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Synopsis

Advanced diffusion weighted self-navigated multi-shot MRI can run at high scan efficiencies resulting in good image quality. However, the model-
based image reconstruction is rather time consuming. Deep learning-based reconstruction approaches could function as a faster alternative.
Tailored network architectures with appropriately set physical model constraints can help to shorten reconstruction times, resulting in good image
quality with reduced noise propagation.

Introduction

Single-shot EPI is one of the standard protocols for diffusion-weighted imaging (DWI) in clinical practice'. However, the relatively long readout time
of single-shot acquisitions may result in signal loss, image blur, and large geometric distortions. Consequently, multi-shot EPI (msh-EPI) has become
an increasingly preferred method for DWI to produce high-resolution images with less geometric distortion?3. However, an inherent challenge for
msh-EPI-based DWI is the occurrence of shot-to-shot phase errors induced by physiological motion in presence of the strong diffusion-sensitizing
gradients. Many studies have proposed to use either additionally measured navigators? or self-navigation®® corrections to deal with such phase
errors. However, these methods may either prolong scan-times or reconstruction times. In this work, a neural network with two U-net architectures
was trained to reconstruct a shot-specific phase map for each shot and one joint magnitude image. Those were merged, including physical model
constraints, in the joint loss calculation of the two U-nets®’. This approach not only realizes fast image reconstruction, but also benefits from image
denoising due to the choice of training data and the nature of convolutional neural networks (CNNs). In this work, the training pairs for DWI were
simulated using T2w leg images with extra noise added to mimic the lower SNR in diffusion measurements.

Methods

Inspired by many self-navigation approaches in DWI, in this work a joint image constraint was set up by assuming all different shots share one
underlying magnitude representation in combination with different, shot-specific phases. Two separate U-net-like CNNs for magnitude and phase
components were trained together using a combined loss function (see Fig.1). The outputs of the two individual CNNs were concatenated to
calculate a joint loss. The signal model of the msh-EPI-based DWI can be expressed as:

S;; = K;FCe I

where Si’j is the k-space data of the i-th shot and [-th coil, K is the sampling operator, F'is the Fourier transform operator, C; is the coil
sensitivity, and ¢; and I are the shot-specific phase maps and the joint magnitude that need to be estimated. The task of the network is to
minimize:
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where f,,,(X) = I is the joint magnitude predicted by the first “magnitude” U-net, and f,(P); = ¢; is the i-th shot's phase map predicted by the
second “phase” U-net The aliased magnitude images X and phase images P are the separate inputs of the two U-nets, and are calculated by taking
the magnitude and phase from the inverse Fourier transform of each shot 4 and coil  of zero-filled k-space data .S; ;. M; ; denotes the ground truth
image for the loss calculation, which can be calculated via M; ; = C,e’® I . The architecture of the network is shown in Fig. 1.

The training data were generated from b=0 s/mm? leg images (from 18 volunteers) measured in the knee/lower leg (3T, Philips, Best, The
Netherlands). The scan parameters can be found in Table 1. In this work, 4-shot and 8-coils diffusion data were simulated for training. To generate
training inputs, each corresponding series of the 4-shot images (and 8 coils) were undersampled with R=4 according to the 4-shot msh-EPI
trajectory. Data augmentation was performed by randomly applying in-plane rotation, flipping, and resizing. Varying shot-specific phases were
simulated based on a second-order random Gaussian profile with spatial variation between + 1. To simulate low SNR at higher b-values, random
complex Gaussian noise was added to the training input for SNR levels ranging between 8 to 26. Two different models were trained with/without
synthetic noise added to the target sets, to obtain two networks with/without strong denoising ability. In total, 1120 different 4-shots DW synthetic
training pairs were generated, which are divided into 32 aliased magnitude/phase images as inputs for each U-net, and 32 complex fully k-space
data as target sets. The loss function calculation is illustrated in Fig. 2. The training was run for 400 epochs with a batch size of 5, using the Adam
optimizer with a learning rate of 0.0001.

Test data were measured using a fat-suppressed DW 4-shot msh-EPI sequence of 2 volunteers’ leg on the 3T scanner. The deep learning results
were compared to model-based results using extra-navigated? and two self-navigated methods (POCS-ICE4, MUSSELS?).

Results

Fig. 3 shows the reconstructions and corresponding ADC maps of three b-values, qualitatively comparing no-navigation, extra-navigated, and deep
learning reconstruction with denoising training on/off. Fig. 4 shows comparisons between different methods (2D-navigated?, MUSSELS?* POCS-ICE®).
The network outperformed all the other methods in terms of reconstruction speed (see the caption of Fig.4.). The reduced noise floor is
appreciated as well.

Discussion and conclusion

The fully deep learning-based multi-shot EPI reconstruction method proposed in this work demonstrates good preliminary results in the leg region
based on simulated training pairs. This helps to accelerate the reconstruction of a joint full-k-space magnitude image compared to traditional
model-based solutions. Specifically, the well-known challenge of correcting shot-to-shot phase variations in multi-shot acquisitions was addressed
by using the "double" U-net architecture. In addition, due to the inherent properties of CNNs, denoising capability was also trained in the network.
The next step will be to train on other anatomies (e.g. the brain), to test the robustness of the method and to prevent oversmoothing. More
guantitative analysis is necessary and should be subject of future work.
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Figure 1. DL architecture. The two U-nets have almost the same structure. The only difference is a RelLu activation applied for the output layer of the
magnitude U-net to ensure a positive-valued output of the magnitude image, while 4 phase maps as the output of the phase network. The dropout
ratio for each layer is set as 0.05. The inputs of the two U-nets are aliased magnitude/phase images of each shot-coil (4 shots and 8 coils), so 32
input channels of each U-net respectively.
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Figure 2. lllustration of how to calculate the combined loss. The individual full-k-space reconstructed images were multiplied with the simulated 4-
phase maps and measured 8-element coil sensitivities to generate 32 complex images as ground truth in the loss calculation. The output
magnitude image and four phase maps were combined to 4 complex images, then multiplied with 8 elements coil sensitivity maps to generate 32
complex images and minimize the nRMSE loss with the ground truth.
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Figure 3. Results of leg DW images with corresponding ADC quantification. Different reconstructions are compared, using no-navigation (phase-
blind), 2D-navigator, and deep learning with denoising property on/off. The shot-to-shot phase variations create signal loss in the phase-blind
image, resulting in abnormal high ADC values in such regions (red arrow). These can be corrected by using 2D-navigated or deep learning-based
reconstructions, while the images can be further denoised by using deep learning and generating smoother DW images/ADC map.
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Figure 4. Results for a knee DW images (b = 300 s/mmz2) in a healthy volunteer. Different reconstructions are compared, using no-navigation (phase-
blind), 2D-navigator, MUSSELS, POCS-ICE, and deep learning (DL) with denoising on/off. Some artefacts show up in the chosen ROI (white square) of
the phase-blind reconstruction, which can be avoided by using other options. MUSSELS and POCS-ICE both spent roughly 20 s to reconstruct such
slice, while DL only needs 0.4 s. all reconstruction were done with an Intel Core i7 CPU (3.0 GHz, 8 cores).
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Table 1. Scan parameters. The reconstruction for the training sets were performed using a water/fat separation algorithm for Dixon EPI to generate
fat-free fully sampled T2w images. Then these images were segmented in k-space to simulate the 4-shot msh-EPI synthetic data for training.
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