure liquid in pulmonary vessels is not compressible, we modified the
model to restrict the scaling factor (det JT (x)) depending on the density. This so-called
‘restricted sponge model’ considers a voxel as composed of two components, air and
liquid. Then density can be increased by leaving out the air component, and the density
is only allowed to decrease by a maximum of 4 times the original volume of the air
component (see Figure 5.1 A). This means that the scaling factor is allowed to range
from 0 to 4, if a voxel contains only air. For a voxel containing 100% water, blood or
contrast agent (i.e. densities higher than 1000 gram/L) which is not compressible,
then the scaling factor is set to 1. And for voxels with original densities between 0
and 1000 gram/L, linear lower and upper bounds for the scaling factor are used (see
Figure 5.1 B). Therefore, the sponge model in Equation 5.1 was modified as follows:

∆D (x) = Ipost (T (x))− Ipr e (x)•C (x)−1

C (x) = max
{
θmi n

(
Ipr e (x)

)
,mi n

{
θmax

(
Ipr e (x)

)
,det JT (x)

}}
, (5.2)

where θmi n and θmax are the linear lower and upper bound, respectively.
In order to eliminate the dependence on a perfect matching quality between follow-

up and baseline at the vascular boundary regions, we extracted only the centerlines
of vessels by the symmetric distance transform method (DtSkeletonization method of
Mevislab 2.7 [86]). Subsequently, only the voxels on the vascular centerlines were
used for quantifying the density changes which were estimated with Equation 5.2. For
visualization, the ‘densitometric change’ map was displayed as color-coded overlays as
shown in Figure 5.2 (a, d) and 3D color-coded vascular centerlines were generated,
as illustrated in Figure 5.2 (b, e). For quantification, the median and inter-quartile
range (IQR) of the vascular densitometric changes (∆VD) were calculated, as shown
in Figure 5.2 (c, f), which were used to quantify the perfusion changes within vessels.
The densitometric changes in parenchyma (∆PD) were measured at the location of
parenchymal ‘centerlines’ which are the parenchymal areas distal to pulmonary vessels.
Similarly, the perfusion changes in pulmonary parenchyma were quantified by the
median and IQR of the ∆PD.

5.2.3 Statistical analysis

Continuous variables of the patient characteristics are presented as the median
and interquartile range, and categorical variables are presented as frequencies and
percentages. The normality of each variable was tested with a Shapiro-Wilk test
and a normal Q-Q plot. The changes in RHC parameters, 6MWD, BNP levels, MTT,

70



C
H

A
P

T
E

R
5

A
P

P
LIC

AT
IO

N
IN

C
T

E
P

H

Fi
gu

re
5.

1:
A

)
Tw

o-
co

m
po

ne
nt

m
od

el
:

a
vo

xe
li

s
co

m
po

se
d

of
an

ai
r

an
d

bl
oo

d
co

m
pa

rt
m

en
t

(o
r

w
at

er
or

co
nt

ra
st

ag
en

t)
,w

he
re

de
ns

it
y

in
cr

ea
se

is
re

st
ri

ct
ed

to
th

e
si

tu
at

io
n

w
he

re
al

la
ir

ha
s

be
en

ex
pi

re
d,

or
w

he
re

th
er

e
is

a
4

fo
ld

in
cr

ea
se

of
th

e
am

ou
nt

of
in

sp
ir

ed
ai

r.
B)

Th
e

sc
al

in
g

fa
ct

or
fr

om
th

e
de

te
rm

in
an

t
of

th
e

Ja
co

bi
an

is
th

us
re

st
ri

ct
ed

by
an

up
pe

r
an

d
lo

w
er

lim
it

de
pe

nd
in

g
on

th
e

de
ns

it
y

of
a

vo
xe

l.

71



Figure
5.2:

Vascular
densitom

etric
changes

of
tw

o
patients.

(a,
d)

one
slice

of
C

T
PA

w
ith

color-coded
overlay

of
vascular

densitom
etric

changes;
(b,

e)
3D

color-coded
visualization

of
vascular

centerlines;
(c,

f)
histogram

of
vascular

densitom
etric

changes
and

yellow
bins

representing
vascular

densitom
etric

changes
w

ithin
the

IQ
R

.PatientA
and

B
had

a
decrease

in
m

PA
P

by
-3

and
-34

m
m

H
g,respectively

and
a

decrease
in

PV
R

by
-39

and
-734

dyne
.s/cm

5,respectively.

72



C
H

A
P

T
E

R
5

A
P

P
LIC

AT
IO

N
IN

C
T

E
P

H

Table 5.1: Changes in hemodynamic parameters, 6MWD, BNP, MTT, RV/LV ratio, PA
diameter, ISA and densitometry.

Pre-BPA Post-BPA Change p-value
RHC parameters
sPAP (mmHg) 60.5 ± 33 36 ± 19 23 ± 19 0.002
dPAP (mmHg) 20 ± 16 12.5 ± 11 -5 ± 11 0.006
mPAP (mmHg) 34.5 ± 17 21.5 ± 15 -12.5 ± 14 0.003
PVR (dyne.s/cm5) 496 ± 396 246 ± 185 -185 ± 409 0.004

6MWD (m) 450 ± 159 510 ± 95 50 ± 115 0.004
BNP (pg/ml) 80.4 ± 160 26.8 ± 32.7 -53.2 ± 146 0.01
MTT (seconds) 10.1 ± 2.95 9.95 ± 2.1 -0.05 ± 2.08 0.31
RV/LV ratio 1.21 ± 0.53 1.05 ± 0.1 -0.09 ± 0.28 0.005
PA diameter (mm) 30.1 ± 6.22 28.6 ± 5.54 -1.9 ± 3.43 0.024
ISA (degree) 131 ± 11.8 130 ± 16.2 -2.5 ± 27.5 0.397
Density measure-
ments (HU)
Median VD -415 ± 101 -433 ± 114 -51.5 ± 20.8 <0.001
IQR of VD 437± 73 475 ± 67 182 ± 60 <0.001
Median PD -864 ± 47 -861 ± 54 -3.5 ± 22.5 0.379
IQR of PD 437 ± 73 475 ± 67 45 ± 15 <0.001

BPA indicates balloon pulmonary angioplasty; sPAP, systolic pulmonary artery
pressure; dPAP, diastolic pulmonary artery pressure; mPAP, mean pulmonary
artery pressure; 6MWD, 6-minute walk distance; BNP, brain natriuretic peptide;
MTT, mean transit time; RV/LV ratio, right ventricular short axis to left
ventricular short axis ratio; PA diameter, diameter of pulmonary artery trunk;
ISA, interventricular septal angle; VD, vascular density; PD, parenchymal
density.

RV/LV ratio, PA diameter, ISA and density measurements between pre- and post-BPA
were tested using the paired t-test or the Wilcoxon signed-rank test, as appropriate.
Correlations between hemodynamic changes, 6MWD, BNP and densitometric changes
were evaluated using Spearman’s correlation coefficient. All statistical computations
were performed in SPSS (Version 20.0. Armonk, NY: IBM Corp.). A 2-tailed p-
value<0.05 was considered to be statistically significant.

5.3 Results

The changes in RHC parameters, 6MWD, BNP, MTT, RV/LV ratio, PA diameter, ISA and
perfusional quantifications between pre- and post-BPA are shown in Table 5.1. The
hemodynamic parameters were improved by the BPA treatment, with a statistically
significant decrease in sPAP, dPAP, mPAP and PVR. The 6MWD, BNP, RV/LV ratio
and PA diameter were also significantly improved by the BPA treatment. The median
densities decreased within the vascular trees after BPA, as quantified by automatic
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Table 5.2: Correlation R (p-value) analysis between RHC parameters, 6MWD, BNP
and image-derived perfusion changes.

Median of ∆VD IQR of ∆VD Median of ∆PD IQR of ∆PD
∆sPAP 0.53 (0.054) -0.58 (0.031) -0.32 (0.263) -0.18 (0.529)
∆dPAP 0.18 (0.536) -0.71 (0.005) -0.58 (0.030) -0.40 (0.152)
∆mPAP 0.46 (0.095) -0.71 (0.005) -0.59 (0.025) -0.37 (0.190)
∆PVR 0.28 (0.325) -0.77 (0.001)* -0.43 (0.121) -0.36 (0.201)
∆6MWD -0.67 (0.012) -0.011 (0.817) -0.011 (0.971) 0.48 (0.093)
∆BNP 0.10 (0.725) -0.53 (0.052) -0.39 (0.163) -0.65 (0.013)

* significance level obtained after Bonferroni correction for multiple
testing.

comparative imaging analysis (see Table 5.1). In the parenchyma on the other hand,
the median densities did not change significantly.

The results of Spearman’s correlation analysis between change in RHC parameters
and change in densities are provided in Table 5.2. The IQR of ∆VD was significantly
negatively correlated with all RHC parameters: ∆sPAP (R=-0.58, p=0.03), ∆dPAP
(R=-0.71, p=0.005), ∆mPAP (R=-0.71, p=0.005) and ∆PVR (R=-0.77, p=0.001),
which indicates that a wider inter-quartile range of ∆VD histogram corresponds to
a larger decrease in both PAP and PVR after BPA treatment. Scatter plots of the
hemodynamic changes and IQR of ∆VD are presented in Figure 6.3, among which
the significant association between ∆PVR and IQR of ∆VD was particularly strong.
Besides, the median of ∆PD was significantly correlated with both ∆dPAP (R=-0.58,
p=0.030) and ∆mPAP (R=-0.59, p=0.025), which implies that the perfusion changes
of pulmonary parenchyma could partly reflect the hemodynamic parameters changes.
The ∆6MWD was significantly correlated with the Median of ∆VD (R=-0.67, p=0.012),
and ∆BNP had a significant correlation with the IQR of ∆PD (R=-0.645, p=0.013).

5.4 Discussion

We studied the pulmonary perfusion changes in CTPA of CTEPH patients before and
after BPA treatment. The CTPA before and after BPA treatment were compared by an
automatic and objective method for identifying the perfusion changes in pulmonary
vessels and parenchyma. The median and IQR of perfusion changes in pulmonary
vessels and parenchyma were validated against RHC parameters changes. The IQR of
∆VD were significantly correlated with all PAP measurements and PVR, indicating that
the hemodynamic changes could be reflected by perfusion changes. Furthermore, the
color-coded visualization can offer insight into localized differences in BPA treatment
effect.

The variety in perfusion changes in pulmonary vessels was quantitatively assessed
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(b) 

(c) (d) 

(a) 

Figure 5.3: Correlation between IQR of ∆VD and RHC parameters (A and B are
corresponding to patient A and B in Figure 5.2, respectively). (a) Correlation between
IQR of ∆VD and ∆sPAP (R=-0.58, p-value=0.031); (b) Correlation between IQR of
∆VD and ∆dPAP (R=-0.71, p-value=0.005); (c) Correlation between IQR of ∆VD and
∆mPAP (R=-0.71, p-value=0.005); (d) Correlation between IQR of ∆VD and ∆PVR
(R=-0.77, p-value=0.001).

by IQR of ∆VD, as it reflects the spread of both decrease and increase in density
within pulmonary vessels. Vessels proximal to an obstruction (‘upstream vessels’) react
differently to BPA treatment than vessels distal to obstruction (‘downstream vessels’).
Due to the obstructions in pulmonary arteries before treatment, contrast medium
would accumulate in the ‘upstream vessels’ where hypertension leads to dilation
and increased density in CTPA. The ‘downstream vessels’, however, are initially not
reached by contrast medium and their densities in CTPA would therefore be lower
than normal. When obstructions have been treated by BPA, the distribution of contrast
medium through the pulmonary vascular system may be normalized. Therefore, the
contrast medium is distributed more homogeneously after BPA, i.e. the densities in
‘upstream vessel’ would have decreased and densities in ‘downstream vessels’ would
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have increased after treatment. Thus, a wider range in ∆VD implies more equalization
of contrast medium in vessels, i.e. more hemodynamic improvements.

In order to demonstrate the visualization of the changes in the quantified param-
eters, two patients with different outcomes after BPA were selected. According
to RHC assessments, patient B had a larger decline in PAP and PVR after BPA
treatment in comparison with patient A. As shown in the histogram of vascular
densitometric changes, the IQR of patient B is wider than patient A. In the color-coded
2D visualization (Figure 5.2 a and d), most of the vascular tree in patient A is coded
in green, whereas in patient B more blue- and red-coded vessels are displayed. This
implies that perfusion changes in patient B are more widely spread, i.e. a better
treatment effect.

In the pulmonary parenchyma, the hemodynamic changes obtained from RHC were
reflected by the median ∆PD, not by the IQR of ∆PD. Due to the poor performance of
the pulmonary vascular system before BPA treatment, transport of contrast medium
to the parenchymal areas may be limited. After the BPA treatment, the performance
of the vascular system might have been improved. Thus, instead of the variation in
∆PD, the median of ∆PD will provide insights into the perfusion changes in pulmonary
parenchyma. The median of ∆PD was not significantly different from 0, while it
was significantly correlated with ∆dPAP and ∆mPAP. The median of ∆PD did not
change on average, however, its increases/decreases in an individual patient might
moderately reflect the changes in RHC parameters. Although the information from
∆PD quantifications is not as clear as that from ∆VD, investigating changes in the
pulmonary parenchyma shows potential.

Recently, several studies demonstrated the significant treatment effect of BPA by
cautiously limiting the number of balloon inflations and target segments per session,
and thus reducing the incidence of adverse complications, such as reperfusion edema
and pulmonary bleeding [15]. This procedure was added to treatment algorithms
in the ESC/ERS guideline [29]. However, its efficacy for long-term prognosis has
not been established yet. In our clinical setting as an experienced CTEPH center,
though rare, there are patients demonstrating re-exacerbation of CTEPH, year(s) after
completion of BPA treatment courses. Considering the features of BPA procedure
and patients’ clinical course, several follow-ups are necessary in the management
of patients with CTEPH. Our results provided objective and quantitative changes of
pulmonary perfusion after BPA along with densitometry information on CTPA, which
were correlated with invasive RHC exams.

Some previous studies have reported methods for estimating the severity of CTEPH.
A study [122] validated automatic quantification of pulmonary perfused blood volume
(PBV) with cardiac index, PAP, PVR, and 6MWD in 25 CTEPH patients. The PBV had
negative significant correlations with sPAP and mPAP, but not significant with PVR, CI
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and 6MWD. In another study [19], authors manually measured lung PBV to correct
the influence of artifacts and evaluated the PBV with PAP, PVR and RVP for 46 CTEPH
patients. The lung PBV was significantly correlated with sPAP, dPAP, mPAP and PVR.
The manually measured PBV might be used as a non-invasive estimator of clinical
CTEPH severity, however, reproducibility and objectivity of manual visual evaluations
are generally poor. The pulmonary vascular morphology was investigated as an
imaging biomarker for CTEPH in a recent study [63], in which the ratio of small-vessels
volume (blood volume of vessels with a cross-sectional area of ≤ 5mm2 , BV5) and
total blood vessel volume (TBV) was measured for small-vessels pruning, and the ratio
of large-vessels (a cross-sectional area of >10mm2 , BV>10) and TBV was quantified
for large-vessels dilation. The measurements were extracted in CTPA for 18 patients
with CTEPH and 15 control patients. The quantifications of BV5/TBV and BV>10/TBV
were significantly different between the CTEPH and control group, implying that
pulmonary vascular morphology was remodeled by CTEPH. The pulmonary vascular
morphology may be used as an imaging biomarker to assess disease severity. In another
study [123], the lung PBV was quantified by dual-energy CT in 8 female patients with
CTEPH pre- and post-BPA treatment and corrected with pulmonary artery enhancement
(lung PBV/PAenh). The pre- to post-BPA improvements in both-lung PBV/PAenh had
significant positive correlations with PAP, PVR and 6-minute walking distance, which
implied that the lung PBV might be an indicator of BPA treatment effect. Optical
Coherence Tomography (OCT) was used to classify the morphologies of 43 lesions in
17 patients pre- and post-BPA in another study [124]. The newly proposed OCT-based
morphologic lesion classification was evaluated to the pressure ratio and compared
with conventional angiographic findings, which proved to be promising to predict
accurate estimation of lesion responsiveness to BPA. In this study, the IQR of ∆VD
can be used as a measurement to assess the treatment effect and additionally offers
color-coded visualization back to CTPA. Furthermore, we compared CTPA before and
after treatment, which offers insight into the treatment effect.

There are some limitations in our study. The quantifications were performed on
both lungs together. More specific analysis of separate lungs or lung lobes may provide
a more localized and accurate assessment of perfusion changes. We did not obtain an
echocardiogram or MRI data along with the CT exam to evaluate cardiac output. The
post contrast attenuation was not normalized for intra-individual variations that might
be influenced by cardiac output. In the present study, the arteries and veins were not
analyzed separately with an automatic method, whereas perfusion changes may differ
between arteries and veins. A separated analysis of arteries and veins may therefore
further improve the correlation. Nevertheless, even without these particular analyses,
we already found a highly significant association between perfusion changes and
hemodynamic changes. In the future, quantifying the vessels with lesions treated by
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BPA would be an interesting research topic, as automatic and objective quantifications
of the lesion morphology could provide specific benefits for planning or assessing BPA
treatment. The studied group was relatively small and only included CTEPH patients
without a control group. The normal vascular perfusion in healthy people might
contribute to enhance the understanding of relations between pulmonary vascular
perfusion and hemodynamic parameters. However, the method still offers insight into
the variance in BPA treatment effects.

5.5 Conclusion

In conclusion, PAP and PVR were significantly improved after BPA, in the studied
patient group with inoperable CTEPH. We assessed the perfusion changes in pulmonary
vasculature achieved by BPA using an automatic comparison of CTPAs acquired before
and after treatment. The IQR of ∆VD is associated with hemodynamic changes and
can be used as a non-invasive measurement for assessing BPA treatment effects. The
color-coded visualization provides insight into local differences in BPA treatment
effects.
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6
Pulmonary vessel tree matching for

quantifying changes in vascular morphology

This chapter was adapted from:

Z. Zhai, M. Staring, H. Ota, and B. C. Stoel. Pulmonary vessel tree matching for
quantifying changes in vascular morphology, International Conference on Medical
Image Computing and Computer-Assisted Intervention, Page 517-524, Volume 11071,
2018 September.
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Abstract

Invasive right-sided heart catheterization (RHC) is currently the gold standard for
assessing treatment effects in pulmonary vascular diseases, such as chronic throm-
boembolic pulmonary hypertension (CTEPH). Quantifying morphological changes
by matching vascular trees (pre- and post-treatment) may provide a non-invasive
alternative for assessing hemodynamic changes. In this work, we propose a method
for quantifying morphological changes, consisting of three steps: constructing vascular
trees from the detected pulmonary vessels, matching vascular trees with preserving
local tree topology, and quantifying local morphological changes based on Poiseuille’s
law (changes in r adi us-4, 4r -4). Subsequently, median and interquartile range (IQR)
of all local 4r -4 were calculated as global measurements for assessing morphological
changes. The vascular tree matching method was validated with 10 synthetic trees and
the relation between clinical RHC parameters and quantifications of morphological
changes was investigated in 14 CTEPH patients, pre- and post-treatment. In the
evaluation with synthetic trees, the proposed method achieved an average residual
distance of 3.09±1.28 mm, which is a substantial improvement over the coherent point
drift method (4.32±1.89 mm) and a method with global-local topology preservation
(3.92±1.59 mm). In the clinical evaluation, the morphological changes (IQR of 4r -4)
was significantly correlated with the changes in RHC examinations, 4sPAP (R=-0.62,
p-value=0.019) and 4mPAP (R=-0.56, p-value=0.038). Quantifying morphological
changes may provide a non-invasive assessment of treatment effects in CTEPH patients,
consistent with hemodynamic changes from invasive RHC.
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6.1 Introduction

Computed tomography (CT) pulmonary angiography (CTPA) is an important modality
for assessing the severity and treatment effects of pulmonary vascular diseases, such as
chronic thromboembolic pulmonary hypertension (CTEPH) [34]. Quantifying density
changes in pulmonary vessels, by automatically comparing CTPA scans of pre- and
post-treatment with image registration, can assess treatment effects of CTEPH [16]. CT
measurements of pulmonary vascular morphology could reflect the severity of CTEPH
disease [125]. However, invasive right-sided heart catheterization (RHC) serves as
the gold standard for assessing disease severity and treatment effects of CTEPH [31],
since it directly measures blood pressure at the main pulmonary artery. Quantifying
morphological changes by matching pulmonary vessel trees of pre- and post-treatment
CT scans may provide a non-invasive assessment of treatment effects.

Vascular tree matching can be treated as a point set registration task, in which the
point sets represent the vessel trees. Myronenko et al. [126] proposed a coherent
point drift (CPD) method for point sets registration based on a Gaussian mixture
model (GMM), and with a regularization term for enforcing the motion coherence
and preserving the global topology. The regularization is useful to constrain the global
topology, however, its capacity to handle local deformation is low. Ge et al. [127]
proposed a method with global-local topology preservation (GLTP), where a local
topology term was used for regularization, based on a local linear embedding of the K

nearest neighbors of each point. The main idea of local topology preservation is that
local neighbors in the original point set should be preserved after transformation. The
method works well with dense point sets in computer vision, such as data obtained
from the Kinect depth sensor, however, the local topology constraint may induce errors
in tree-like structures. This is because leaf points, that belong to different sub-trees,
may still be located closely to each other. This method would then consider them as
genuine neighbors, therefore over-regularizing the deformations of sub-trees.

In this paper, we propose, therefore, a method that preserves the local tree topology
during vascular tree matching, and apply this method to quantify morphological
changes of pulmonary vessel trees between pre- and post-treatment. The proposed
method consists of three steps: 1) pre-processing for converting the detected vessels
into tree structures; 2) vascular tree matching with geodesic paths for local tree
topology preservation; and 3) quantification of vascular morphological changes on the
basis of Poiseuille’s law [128]. The vascular tree matching method was validated with
a synthetic data set, and a clinical data set consisting of 14 CTEPH patients, with CT
scans and invasive RHC examinations before and after treatment.
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Algorithm 1 Constructing vascular trees

1: procedure CONSTRUCTVASCULARTREES( g ) . a graph object g
2: Initial tree T as empty
3: for node_i in g .allNodes() do
4: Initial node nd as empty
5: nd .ID = node_i.getID()
6: [nd .px, nd .py, nd .pz] = node_i.getPosition()
7: if node_i has no InEdges then
8: nd .PreID = -1; nd .Radius = node_i.getRadius()
9: else

10: e = node_i.getInEdge()
11: nd .PreID = ID of e.getStartNode(); nd .Radius = average radius of e

12: Attach nd to T
13: return T

6.2 Methods

We aim to align trees T x and T y , which can be treated as a point set registration, with
reference point set X= [x1, ..., xN ]T corresponding to nodes in T x and template point
set Y= [y1, ..., yM ]T corresponding to those in T y , xn , ym ∈R3.

6.2.1 Vascular tree construction

For each CT scan, pulmonary vessels were segmented with a graph-cuts method
[111]. The skeletons of the pulmonary vessels were extracted with a skeletonization
method based on a distance transform [53] (’DtfSkeletonization’ of MeVisLab), and
the radius was recorded at the corresponding voxels on the skeleton. The skeletons
were converted into a directed graph g . In the directed graph, an edge e from a
start-node a to end-node b, is called an out-edge of node a and an in-edge of node
b. The graph g was processed by stripping cyclic edges, so that each node (except
for root node) has only one in-edge, and was converted to a tree T . A node, then,
represents a bifurcation point or a leaf point, and an edge represents a branch. For
each node, the average radius of the in-edge was calculated by iterating along the
voxels on that in-edge and was assigned to the corresponding node. The pseudo-code
of the algorithm for constructing vascular trees is given in Algorithm 1.

6.2.2 Vascular tree matching

In GMM-based methods, point sets X and Y can be registered by maximizing the
likelihood function and an additional regularization term R(Θ) where Θ represents the
deformation parameters. This framework minimizes the energy function:

E =−log
(
p(X)

)+R(Θ). (6.1)
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X is considered to be distributed from a GMM with centroids Y′ and all Gaussians are
equally-weighted with the same isotropic variance σ2, where Y′ is deformed from Y,

Y′ =Y+GW, G is a Gaussian kernel matrix with elements gi j = exp(− ∥yi−y j ∥2

2β2 ) and W
is M ×D weight matrix of the Gaussian kernel. W can be calculated by minimizing Eq.
(6.1) when fitting the GMM to X.

The CPD [126] and GLTP [127] use this GMM framework, with different regular-
ization terms. CPD uses a global regularization term Rcpd (W) = λ

2 Tr(WT GW) and GLTP
[127] adapted the regularization term by adding a term for preserving local topology:

R(W) = λ

2
Tr(WT GW)+ α

2
Tr{(Y+GW)T M(Y+GW)}, (6.2)

where M is an M × M kernel matrix for preserving local deformation obtained by
minimizing local linear cost function embedded with K nearest neighbors [129].
Instead of using K nearest neighbors, we compute a geodesic path with K connected
nodes N g for local topology preservation, which is more suitable for the vascular
trees’ deformation. M= (I−H)T (I−H), where Hi j is calculated by minimizing: Φ(Y) =∑

i |yi −∑
j∈N

g
i

Hi j y j |2[129]. For each node, a geodesic path is generated by iteratively
searching the parent node and child node with a depth-first strategy, the pseudo-code
is described in Algorithm 2. E is optimized with the EM algorithm, by minimizing its
upper bound is:

Q =
N∑

n=1

M∑
m=1

ppr ev (y ′
m |xn)

∥ xn − ym −G(m, .)W ∥2

2σ2 +R(W), (6.3)

where ppr ev (y ′
m |xn) = p(y ′

m)p(xn |y ′
m)/p(xn) is the posterior probability computed with

the parameters from the previous step. For optimizing Eq. (6.3), the derivative of Q

with respect to W is:

∂Q

∂W
= 1

σ2 G(di ag (P ·1)(Y+GW)−PX)+λGW+αGM(Y+GW), (6.4)

in which P is an M ×N matrix with elements ppr ev (y ′
m |xn). By setting the function 6.4

to zero and right multiplying it by σ2G-1, we have:

{di ag (P ·1)+σ2λI+σ2αMG}W= PX−di ag (P ·1)Y+σ2αMY. (6.5)

In the M-step of the EM algorithm, W is calculated by solving Eq. (6.5). In the E-step,
P is updated with the weight W. After optimizing the energy function, the matching
pair C between X and Y can be built by searching point xn that maximizes the posterior
probability, C (m) = argmax

n
{p(y ′

m |xn)}.

6.2.3 Quantitative analysis

The nodes of the vascular trees in pre-treatment CT scans can be compared with those
in post-treatment CT scans based on C . As the average radius of a branch is assigned
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Algorithm 2 Searching geodesic paths with a deep first strategy

1: procedure GEODESICPATHSEARCHING( T,K )
2: Initial N with the number of nodes in T ; Nei g hbor s as an N ×K zeros matrix
3: for i = 1 to N do
4: k f i nd = 0
5: ID = T (i ).ID; PreID = T (i ).PreID
6: while k f i nd < K & not (PreID==-1& ID==0) do
7: if PreID 6= -1 then
8: [preind, PreID]=findPreID(T ,PreID) . find the ID of pre-Node
9: k f i nd = k f i nd +1; Nei g hbor s(i ,k f i nd)=preind

10: [postind, ID]=findPostID(T , ID) . randomly pick a post-Node
11: if ID 6=0 then
12: k f i nd = k f i nd +1; Nei g hbor s(i ,k f i nd)=postind
13: return Nei g hbor s as N g

to its end-node, morphological changes in each branch can be quantified based on
C between vascular trees. Poiseuille’s law [128] describes the relation between the
resistance (ratio between pressure difference and flow rate, 4P/F ) and the radius r in
a tube:

4P/F = 8ηL

πr 4 , (6.6)

where L is the length of the tube and η is the fluid viscosity. Assuming that L and η of
a local branch do not change after treatment, its resistance changes can be estimated
by the changes in r -4 (4r -4). Thus, the morphological changes of vascular trees are
quantified based on 4r -4 of matched branches. The median and interquartile range
(IQR) of the 4r -4 are calculated over all branches and are used as global assessments
of morphological changes.

6.3 Experiment

The method for constructing pulmonary vascular trees was implemented as a module
in MeVisLab 2.7.1, the methods for matching vascular trees and quantifying morpho-
logical changes were implemented in Matlab, which is benefiting from the open source
tools of CPD [126]. The sourece code and the synthetic data set of vascular tree
matching method were made publicly available 1. The experiments were performed
on a local PC, with a 2.67 GHz CPU, 24 GB memory and a 64-bit Windows 7 system.

To evaluate the performance of vascular tree matching, synthetic vascular trees
were obtained with a tree editing method [130]. In short, an initial tree T 0 with 3176
nodes was obtained from the left lung of a clinical CT scan and 10 synthetic trees
T i , i = 1, ...,10 were generated by randomly removing 30∗ i leaf nodes and deformed

1https://github.com/chushan89/pulmonary-vascular-tree-matching
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with Elastix using different non-rigid transformation parameters[131]. To simulate
both deletions and additions, the synthetic tree T 5 and T i were matched with the
proposed method (settings: MaxIteration = 100, β= 1,λ= 3,outlier= 0.05,α= 100,K =
5), furthermore, CPD [126] (MaxIteration = 100, β= 1,λ= 3,outlier= 0.05) and GLTP
[127] (MaxIteration = 100, β= 1,λ= 3,outlier= 0.05,α= 100,K = 5) were adopted for
comparison. The Euclidean distance between nodes in T 5 and T i were calculated,
based on the corresponding point pairs. The average and standard deviation (STD) of
the residual distances were used for evaluation.

The quantification of morphological changes was validated with 14 CTEPH patients
[16], who were treated with balloon pulmonary angioplasty (BPA), referred to the
Tohoku University Hospital. All patients underwent both CTPA scans and RHC
examinations, pre- and post-BPA treatment. The invasive RHC examinations, including
pulmonary artery pressure (PAP, systolic, diastolic and mean; sPAP, dPAP and mPAP)
and pulmonary vascular resistance (PVR), are examined at the main pulmonary artery.
The RHC parameters changes (4PAP and 4PVR) were used as reference measurements
for assessing treatment effects. The morphological changes in vascular trees were
quantified with the proposed method. The relation between the quantifications of
morphological changes and hemodynamic changes (4sPAP, 4dPAP, 4mPAP, 4PVR)
were validated with Pearson’s correlation.

6.4 Results

The proposed method obtained an average residual distance of 3.09±1.28 mm, while
CPD and GLTP obtained an average distance of 4.32±1.89 mm and 3.92±1.59 mm,
respectively. In comparison with CPD and GLTP, the proposed method achieved a
substantial improvement, as shown in Fig. 6.1. The 3D visualization of vascular tree
matching and evaluations based on the correct correspondences can be found in the
supplement.

The relation between morphological changes in pulmonary vascular trees and
changes in RHC measurements were investigated with 14 CTEPH patients. The IQR of
4r -4 significantly correlated with 4sPAP (R=-0.62, p-value=0.019) and 4mPAP (R=-
0.56, p-value=0.038), but the median of 4r -4 did not have a significant correlation
with hemodynamic changes. Quantitative analysis of vascular morphological changes
in two selected patients are shown in Fig. 6.2. Pearson’s correlation results are given
in Table 6.1, and scatter plots are shown in Fig. 6.3.

6.5 Discussion and Conclusion

We present a method for quantifying morphological changes in pulmonary vascular
trees, pre- and post-treatment, using vascular tree matching. The vascular tree
matching method with geodesic paths for local topology preservation showed a
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Figure 6.1: Evaluation for vascular tree matching, average and STD of distance.

Figure 6.2: Morphological changes of pulmonary vessels for two patients, patient A in
the first row and B in the second row. Left column, initial position of vascular trees;
middle column, matched vascular trees; right column, color-coded vascular trees,
based on morphological changes (red: a large increase in r -4; blue: a large decrease;
green small changes).

better performance, in comparison with methods of CPD and GLTP. The IQR of
4r -4, calculated based on Poiseuille’s law, had a significant negative correlation with
the 4sPAP and 4mPAP, which implies that a higher variation in 4r -4 corresponds to
a bigger treatment effect of decreasing pulmonary arterial pressure. This finding is
consistent with a previous observation that a higher variation in density changes was
related to bigger drop in pressure. In future work, we will focus on a more detailed
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Figure 6.3: Scatter plot for IQR of 4r -4 against 4sPAP and 4mPAP (A and B are
corresponding to patient A and B in Fig. 6.2).

Table 6.1: Pearson’s correlation R (p-value) between morphological changes and
hemodynamic changes.

4sPAP 4dPAP 4mPAP 4PVR

median of 4r -4 0.19 (0.506) 0.04 (0.901) 0.16 (0.576) 0.07 (0.815)
IQR of 4r -4 -0.62 (0.019) -0.46 (0.097) -0.56 (0.038) -0.47 (0.088)

validation of the vascular tree matching with manually annotated corresponding
point pairs. By applying methods of artery-vein separation, the quantification of
morphological changes may become more specific for CTEPH, since that is an arterial
disease.

In conclusion, morphological changes can reflect hemodynamic changes, and
quantifying morphological changes by matching vascular trees can provide a non-
invasive assessment of treatment effects in CTEPH patients.

Supplementary

In the experiment of synthetic vascular trees, the matching pairs were validated based
on the nodes ID (described in Algorithm 1). The correct matches are considered as true
positives, the incorrect ones are corresponding to false positives and the missed ones
are false negatives. The number of true positives, false positives and false negatives
were counted and expressed as T P , F P and F N , respectively. The evaluation metrics
F1, precision and recall were calculated based on the T P , F P and F N . The proposed
method obtained an average F1 of 0.80±0.09, comparing to 0.74±0.11 for CPD and
0.76±0.10 for GLTP, as illustrated in Fig. 6.5, where the proposed method obtained a
better F1 score, in comparison with methods CPD and GLTP.

In the clinical experiment, Pearson correlation analysis of the methods CPD and
GLTP were calculated, where quantifications in vascular morphological changes
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Table 6.2: Pearson’s correlation R (p-value) between morphological changes and
hemodynamic changes, for CPD and GLTP.

4sPAP 4dPAP 4mPAP 4PVR

m of 4r -4 # -0.08 (0.786) -0.30 (0.291) -0.18 (0.54) -0.20 (0.498)
IQR of 4r -4 # -0.66 (0.011) -0.54 (0.046) -0.61 (0.020) -0.54 (0.047)
m of 4r -4 * -0.07 (0.803) -0.23 (0.429) -0.11 (0.719) -0.16 (0.586)
IQR of 4r -4 * -0.68 (0.007) -0.55 (0.041) -0.64 (0.013) -0.53 (0.049)
# results of method CPD; * results of method GLTP; m, median, IQR
interquartile range;

were calculated based on their corresponding mapping pairs. The non-invasive
measurements calculated with CPD or GLTP were also significantly correlated with
the invasive RHC changes, as demonstrated in Table 6.2. The correlations between
4sPAP, 4mPAP and IQR of 4r -4 of CPD or GLTP were significant, which demonstrated
that these non-invasive measurements based on Poiseuille’s law were significantly
correlated with the invasive RHC parameters. Estimating pressure changes based on
Poiseuille’s law is promising to calculate non-invasive measurements. As there are
only 14 patients involved in this study, the Pearson correlations of the CPD, GLTP and
proposed method were considered in similar level, although the performance of CPD
and GLTP was a bit better.

F 1 = 2T P

2T P +F N +F P
(6.7)

pr eci si on = T P

T P +F P
(6.8)

r ecal l = T P

T P +F N
(6.9)

88



C
H

A
P

T
E

R
6

A
P

P
LIC

AT
IO

N
IN

C
T

E
P

H

(a) CPD T 5 T 1 (b) GLPT T 5 T 1 (c) Our method T 5 T 1

(d) CPD T 5 T 7 (e) GLTP T 5 T 7 (f) Our method T 5 T 7

Figure 6.4: 3D visualization of vascular tree matching for two cases, first row is for
a good case: matching T 5 and T 1, CPD 5.26± 6.85 mm, GLTP 4.01± 4.13 mm and
our method 3.17±2.64 mm; second row is for a bad case: matching T 5 and T 7, CPD
7.25±9.98 mm, GLTP 5.96±8.74 mm and our method 2.97±2.41 mm.

(a) (b) (c)

Figure 6.5: Evaluations with the number of correct correspodences, (a) F1 score:
0.80± 0.09 for the proposed methond, 0.74± 0.11 for CPD and 0.76± 0.10 for GLTP;
(b)precision: 0.76±0.11 for the proposed methond, 0.68±0.13 for CPD and 0.70±0.12
for GLTP; (c)recall: 0.85± 0.07 for the proposed methond, 0.81± 0.08 for CPD and
0.82±0.07 for GLTP.
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7
Summary and Future Work

High-resolution CT is an important modality to non-invasively diagnose pulmonary
diseases and assess treatment effects. In this thesis, we developed automatic methods
to quantify pulmonary vasculature and assess treatment effects of CTEPH disease,
based on high-resolution CT images. Within an HRCT scan, pulmonary vessels
are automatically extracted with a graph-cuts based method, and subsequently the
extracted pulmonary vessels are objectively quantified with quantification methods. In
this chapter, we summarize the previous chapters and discuss interesting directions of
future research.

7.1 Summary

In this thesis, we first provided a general introduction in Chapter 1 about pulmonary
anatomy, diseases, clinical assessments, and chest CT scans. A lung vessel segmentation
method was proposed in Chapter 2, as accurately extracting lung vessels is an essential
step for pulmonary vessel analysis. An automatic method for pulmonary vessel
quantification was developed in Chapter 3, where two imaging biomarkers α and β

were proposed for quantifying the vascular morphology. In Chapter 4, the relation
between these imaging biomarkers and pulmonary function were investigated in a
selected SSc patient group, who had reductions in gas transfer but did not have fibrosis.
The densitometry changes in pulmonary vasculature and parenchyma were studied by
comparing CTPA scans before and after treatment for CTEPH patients treated with BPA,
in Chapter 5. A vascular tree matching method was proposed for matching pulmonary
vasculature trees, for quantifying changes in vascular morphology for CTEPH patients
in Chapter 6.

Chapter 2 For lung CT image analysis, lung vessel segmentation is an important
processing step. Filters that are based on analyzing the eigenvalues of the Hessian
matrix are popular for enhancing pulmonary vessels. However, due to their low
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response at vessel bifurcations and vessel boundaries, extracting lung vessels by
thresholding the vesselness response is not sufficiently accurate. The graph-cuts
method could provide more accurate segmentations, as it considers neighborhood
information when determining the label of a voxel. We propose a new graph-cuts based
method, where the appearance (CT intensity) and shape (vesselness) are combined
into one cost function. As the number of voxels in high-resolution CT image is large,
building the corresponding graph structure requires a lot of memory and is time
consuming. Therefore, an efficient and low memory cost strategy is proposed for
constructing the graph structure. Then, the lung vessels are segmented by minimizing
the energy cost function with the graph-cuts optimization framework, where the
energy cost function is calculated based on the constructed graph. The proposed
method is trained and validated by an in-house data set, and independently evaluated
with a public data set of the VESSEL12 challenge. According to the evaluation results,
the proposed method is accurate, and obtains a competitive performance in VESSEL12.

Chapter 3 Pulmonary vascular remodeling is a significant pathological feature of
various pulmonary diseases. In this chapter, we propose an automatic method for
quantifying pulmonary vascular morphology in CT images. There are two processing
steps in the proposed method: pulmonary vessel extraction and vessel quantifica-
tion. The vessels are extracted with an improved graph-cuts based method, which
incorporates the appearance (CT intensity) and shape features (vesselness from a
Hessian-based filter), and considers distance to airways into the cost function. For
quantifying the extracted pulmonary vessels, a radius histogram is generated by
counting the occurrence of vessel radii, calculated from a distance transform based
method. Subsequently, two biomarkers, slope α and intercept β, are calculated by
linear regression on the radius histogram. A public data set of VESSEL12, a data set of
3D printed vessel phantom and a clinical data set of scleroderma patients are involved
for evaluating and validating the proposed method. Based on the results, the proposed
method is highly accurate, by validating with a public data set and a 3D printed vessel
phantom data set. The correlation between imaging biomarkers and diffusion capacity
in clinical data confirms an association between lung structure and function.

Chapter 4 For systemic sclerosis (SSc), gas transfer is known to be affected
by fibrotic changes in the pulmonary parenchyma. However, SSc patients without
detectable fibrosis can still have impaired gas exchange. We investigate the pulmonary
vascular changes of a patient group in SSc without fibrosis, where remodeling of
pulmonary vasculature may partly explain the reduction of gas transfer. Seventy-
seven SSc patients were selected who underwent pulmonary function tests and CT
scanning, that showed no visible fibrosis. The pulmonary vascular morphology was
quantified into two imaging biomarkers, with a primary method to the one in Chapter
3. The association between imaging biomarkers and gas transfer (DLCOc %predicted)
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was investigated, which showed a moderate but significant correlation between
pulmonary vascular morphology and gas transfer. In conclusion, in SSc patients
without pulmonary fibrosis, impaired gas exchange is associated with alterations in
pulmonary vascular morphology.

Chapter 5 Patients with inoperable CTPEH, BPA can be an alternative treatment to
improve the clinical status and hemodynamics. The invasive right heart catheterization
serves as gold standard in evaluating the severity and assessing the treatment effects
of CTEPH. In this chapter, we proposed an objective and automatic method to non-
invasively assess treatment effects, by comparatively analyzing CTPA of pre- and post-
BPA treatment. A cohort of 14 patients in CTEPH, who underwent both CTPA and
RHC, before and after BPA, are involved in this study. The densitometric changes in
pulmonary vessels and parenchyma are automatically quantified, where the vessels
and parenchyma are separated by the graph-cuts based method. The association
between perfusion changes and hemodynamic changes are investigated, where the
densitometric parameter are significantly correlated with RHC measurements. Based
on the CTPA, quantifying the perfusion changes provides non-invasive measures that
reflect hemodynamic changes.

In Chapter 6, we propose a pulmonary vessel tree matching method, which
enables the quantification of pulmonary morphological changes, longitudinally. In the
proposed method, first, the pulmonary vessels are simplified and constructed into a
directed graph, a vascular tree is structured by stripping cyclic edges, which makes the
quantification at the branch level possible. Then, a tree matching method is proposed,
by considering a geodesic path for local topology preservation. In the last processing
step, the resistance changes of each branch are analyzed, based on the Poiseulle’s
law. Two datasets, a synthetic data set and a clinical data set, are used to validate the
accuracy and clinical relevance of the proposed method, respectively. In the results,
the proposed vessel tree matching method performs better than two exist methods,
and the resistance changes of pulmonary vessels is correlated with hemodynamic
changes.

7.2 Future Work

The work presented in this thesis was aimed at developing methods to quantify
pulmonary vessels, based on the CT images. The entire pulmonary vascular trees, both
arteries and veins, are automatically extracted and subsequently investigated. It is
known, however, that pulmonary diseases may affect arteries or veins in a different
way. Investigating the pulmonary arteries and veins separately will be of great help
in evaluating pulmonary diseases. Separating and classifying pulmonary arteries and
veins is, however, a challenging project. With the classification power of deep learning,
it would be possible to develop deep-learning based methods to separate arteries
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and veins. By preparing a large amount of manually annotated data for training,
developing deep learning based method for separating pulmonary arteries and veins
would be an interesting topic for future. If the pulmonary arteries and veins are
successfully separated, there will be multiple interesting clinical applications, such
as separately quantifying morphological changes of pulmonary arteries or veins of
patients in SSc, quantifying the A/V perfusion changes of BPA treatment for patients
in CTEPH, etc.

For the studies on SSc (Chapter 3 and 4), only baseline CT images of patients were
investigated. Exploring vascular morphology longitudinally will also be an interesting
future topic. According to the protocol of the biobank of the Leiden Combined Care in
SSc (CISS), patients are scanned at both full-inspiration and full-expiration level. For
patients with SSc, the elasticity of lungs can be influenced significantly by pulmonary
fibrosis. Developing methods, by mapping the inspired and expired CT scans, may
provide a way to investigate the elasticity of pulmonary parenchyma, which may help
to evaluate the severity of SSc-related pulmonary diseases.

7.3 General conclusions

In conclusion, this thesis proposes automatic methods for quantifying pulmonary
vessels. An accurate and well-validated lung vessel segmentation method is developed
and open source online. Investigating changes in pulmonary vascular morphology may
be helpful in understanding the pathophysiology of the SSc patients whose gas transfer
deteriorates in the course of their disease without detectable pulmonary fibrosis.
Assessing the perfusion changes in pulmonary vasculature using automatic comparison
of CTPAs acquired before and after treatment could reflect the hemodynamic changes.
Quantifying pulmonary vascular changes in morphology or densitometry may provide
non-invasively diagnosis of pulmonary diseases and assessments of treatment effects,
based on CT.
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Samenvatting en toekomstig werk

Hoge-resolutie CT (HRCT) is een belangrijke modaliteit om longziekten non-invasief
te diagnosticeren en behandeleffecten te beoordelen. In dit proefschrift hebben we
automatische methoden ontwikkeld om de pulmonale vasculatuur te kwantificeren
en effecten van de behandeling van CTEPH te beoordelen, gebaseerd op HRCT. In
een HRCT scan worden longvaten automatisch geëxtraheerd met een methode, die
gebaseerd is op ‘graph-cuts’ (graaf-sneden), en vervolgens worden de geëxtraheerde
longvaten objectief gemeten met kwantitatieve methoden. In dit hoofdstuk, vatten
we de eerdere hoofdstukken samen en bediscussiëren interessante richtingen voor
vervolgonderzoek.

Samenvatting

In dit proefschrift gaven we in Hoofdstuk 1 eerst een algemene inleiding over de
longanatomie, longziekten, klinische beoordelingen en thorax CT scans. Een pul-
monale vaatsegmentatie-methode werd gepresenteerd in Hoofdstuk 2, aangezien een
nauwkeurige extractie van longvaten een essentiële stap is in de pulmonale vaat-
analyse. Een automatische methode om longvaten te kwantificeren was ontwikkeld
in Hoofdstuk 3, waar twee beeld-biomarkers α en β waren geïntroduceerd voor de
kwantificatie van de vasculaire morfologie. In Hoofdstuk 4 was de relatie onderzocht
tussen deze beeld-biomarkers en longfunctie in een groep van geselecteerde SSc
patiënten, die een verminderde gasuitwisseling hadden maar geen fibrose lieten zien.
De densitometrische veranderingen in de pulmonale vasculatuur en parenchym waren
onderzocht in CTEPH patiënten door CTPA scans te vergelijken tussen voor en na
behandeling met BPA (Hoofdstuk 5). In Hoofdstuk 6 was een methode voorgesteld
om pulmonale vaatbomen op elkaar te passen, zodat veranderingen in de vasculaire
morfologie lokaal kan worden bepaald in CTEPH patiënten.

Hoofdstuk 2 Pulmonale vaatsegmentatie is een belangrijke verwerkingsstap voor
long CT beeldanalyse. Filters, die gebaseerd zijn op het analyseren van de eigenwaar-
den van de Hessiaan, zijn populair bij het accentueren van de longvaten. Door hun
lage respons op bifurcaties en vaatranden, is het drempelen van de vaatrespons niet
nauwkeurig genoeg om de longvaten te extraheren. De ‘graph-cuts’ methode zou een
nauwkeuriger segmentatie kunnen geven, omdat deze informatie over de omgeving
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meeneemt bij het bepalen van het label van een voxel. We presenteren een nieuwe
methode gebaseerd op ‘graph-cuts’, waarin de verschijning (CT intensiteit) en vorm
(‘vesselness’, vaatachtigheid) gecombineerd worden in één kostenfunctie. Omdat het
aantal voxels in HRCT beelden groot is, vergt het bouwen van een graafstructuur
erg veel geheugen en rekentijd. Daarom is een efficiënte strategie met een laag
geheugenverbruik voorgesteld om de graafstructuur te construeren. Daarna worden
de longvaten gesegmenteerd door de energie-kostenfunctie te minimaliseren met het
raamwerk van de ‘graph-cuts’ optimalisatie, waar de energie-kostenfunctie is berekend
uit de geconstrueerde graaf. De voorgestelde methode is getraind en gevalideerd
met een in-huis dataset en onafhankelijke geëvalueerd met een publieke dataset van
de ‘VESSEL12 challenge’. Uit de evaluatieresultaten blijkt de voorgestelde methode
nauwkeurig en behaalde het een competitief resultaat in VESSEL12.

Hoofdstuk 3 Vaat-remodelering in de longen is een belangrijk pathologisch ken-
merk van verschillende longziekten. In dit hoofdstuk introduceren we een automa-
tische methode om de morfologie van de longvaten in CT-beelden te kwantificeren.
De vaten worden geëxtraheerd met een verbeterde ‘graph-cuts’ methode, die de
verschijning (CT intensiteit) en vormkenmerken (‘vesselness’ uit het Hessiaan-filter)
maar ook de afstand tot de luchtwegen in de kostenfunctie opneemt. Voor het
kwantificeren van de gedetecteerde longvaten is een radius-histogram gemaakt door
het aantal keren te tellen dat een bepaalde vaatradius voorkomt, berekend uit een
afstandstransformatie-methode. Vervolgens worden twee biomarkers, helling α en
intercept β, berekend door middel van lineaire regressie op het radius-histogram.
De publieke dataset van VESSEL12, een dataset van een 3D-geprint vaatfantoom
en een klinische dataset van sclerodermiepatiënten waren gebruikt bij de evaluatie
en validatie van de voorgestelde methode. Uit de resultaten van de validatie met
de publieke dataset en het vaatfantoom blijkt dat de voorgestelde methode zeer
nauwkeurig is. De correlatie tussen de beeld-biomarkers en diffusiecapaciteit in de
klinische dataset bevestigt de associatie tussen longstructuur en functie.

Hoofstuk 4 Van systemische sclerose (SSc) is bekend dat de gasuitwisseling
is aangetast door fibrotische veranderingen in het longparenchym. SSc-patiënten
zonder detecteerbare fibrose kunnen echter toch een verminderde gasuitwisseling
hebben. We onderzochten de veranderingen in de longvaten in een patiëntgroep
zonder fibrose, om uit te zoeken of remodelering van de pulmonale vasculatuur de
vermindering in gastuitwisseling deels zou kunnen verklaren. Zevenzeventig SSc-
patiënten waren geselecteerd, die longfunctietests hadden ondergaan samen met CT
scans, waarin geen zichtbare fibrose aanwezig was. De morfologie van de longvaten
was gekwantificeerd met de twee beeld-biomarkers, zoals beschreven in Hoofdstuk 3.
De associatie tussen de beeld-biomarkers en gasuitwisseling (DLCOc %voorspeld) was
onderzocht, hetgeen een bescheiden maar significante correlatie tussen de vasculaire
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morfologie en gasuitwisseling liet zien. In SSc-patiënten zonder longfibrose is de
verminderde gasuitwisseling dus geassocieerd met veranderingen in de morfologie
van de longvaten.

Hoofstuk 5 Bij patiënten met inoperabele CTEPH kan BPA een alternatieve behan-
deling zijn om de klinische toestand en hemodynamica te verbeteren. De invasieve
rechts hartkatheterisatie (RHC) dient als gouden standaard bij het evalueren van de
ernst van CTEPH en het beoordelen van het behandeleffect van BPA. In dit hoofdstuk
presenteren we een objectieve en automatische methode om behandeleffecten niet-
invasief te beoordelen door CTPA scans van pre- en post-BPA vergelijkenderwijs
te analyseren. Een cohort van 14 CTEPH patiënten was betrokken in deze studie,
die zowel CTPA als RHC hadden ondergaan, voor en na BPA. De densitometrische
veranderingen in de longvaten en parenchym waren automatisch gekwantificeerd,
waar de vaten en parenchym gescheiden waren door de ‘graph-cuts’ methode. De
associatie tussen perfusieveranderingen en hemodynamische veranderingen was
onderzocht, waarbij de densitometrische parameters significant gecorreleerd waren
met de RHC metingen. Het kwantificeren van perfusieveranderingen gebaseerd op
CTPA, biedt daarom niet-invasieve metingen, die hemodynamische veranderingen
weerspiegelen.

In Hoofstuk 6 stellen we een methode voor om longvaatbomen op elkaar te passen,
die het mogelijk maakt om longitudinaal morfologische veranderingen in de long
te kwantificeren. In de voorgestelde methode worden de gedetecteerde longvaten
eerst versimpeld en geconstrueerd tot een gerichte graaf, en een vaatboom wordt
gestructureerd door het verwijderen van cykels, zodat de kwantificatie op tak-niveau
mogelijk wordt. Vervolgens is een methode voorgesteld om boomstructuren op elkaar
te passen, door het geodetische pad te beschouwen, zodat de lokale topologie wordt
behouden. In de laatste verwerkingsstap worden de veranderingen in weerstand in elke
tak geanalyseerd op grond van de wet van Poiseulle. Twee datasets, een synthetische
en een klinische dataset, waren gebruikt om respectievelijk de nauwkeurigheid en
klinische relevantie van de voorgestelde methode te valideren. Uit de resultaten
bleek dat de voorgestelde methode om vaatbomen op elkaar te passen het beter deed
dan twee bestaande methoden, en de veranderingen in weerstand in de longvaten
gecorreleerd was met hemodynamische veranderingen.

Vervolgonderzoek

Het werk dat in dit proefschrift is gepresenteerd, was gericht op het ontwikkelen van
methoden om longvaten te kwantificeren, op grond van CT-opnames. De volledige
longvaatboom, d.w.z. arteriën en venen tezamen, zijn automatisch geëxtraheerd
en vervolgens onderzocht. Het is echter bekend, dat longziekten de arteriën en
venen op een verschillende manier kunnen aantasten. Het apart onderzoeken van
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arteriën en venen zal daarom helpen om longziekten te beoordelen. Het scheiden
en classificeren van arteriën en venen is echter een uitdagend project. Met het
vermogen van deep learning om te classificeren, zou het mogelijk kunnen zijn om
methoden te ontwikkelen met deep-learning om arteriën en venen te scheiden. Door
het creëren van grote hoeveelheden van handmatig getekende long-arteriën en -vaten
zou het ontwikkelen van deep-learning-gebaseerde methoden om arteriën en venen
te scheiden een interessante onderwerp zijn in de toekomst. Als de long-arteriën
en -venen succesvol gescheiden kunnen worden, zullen er een grote hoeveelheid
klinische toepassingen zijn, zoals het apart kwantificeren van de morfologische
veranderingen in long-arteriën en venen van SSc patiënten, het kwantificeren van A/V
perfusieveranderingen door BPA behandeling van patiënten met CTEPH, etc.

In de onderzoeken naar SSc (Hoofdstukken 3 en 4) zijn alleen de baseline CT-
opnames van patiënten onderzocht. Longitudinaal onderzoek naar veranderingen in
de vasculaire morfologie zal ook een interessant toekomstig onderwerp zijn. Volgens
het protocol van het zorgpad systemische sclerose van het LUMC worden patiënten
gescand in zowel vol-inspiratie als vol-expiratie. In SSc patiënten kan de elasticiteit
van de longen significant beïnvloed worden door longfibrose. Het ontwikkelen van
methoden door de inspiratie en expiratie scans op elkaar te passen, kunnen een manier
verschaffen om de elasticiteit van het longparenchym te onderzoeken, wat kan helpen
bij het evalueren van de ernst van de SSc-gerelateerde longziekten.

In de studies over BPA behandeling van CTEPH-patiënten (Hoofdstukken 5 en 6),
zijn de globale veranderingen in perfusie en morfologie van de longvaten onderzocht.
Omdat BPA behandeling een lokale behandeling is van een pulmonale arterieel segment
met een trombus, zou een lokale kwantificatie van het corresponderende vaatsegment
of omliggende parenchym meer specifieke informatie kunnen leveren. Het bestuderen
van de veranderingen in de behandelde en niet-behandelde longarteriën zal meer
inzicht geven in de lokale behandeleffecten van BPA. Hoewel BPA behandeling gericht
is op longarteriën, zal de densiteit in de longvenen ook veranderen met de verbeterde
perfusie van contrast. Daarom is het begrijpen van perfusieveranderingen in longvenen
een interessante uitdaging.

Algemene conclusies

Samengevat stelt dit proefschrift automatische methoden voor om longvaten te
kwantificeren. Een nauwkeurige en goed-gevalideerde pulmonale vaatsegmentatie-
methode is ontwikkeld en als open-source online beschikbaar gesteld. Onderzoek
naar de veranderingen in de morfologie van longvaten kan behulpzaam zijn bij
het begrijpen van de pathofysiologie van SSc waarin gasuitwisseling achteruitgaat
gedurende het verloop van de ziekte, zonder detecteerbare longfibrose. Het beoordelen
van perfusieveranderingen in pulmonale vasculatuur door middel van automatische
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vergelijking van CTPAs, verkregen voor en na behandeling, kunnen hemodynamische
veranderingen weerspiegelen. Het kwantificeren van veranderingen in de morfologie
en densitometrie in longvaten kan een niet-invasieve beoordeling van longziekten en
behandeleffecten bieden, gebaseerd op CT.
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