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Synopsis

Traditional MR fingerprinting involves matching the acquired signal evolutions against a dictionary of expected tissue fingerprints to obtain the
corresponding tissue parameters. Since this dictionary is essentially a discrete representation of a physical model and the matching process
amounts to brute-force search in a discretized parameter space, there arises a tradeoff between discretization error and parameter estimation
time. In this work, we investigate this tradeoff and show via numerical simulation how a neural net-based approach solves it. We additionally
conduct a phantom study using 1.5T and 3T data to demonstrate the consistency of neural net-based estimation with dictionary matching.

Introduction

Magnetic Resonance Fingerprinting (MRF) ! is a quantitative MRI technique combining fast data acquisition with robust parameter mapping. One of
its key enablers is dictionary-based parameter estimation. An MRF dictionary is a discrete representation of a physical model constructed by grid-
sampling the parameter space. Naturally, there comes a tradeoff between grid density and matching speed. In neural network (NN)-based MRF
parameter estimation 24, a trained NN model represents a continuous functional approximation of the inverse physical model and can, in theory,
overcome the fundamental limitation of traditional matching. We show via numerical simulation that the NN-based approach is consistent with full
dictionary matching (FDM) and that fast matching at the speed of the NN performed with a reduced dictionary (RDM) produces a predictable worst-
case discretization error. Further, to strengthen the former result, we evaluate the agreement between NN and FDM on phantom data acquired
using two field strengths.

Methods

We used a sequence of 625 time points, TR=12 ms, TE=3 ms, and an optimized FA pattern . A dictionary of 308922 fingerprints was computed using
Bloch simulation for a T1/T, grid with T, range 9-5056 ms, T, range 5-2018 ms, and 2% grid spacing relative to T,/T; values. The dictionary was
compressed in time domain to 6 coefficients using SVD. A 6-layer complex-valued NN 3 was defined that accepts compressed fingerprints and
outputs Ty and T, parameters. To simulate realistic signal corruption for training, fingerprints were scaled by a random complex scaling factor with
magnitude 0.4-2.4 and phase 0-2m. Complex Gaussian noise of 6=0.01 was added resulting in SNRyax range 40-240, where SNRa is defined as the
noise level relative to the MR signal from a fully relaxed spin system (with Mo=1) excited by a 90° pulse °. The fingerprints were normalized to have
unit L, norm. The dictionary was randomly split 90%-10% for training and validation. The NN model was trained using Cramér-Rao bound-weighted
MSE loss 4 and Adam optimizer (0.001 learning rate, 512 batch-size, 500 epochs). For numerical simulation, first, the estimation time was defined as
the time required to compute T¢/T, maps given a single-slice image series of size 224x224 and 6 coefficients. On Intel Xeon W-2235 CPU, FDM and
NN inference required 23.4 s and 0.5 s, respectively. Then, a coarse dictionary was created with a 36x subsampled T,/T, grid - 6x along each axis -
which matched within the same time budget as our NN. We conducted in-dictionary and out-of-dictionary bias-variance analyses where 12 T,/T,
combinations were chosen from the reduced dictionary's grid and 12 from halfway between its grid points. In each case, 250 noisy realizations of
fingerprints per T,/T, combination were produced at 4 noise levels - SNR,2x={50,100,150,200}. Estimation bias and variance of FDM, RDM, and our
NN were calculated. For the phantom study, four scans of the T,-plane of an HPD System Phantom Model 130 7 were acquired using Philips Ingenia
1.5T/3T scanners with 15-channel head coil. All scans were in coronal orientation with 224 mm x 224 mm FOV, 1 mm x 1 mm in-plane resolution,
and 4 mm slice thickness. A multi-slice spiral acquisition trajectory (5.9 ms window, 36 interleaves) was used to obtain k-space data for 15 slices.
Coefficient images were reconstructed from the non-Cartesian k-space data using a non-iterative low-rank inversion method. For each series, T/T,
maps were estimated for the central slice using FDM and our NN, and their probe-wise distributions were compared.

Results and Discussion

In the in-dictionary simulation scenario (Figure 1), RDM was comparable to FDM at SNRy,34x=50. With increasing SNR, RDM's variance became slightly
lower. This can be attributed to the greater noise contribution than the discretization's contribution (which is zero) to the variance. At SNRy,34x2100,
RDM's coarse T1/T2 grid offered greater isolation between signal noise and estimate variance resulting in more robust matching. In the out-of-
dictionary case (Figure 2), while all three methods were comparable at SNRy,,x=50, RDM approached a fixed 6% standard deviation in higher T; and
mid-range T, values at SNR,,=100. This was expected considering the 6x reduction factor along the T, and T, grid axes of the reduced dictionary
and because the out-of-dictionary T;/T, values represented the worst-case off-grid points for RDM which maximized the contribution of
discretization in the estimation variance. Thus, the drawback of RDM in the out-of-dictionary scenario outweighed its advantage in the in-dictionary
case. In contrast, our NN was consistent with FDM in each case in terms of variance. In the phantom results (Figures 3, 4, and 5), a high agreement
between our NN and FDM was observed for T1 and T2 at both 1.5T and 3T field strengths.

Conclusion

T4/T, estimation using an NN was not only comparable in precision to matching with a dense dictionary but also was 46x faster. To achieve fast
matching, the dictionary had to be heavily subsampled by a factor of 36 thereby trading away its precision and demonstrating a fundamental
limitation of dictionary matching. Estimation using a simulation-trained NN can replace FDM without significant change in estimation quality for
scans of a standardized phantom at multiple field strengths. Future work will investigate the effect of discretization on in vivo data where the T4/T,
distribution is more heterogeneous.
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Figure 1: Bias-variance plots of T1 and T, at different SNR,5« levels for in-dictionary simulation. In each plot, bias is presented relative to the
reference parameter value, and confidence intervals represent 1 standard deviation per side.
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Figure 2: Bias-variance plots of Ty and T, at different SNR, levels for out-of-dictionary simulation. In each plot, bias is presented relative to the
reference parameter value, and confidence intervals represent 1 standard deviation per side.
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Figure 3: Probe-wise distribution of Ty and T, estimates for 1.5T and 3T phantom data showing comparing NN with FDM. Scans 1 and 2 were
acquired with 1.5T scanner whereas scans 3 and 4 with 3T scanner. For better visualization, results corresponding to the phantom's 14 probes are
split into two parts - probes 1-7 and 8-14. Bars indicate estimation median and range.
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Figure 4: Estimated maps for 1.5T phantom scan 1. Background values are masked away to focus on the probes. Color scales are logarithmic.
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Figure 5: Estimated maps for 3T phantom scan 3. Background values are masked away to focus on the probes. Color scales are logarithmic.
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