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Abstract
The contour depth methodology enables non-parametric summarization of contour ensembles by extracting their representa-
tives, confidence bands, and outliers for visualization (via contour boxplots) and robust downstream procedures. We address
two shortcomings of these methods. Firstly, we significantly expedite the computation and recomputation of Inclusion Depth
(ID), introducing a linear-time algorithm for epsilon ID, a variant used for handling ensembles with contours with multiple
intersections. We also present the inclusion matrix, which contains the pairwise inclusion relationships between contours, and
leverage it to accelerate the recomputation of ID. Secondly, extending beyond the single distribution assumption, we present the
Relative Depth (ReD), a generalization of contour depth for ensembles with multiple modes. Building upon the linear-time eID,
we introduce CDclust, a clustering algorithm that untangles ensemble modes of variation by optimizing ReD. Synthetic and
real datasets from medical image segmentation and meteorological forecasting showcase the speed advantages, illustrate the
use case of progressive depth computation and enable non-parametric multimodal analysis. To promote research and adoption,
we offer the contour-depth Python package.

CCS Concepts
• Human-centered computing → Scientific visualization; • Mathematics of computing → Nonparametric statistics; Statis-
tical graphics; Cluster analysis;

1. Introduction

The problem of analyzing the distributional properties of contour
ensembles arises in a wide range of domains like meteorology,
where analysts need to interpret multiple simulation runs [LP08];
medicine, where clinicians plan interventions using robust repre-
sentations of the organs [KHS∗19]; and biology [MM22], where
changes in cells’ morphology across a population of cells can be
indicative of looming disease. The contour depth methodology has
become established to visually analyze contour ensembles in terms
of their representatives, confidence bands, and outliers. Examples
include analyzing variations of meteorological forecasts [WMK13]
and determining representative and outlying contours in medical
image segmentations [MW18, CdPMS∗24].

There are two contour depth notions available: Inclusion Depth
(ID) [CdPMS∗24] and Contour Band Depth (CBD) [WMK13]. ID
assesses the number of times the contour contains and is contained
by other contours. CBD determines the centrality of a contour by
counting the number of times it falls in the band formed by tuples of

† Corresponding author. E-mail: n.f.chavesdeplaza@tudelft.nl

other contours in the ensemble. When dealing with real data, con-
tours tend to intersect multiple times. Non-nested pairs of contours
do not contribute to the depth score, resulting in less discrimina-
tive CBD and ID depths. To overcome this challenge, epsilon ID
(eID) and eCBD consider partial containment. The depth scores
that ID and CBD yield can be used to summarize contour ensem-
bles in terms of their representatives, confidence bands, and out-
liers, which can be visualized using contour boxplots [WMK13].

The main practical limitation of contour depth methods is their
scalability. Most practical implementations of CBD only consider
bands formed by pairs of contours. Even then, given that there are
N2 bands formed by pairs of contours in a N-contour ensemble,
CBD takes O(MN3) operations to compute an ensemble’s depth,
where M is the resolution of the domain used to perform the contour
comparisons. By only considering pairwise relationships, ID pro-
vided an order-of-magnitude speedup taking O(MN2) time, with-
out sacrificing performance (i.e., ID and CBD yield comparable
depth estimates). Nevertheless, this might not be sufficient in use
cases that require multiple depth evaluations like interactive analy-
sis of large contour ensembles and clustering [Jör04].

In this paper, we accelerate the computation of ID. In particular,
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Figure 1: Computation of Inclusion Depth (ID) and Contour Band
Depth (CBD) for the six-member ensemble in (a). In (c), ID involves
evaluating containment relationships between contour pairs. CBD
(d) counts the number of times contours fall within bands defined
by a subset of contours, shown in purple and blue. Additionally, (b)
presents depth scores through contour boxplots, providing a sta-
tistical summary of the ensemble with median (yellow), confidence
bands (light and dark purple), and outliers (dashed red line).

we present a linear time algorithm for computing eID that leverages
precomputed inclusion fields. Computing a contour’s depth reduces
to querying these fields in O(M) time. Moreover, we introduce the
inclusion matrix, which encodes the inclusion relationship between
pairs of contours, for accelerating the recomputation of an ensem-
ble’s depths when adding or removing groups of contours, without
requiring to recompute the whole ensemble’s depths. The ability
to quickly recompute depths is useful when computing depths pro-
gressively [SGN12] or when updating an ensemble’s configuration
based on user interaction; and critical when using procedures that
require multiple calls to the depth function like clustering.

A limiting assumption of existing contour depth methods is that
contours in the ensemble were drawn from the same distribution. In
practical scenarios with multiple modes of variation, global depth
analysis may produce unexpected results, such as assigning high-
depth scores to points that are outliers within one mode but cen-
trally located in the overall ensemble [PD23].

We overcome the uni-modality assumption by introducing an ex-
tension of the contour depth framework for multi-modal ensembles.
Central to this extension is the use of relative depth (ReD). By op-
timizing the ensemble’s average ReD, the CDclust algorithm dis-
entangles its modes of variation. Each iteration of CDclust entails
calling a contour depth procedure several times on subsets of the
data. Therefore, crucial to CDclust’s practical application are the
newly introduced fast depth computation schemes. Through exper-
iments with synthetic datasets, we illustrate how ReD and CDclust
facilitate non-parametric analysis of multi-modal ensembles. Addi-

tionally, we show two case studies in the fields of medical image
segmentation and meteorological forecasting that further demon-
strate the practical utility of the multi-modal depth toolkit.

In summary, our main contributions are:

• Schemes for accelerated computation and recomputation of con-
tour depths, in particular, a linear time algorithm for eID and
the inclusion matrix, which removes the dependency on the con-
tours’ domain resolution when recomputing depths on subsets of
the ensemble. These speedups are crucial to enable use cases like
progressive depth computation and clustering.

• The first framework for multi-modal depth analysis of contour
ensembles. The CDclust algorithm leverages the inclusion ma-
trix to disentangle modes of variation in a contour ensemble by
maximizing its average relative depth.

2. Related Work

Our research advances uncertainty visualization methods when us-
ing ensembles to characterize underlying distributions. Ensembles
permit quantifying uncertainty related to initial conditions, training
data, or model parameters [APH∗21]. When visualizing ensembles,
the data type, dimensionality, and analytical tasks must be consid-
ered [WHLS19]. We focus on ensembles of contours derived from
spatial data, addressing scenarios like thresholding scalar fields.

Spaghetti plots are commonly used to display contour ensem-
bles, but they become cluttered and less trustworthy for larger en-
sembles [SZD∗10,PFCB23]. Our focus is on providing an overview
of the statistical properties of the ensemble such as its represen-
tatives, confidence bands, and outliers. Existing methods are cat-
egorized into parametric and non-parametric approaches. Para-
metric methods assume a distribution, such as Gaussian mod-
els fitted to contours’ PCA-reduced signed distance fields (SDF)
[FKRW16,FBW16] or Gaussian models at each grid point [PH11].
Non-parametric methods, like Contour Probability Plots [KTB∗18]
and EnConVis [ZLC∗23], avoid distributional assumptions and of-
fer accurate point-wise descriptions. A hybrid approach uses pair-
wise contour comparisons to determine centrality [DJW16].

Contour depths, a nonparametric method, exhibit desirable prop-
erties such as sensitivity to shape and topology, making them suit-
able for downstream analyses like clustering [Jör04] and regres-
sion [PVB13]. Contour Band Depth [WMK13], while effective for
ensemble characterization, scales poorly with the size of the en-
semble. A recently proposed alternative with more favorable scal-
ing behavior is the Inclusion Depth [CdPMS∗24]. In this paper, we
unify both depth notions using the inclusion matrix, capturing the
topological relationships among ensemble members. The proposed
approach achieves an order of magnitude speedup in Contour Band
Depth (CBD) and accelerates the recomputation of depths, which
is relevant in interactive scenarios and clustering. Furthermore, we
present a linear algorithm for epsilon Inclusion Depth (eID), en-
abling using eID with large contour ensembles.

Depth methods, assuming a uni-modal distribution, may yield
unexpected results in the presence of multiple modes. Previ-
ous research addresses mode variation in contour ensembles
through clustering. We leverage depth to support this process. No-
table approaches include detecting multi-scale symmetries using
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high-dimensional transform-invariant spaces and nearest neigh-
bor search [TN14]; and using lower-dimensional representations
like PCA-reduced contours SDFs [FKRW16] with existing cluster-
ing methods such as KMeans [KTB∗18], density-based clustering
[ME19] and agglomerative hierarchical clustering [FBW16], which
favors compact elliptical clusters for Gaussian mixture model fit-
ting [FKRW16]. Finally, the EnConVis framework for contour en-
semble analysis emphasizes the importance of the distance function
in clustering and classification tasks [ZLC∗23].

Depth methods enhance clustering but are yet to be explored in
contour contexts. Notable instances include a scheme for cluster-
ing multi-variate data using l1 depth [Jör04], recently adapted to
use curve depth [LdMMV21]; the bisecting k-spatialMedian algo-
rithm based on spatial or l1 depth [DDPW07]; depth-based clus-
tering analysis (DBCA) for affine-invariant and noise-robust clus-
tering [JCSW16]; CRAD, a density-based clustering algorithm em-
ploying robust data depth [HG17]; the depth difference (DeD) met-
ric for determining optimal cluster count [PB19], and depth-based
medoids clustering algorithm (DBMCA) for high-dimensional di-
rectional data [PD23].

3. Background: Contour Depth

The contour statistical depth methodology permits characterizing
an ensemble of contours in terms of the centrality, or alternatively
outlyingness, of their members. In the following, we discuss the
two main notions of contour depth: Inclusion Depth and Contour
Band Depth. Figure 1 illustrates the available contour depth no-
tions and how to visualize an ensemble’s summary statistics using
contour boxplots.

Inclusion Depth Let C be an ensemble of N contours. The Inclu-
sion Depth (ID) of ci ∈C results from the number of other contours
that ci contains and in which ci is contained [CdPMS∗24]:

ID(ci|C) =
2
N

min{INin(ci), INout(ci)} with

INin(ci) =
N

∑
j=1

in(ci)⊂ in(c j), and

INout(ci) =
N

∑
j=1

in(c j)⊂ in(ci),

(1)

where in(ci) denotes the subset in the plane enclosed by the contour
and ⊂ yields 0 or 1, depending on the contours’ inclusion relation-
ship. The ID values range between [0,1]. When using bitmaps of M
pixels to represent contours, ID has a computational complexity of
O(MN2).

Contour Band Depth The Contour Band Depth (CBD) of ci ∈C
is the average number of times that the contour falls inside the band
formed by any other J-band with J ∈ {2,3,4, ...,N−1} [WMK13].
We say a contour ci falls in the band formed by J other contours if it
contains the contours’ intersection and is contained by their union:

CB(ci|c1, ...c j) =
j⋂

j=1
in(c j)⊂ in(ci) and in(ci)⊂

j⋃
j=1

in(c j) (2)

Contour Band Depth (CBD) can be written as

CBD(ci|C) =
J

∑
j=2

1(N
j
) (N

j)

∑
k=1

CB(ci|B j
k), (3)

where B j
k is the kth band of the set of j-contours bands. The CBD

values range between [0, 1]. CBD is computationally expensive for
J > 2, so, in practice, J = 2 is used. In Sec. 5, we illustrate how to
obtain compute CBD in O(N2) time using the inclusion matrix.

Epsilon Contour Depth When contours intersect, there tend to be
ties (i.e., pairs of contours for which neither contains the other) and
low depth scores. To mitigate this, variants of CBD and ID have
been introduced that use the modified epsilon subset operator

A⊂ε B = 1−

{
0 |A|= 0,
|A−B|/|A| otherwise,

(4)

where |A| denotes the area of A, A−B the relative set difference
and ⊂ε outputs a continuous value between [0,1].

The modified epsilon ID (eID) [CdPMS∗24], replaces⊂ in Eq. 1
with ⊂ε. Similarly, the modified CBD, which we will refer to as
epsilon CBD (eCBD), replaces ⊂ in Eq. 2 with ⊂ε, yielding the
epsilon band containment operator

CBε(ci|c1, ...c j)=min

 j⋂
j=1

in(c j)⊂ε in(ci), in(ci)⊂ε

j⋃
j=1

in(c j)

 ,

(5)
Computing eID takes O(MN2) time.

Computing eCBD entails forming a N ×∑J
(N

J
)

matrix listing
the outputs of Eq. 5. Individual depth values are then computed by
thresholding and averaging matrix entries. Because eCBD requires
assembling the complete matrix, it is not possible to apply the same
acceleration strategy as for CBD. Therefore, eCBD has a complex-
ity of O(MN ∑J

(N
J
)
).

4. Linear Epsilon Inclusion Depth Computation

The Epsilon Inclusion Depth (eID) replaces the subset operator in
Eq. 1 by the epsilon subset operator, defined in Eq. 4, to compute
the proportion of area of one contour that is contained in another
(INε

in and INε
out ). By reorganizing the loops in these expressions, it

is possible to obtain an algorithm to compute eID inO(NM). In the
following, we simplify notation by using ci = in(ci). ci(m) yields
ci’s value at the mth domain point.

Eq. 6 provides the derivation for INε
in. We start by plugging Eq. 4

into INin in Eq. 1. Note that the set difference can be written as a
loop over the M bitmap pixels of a contour, where ci(m) = 1 if pixel
m is in contour i, and 0 otherwise. We compute ∑

N
j=1(1− c j(m))

ahead of time and store it in a lookup table preε
in(m) = ∑

N
j=1(1−

c j(m)). Computing these values takes O(MN) time but only needs

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

 14678659, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.15083 by L

eiden U
niversity L

ibraries, W
iley O

nline L
ibrary on [11/07/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



4 of 12 Chaves-de-Plaza et al. / Depth for Multi-Modal Contour Ensembles

to be done once for all contours.

INε
in(ci) =

N

∑
j=1

1−
|ci− c j|
|ci|

= N− 1
|ci|

N

∑
j=1
|ci− c j|

= N− 1
|ci|

N

∑
j=1

M

∑
m
(1− c j(m))ci(m)

= N− 1
|ci|

M

∑
m

ci(m)
N

∑
j=1

(1− c j(m))

= N− 1
|ci|

M

∑
m

ci(m)preε

in(m)

(6)

The same idea also applies to INε
out . We again refactor the for-

mula to obtain a precomputed lookup table preε
out(m) = ∑

N
j=1

c j(m)
|c j|

which is shared between all contours. Computing INε
out(ci) and

INε
in(ci) now takes O(M) time with a precomputation of O(MN)

to create the lookup tables. This results inO(MN) time complexity
to compute eID for all N contours in the ensemble.

INε
out(ci) =

N

∑
j=1

1−
|c j− ci|
|c j|

= N−
N

∑
j=1

|ci− c j|
|c j|

= N−
N

∑
j=1

M

∑
m

(1− ci(m))c j(m)

|c j|

= N−
M

∑
m
(1− ci(m))

N

∑
j=1

c j(m)

|c j|

= N−
M

∑
m
(1− ci(m))preε

out(m)

(7)

5. Fast Depth Recomputation

Figure 2: Inclusion (a) and epsilon inclusion (b) matrices of the
contour ensemble in Fig. 1. In the strict inclusion matrix, cells are
colored if a row contour is a subset of the column contour. The
epsilon inclusion matrix values range between 0 and 1, discretized
into seven bins for visualization simplicity.

In the following, we introduce the inclusion matrix, which per-
mits decoupling the depth computation from the assessment of the
pairwise inclusion relationship between contours. We show how, in
practice, this translates to a significant speedup in the computation
of ID and CBD (J = 2) on an ensemble’s subsets, a feature critical
for use cases that require depth evaluations within the ensemble,
like clustering.

At the hearts of ID and CBD are the subset and epsilon subset
operators, which permits establishing the containment relationship
between all pairs of contours in the ensemble. We term the matrix
that collects all the pairwise comparisons inclusion matrix C and
epsilon inclusion matrix eC, respectively. Starting with the latter, a
cell eCi j with i, j ∈ N is computed as:

eCi j = in(ci)⊂ε in(c j) (8)

where⊂ε is the operator defined in Eq. 4. To obtain C, it suffices to
threshold eC as

Ci j = 1≥1[eCi j], (9)

where 1[·] is the indicator function.

Fig. 2 depicts C and eC for an ensemble of six contours. The
epsilon inclusion matrix (b) has values that range between 0 and
1, with one denoting full containment. In practice, entries are only
zero if the two contours are disconnected components. If this is not
the case and A ̸⊂ε B in Eq. 4, then the entry will be lower than
one but not zero, systematically increasing the depth scores, but
preventing ties due to the non-perfect nestedness of contours. In
general, the inclusion matrices are not symmetric. For example, C
is not symmetric as for i ̸= j, if in(ci)⊂ in(c j) then in(c j) ̸⊂ in(ci).
It is also not antisymmetric because in(ci), in(c j) might not share
a containment relationship like in the case where they are discon-
nected components.

The inclusion matrix provides the information needed to com-
pute CBD when only bands formed by two contours are consid-
ered. Therefore, in the particular case of CBD with J = 2, it is
possible to obtain a quadratic runtime. It is possible to determine
the number of bands a function falls in by calculating the number
of functions above (Na) and below (Nb) that function, and using
the formula Nbands = NaNb +N− 1 [SGN12]. This simplification
works because of the assumption that a function cannot fall in a
band formed by functions that cross over [LP08]. In the contour
case, by setting Na = INout and Nb = INin, both of which can be
obtained from the inclusion matrix, it is possible to obtain CBD in
O(MN2), the time it takes to compute the inclusion matrix. It must
be noted that this strategy does not apply to eCBD because eCBD
requires operating on the full contours-vs-bands matrix.

The inclusion matrix decouples the initial computation of the
pairwise inclusion relationships from the depth calculations. There-
fore, adding or removing small subsets of contours is fast. Adding
N′ new contours to the ensemble grows the inclusion matrix from
N2 to (N+N′)2 entries. Adding these 2NN′+N′2 new entries takes
O(MNN′+MN′2) time, significantly faster than recomputing the
matrix from scratch. In the next section, we will show how this fea-
ture enables CDclust. Additionally, in the experiments section, we
show how it can be used to progressively compute depth.

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.
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6. Multi-Modal Analysis

6.1. Relative Depth

Relative Depth (ReD) is an extension of the concept of depth to
multiple clusters or modes of variation. Intuitively, a contour be-
longs to the correct partition if the contour’s depth in the partition
it belongs to is higher than what it could attain if it belonged to any
other partition. In the following, we refer to the former as depth-
within and to the latter as depth-between.

Let IK be a partitioning of the N contours into K clusters. IK(k)
yields the ids of the contours belonging to partition k. Given a con-
tour ci ∈C with i ∈ IK(k), we compute its relative depth ReDi as

ReDi = ReD(ci|C, IK) = Dw
i −Db

i (10)

with the depth-within defined as

Dw
i = D(ci|{c j| j ∈ IK(k)}), (11)

and depth-between as

Db
i = max

l ̸=k;l∈{1,...,K}
D(ci|IK(l)), (12)

where D is any suitable contour depth notion like Inclusion Depth
or Contour Band Depth. ReD values range between [-1, 1]. A con-
tour that attains the minimum value in this range is likely assigned
to the wrong partition or corresponds to an outlier because its Dw is
zero and its Db is the maximum value. In contrast, a contour with
the maximum value of the range is considered the median of the
partition it belongs to.

Fig. 3 depicts the ReD (using ID) per contour for different parti-
tionings of an (N = 30) ensemble of contours made of overlapping
rings spawned in different locations with perturbed radius. The first
row shows the ensemble and its partitioning with each partition col-
ored differently. The second row depicts the Dw

i (colored bar above
zero line), Db

i (mirrored colored bar below zero line), and ReDi
(non-colored bar with black stroke) per contour (horizontal axis).
The first column represents the unimodal case in which calculating
the ReD reduces to computing the depth-within of each ensemble
member. The other three columns show a random partitioning, a
partitioning in which only some labels were exchanged, and the
generative ground truth labels. It can be observed how the aver-
age ReD is maximized by the partitioning with generative labels
because there are no contours with non-zero Db

i .

Interestingly, the average ReD in the case with ground truth la-
bels is also larger than in the uni-modal case, despite the latter not
having contours with positive depth-between. This shows how the
incorrect uni-modal assumption of the traditional depth notion neg-
atively affects overall depth scores. In the experiments, we leverage
this observation to show how ReD can be used as a cluster valida-
tion tool to determine the optimal number of clusters K.

6.2. CDclust

The average ReD score of a partitioning IK provides an indication
of its quality. Specifically, we say that IK is satisfactory if the aver-
age ReD is maximized, which entails maximizing the depth-within

and minimizing the depth-between of every contour. The problem
of obtaining the IK that maximizes ReD can be formulated as

IK = argmax
IK

1
N

N

∑
i=1

ReD(ci|C, IK) =
1
N

N

∑
i=1

Dw
i −Db

i , (13)

where C is fixed.

The optimization problem in Eq. 13 has a large discrete search
space. We adopt a heuristic inspired by KMeans [Scu10] to obtain
a reasonable solution. Algorithm 1 presents the pseudocode of CD-
Clust. CDclust takes as input the contour ensemble C, the desired
number of components K, random trials T , and iterations itmax. In
practice, there are potentially many local optima. Additionally, in
some cases, a cluster might become empty. To ensure a better ex-
ploration of the solution space, we permit the user to define a num-
ber of random trials to perform.

Starting from a random partitioning, CDclust proceeds to itera-
tively increase the partitioning depth by reassigning contours to the
cluster that represents them best. Specifically, at each iteration, the
algorithm computes the contours’ depth with respect to the other
clusters and collects these depth values in the matrix DK ∈ RN×K .
We define the competing cluster of a contour as the cluster that
maximizes its depth

Icomp = argmax
l∈{1,...,K}

D(ci|IK(l)). (14)

If the current assignment IK(ci) maximizes the contours’ depth,
then it is not relocated. Otherwise, the algorithm reassigns to its
competing cluster.

6.3. CDclust Complexity

CDclust’s runtime depends on the number of trials T and a max-
imum number of iterations itmax. Within each iteration, CDclust
requires computing the depth of each contour with respect to each
cluster. If the inclusion matrix is used, then its precomputation is
the bottleneck of the algorithm taking O(MN2) time. Within the
loop, it takes O(N) time per contour to compute its depth with re-
spect to all clusters, yielding a complexity of O(N2). Therefore, in
this case, CDclusts complexity is O(MN2 + itmaxT N2).

When using the linear time eID, one needs to compute the inclu-
sion fields at each iteration, which takes O(MN) time. The most
expensive part of the algorithm is the computation of the between-
cluster depth matrix, which takes O(KN) time. In total, CDclust
with linear eID runs inO(itmaxT MN + itmaxT KN). Note that when
a high resolution grid in the plane is used to resolve the contours,
MN may be larger than N2. In this case, CDclust with the linear
time eID has slower iterations than CDclust with the inclusion ma-
trix.

7. Experiments on Synthetic Data

This section presents the results of experiments with synthetic
datasets, demonstrating the performance of the proposed meth-
ods. The experimental code (https://graphics.tudelft.
nl/paper-multimodal-contour-depth) and contour-
depth Python package (https://graphics.tudelft.nl/

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.
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Figure 3: Relative depth scores as a function of the clustering labels for an ensemble of N = 30 contours in a three-ring configuration. Each
ring has a different proportion of contours. The top row illustrates the different label assignments. The bottom row depicts the depth-within
cluster (bar above 0 line), depth-between cluster (bar below 0 line), and relative depth (bar with black stroke and no fill) for each ensemble
member.

Algorithm 1 Depth-Based Contour Clustering (CDclust)
Require: C,K,T, itmax ▷ N-contour ensemble, number of

components, number of random trials and of iterations
1: I∗K ←{} ▷ Best partition
2: µReD∗←−∞ ▷ Best average ReD
3: for t ∈ {1, ...,T} do
4: IK ← random partitioning of C into K clusters
5: for i ∈ {1, ..., itmax} do
6: DK ∈ RN×K ▷ Between-cluster depth matrix
7: for k ∈ 1, ...,K do
8: DK

·,k←{D(ci|Ck)|ci ∈C} ▷ Via inclusion matrix
9: end for

10: Dw←{DK
i,k|k = IK(ci) and i = {1, ...,N}}

11: Db←{DK
i,li |li = argmaxli ̸=IK(ci) DK

i,li and i= {1, ...,N}}
12: I′K ← IK
13: IK ←{argmaxk DK

i,k|i ∈ {1, ...,N}}
14: µReD← 1

N ∑i Dw
i −Db

i
15: if µReD > µReD∗ then
16: IK∗ ← IK
17: ReD∗← ReD
18: end if
19: if IK = I′K then
20: return IK
21: end if
22: end for
23: end for
24: return IK

contour-depth) are available as GitHub repositories. Further
speedups can be achieved by using a more performant program-
ming language and implementing parallelism in the code. We ran
all the experiments on a Mac Book Pro (2022) with an M1 Pro
processor (without GPU acceleration) and 32 GB RAM.

7.1. Fast Computation of Contour Depth

Setup We use the shape outside outliers detailed in the Inclu-
sion Depth paper [CdPMS∗24]. We define a stochastic model from
which we can sample inlier shapes and outlier shapes with higher
amplitude and frequency, endowing them with distinct shapes. We
use an outlier contamination proportion of 0.1. The second column
of Fig. 7 shows an example of the shape outlier dataset.

To generate datasets of varying sizes, we start with the full en-
semble (N = 300) and sample increasingly smaller -nested- subsets
in increments of 10 until 10 elements remain, yielding sampling
sizes Ns = {10,20,30, ...,300}. For the unoptimized CBD in the
scaling behavior experiment, we only consider until N = 150 due
to its steep increase of computational cost. For each combination of
method/sample size, we run five random trials to derive confidence
intervals of the results. Finally, for the progressive depth calcula-
tion experiment, we use N = 150. To increase difficulty, we shuffle
the shapes in the ensemble, interleaving inliers and outliers.

Scaling Behavior Fig. 4 compares the runtimes of the linear eID
computation with other contour depth methods. In particular, the
figure includes strict CBD (J = 2) and ID. We differentiate whether
the method was optimized or not. Optimized CBD refers to com-
puting strict CBD using the expression presented in Sec. 5, ID has

© 2024 The Authors.
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no optimized version and unoptimized eID refers to using the in-
clusion matrix to compute the depths. The performance gains are
evident. ID and unoptimized eID are at least an order of magnitude
faster than CBD when more than two contours are used to form
the band. Linear eID is, in turn, an order of magnitude faster than
methods based on the inclusion matrix, computing depths of 300-
contour ensembles in under ten seconds. These results confirm the
speed-ups that ID and linear eID achieve. It is important to note
that speed is only one factor to consider when selecting a depth
notion. In practice, the properties of strict depth notions might be
desired. In this case, the best-performing methods, optimized CBD
(J = 2) and ID, have a time complexity of O(MN2). In the case of
CBD, if more bands are desired, the performance of the methods
will rapidly degrade as it depends on the number of possible bands
that can be formed out of J contours.

Figure 4: Comparison of mean runtimes for different sample sizes
of optimized and unoptimized versions of CBD, ID, and eID. The
y-axis uses a logarithmic scale and the shaded area denotes the 95
percent confidence interval across replications.

Progressive Depth Computation We now demonstrate the usage
of fast depth computation for progressively calculating and render-
ing depths, which can enhance analytical processes [SPG14]. Fig. 5
compares the runtimes of the batched and progressive depth com-
putation of a N = 100 ensemble. We assume that the ensemble’s
contours become available one at a time. For the batched method,
we recompute the ensemble’s ID every time a new contour arrives.
For the progressive method, we only compute missing entries of the
inclusion matrix and then perform a depth update of the ensemble.
As can be observed in the line plot, the cost of adding a contour
to the ensemble is significantly higher for the batched version. The
N = 100 ensemble takes an average of 57 seconds per contour with
the first one taking a fraction of a second and the last one more than
four minutes. In contrast, the progressive version takes advantage

of the information contained in the inclusion matrix to avoid unnec-
essary recomputations. It takes 1.15 seconds on average to recom-
pute the ensemble’s depths, which means that the whole ensemble
can be progressively rendered in less than two minutes, allowing for
interactive rates. The vertical stripe on the right side of the figure
illustrates how the incremental calculation of depth works.

Figure 5: Comparison of the time it takes to compute depths of a
growing ensemble (N = 100) using batched and progressive depth
calculation. The x and y-axes have log scales. The x-axis indicates
how many contours have been processed at the time given by the
corresponding point in the y-axis. The strip to the right depicts the
updating of the depth scores as the ensemble grows.

7.2. Multi-Modal Contour Analysis

Setup We use three datasets (N = 100) that contain multiple
modes of variation. First, the three rings dataset has three overlap-
ping groups of circles each with perturbed radii and centers. Each
circle group has a different number of circles and spread (different
radii distribution). Second, the non-nested cluster dataset contains
three groups of circles C1, C2, and C3 arranged such that C1 and
C2, and C1 and C3 are nested but C2 and C3 are not. Circles in
each group have perturbed radii and centers and different spreads.
Finally, we reuse the shape outlier dataset from the last subsection,
which can be thought of as an ensemble with two modes of varia-
tion: inliers and outliers. Figs. 6 and 7 illustrate these datasets.

In preliminary experiments, we observed that the performance
of CDclust decreases when using ID due to the method’s tendency
to yield ties if the contours intersect. Therefore, unless mentioned
otherwise, we use eID as a depth notion for both ReD and CDclust.
For CDclust, we use T = 5 and itmax = 10. The number of clusters
K changes depending on the experiment’s purpose.

We compare CDclust against two relevant existing methods that
leverage a PCA-reduced SDF representation of the contours. To
obtain a contour’s SDF representation, we compute the signed dis-
tance of each pixel to the closest point on the contour and use prin-
cipal components analysis to keep the dimensions in the resulting
field that explain 0.999 of the variance [FKRW16]. First, we con-
sider KMeans [Scu10], which iteratively improves the clustering by
assigning points to the closest center. Similarly to CDclust, we set

© 2024 The Authors.
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the number of attempts to 5 and the maximum number of iterations
to 10. Second, we consider agglomerative hierarchical clustering
(AHC) with average linking, which is part of the CVP pipeline pro-
posed in [FBW16, FKRW16]. We choose the number of clusters to
match the one used in CDclust and KMeans. For both clustering
algorithms, we use Sklearn’s implementation with Euclidean dis-
tance as the distance metric.

Cluster Validation Using ReD Average ReD (µReD) can be used
to determine the optimal number of clusters. Fig. 6 depicts this clus-
ter validation strategy for the three rings dataset (N = 100). For
different values of K, we run CDclust and compute the clustering
µReD. To reduce the sensitivity to a specific clustering result, we
perform this process ten times, varying CDclust’s random seed. The
graph (top row of Fig. 6) shows the mean µReD per K surrounded
by a 95% confidence interval. It can be observed how K = 3, the de-
sired clustering, consistently maximizes µReD. As K increases, the
mean µReD decreases and the uncertainty in the clustering results
increases. The figure’s bottom section shows the resulting cluster-
ings for one of the random seeds. As can be observed, in some cases
higher K clusterings preserve the inlier structure of K = 3, assign-
ing magnitude outliers to the extra clusters. The depth-within of the
swapped contours does not change because of their outlier status,
but their depth-between increases, which results only in a slight de-
crease in µReD. In other cases, a ring group is split into two or
more components, reminiscing clusterings obtained with hierarchi-
cal methods.

Comparative Evaluation of CDclust In the synthetic datasets we
considered, we observed that ReD, KMeans, and AHC exhibited
a similar clustering behavior when using the ground truth K. The
methods’ behavior changed when exploring alternative Ks. The
first column of Fig 7 presents an example of the non-nested clus-
ter dataset. We clustered the dataset with K = 2. Both CDclust and
AHC put the small group of contours (in orange for CDclust and
AHC) in a separate cluster. In contrast, KMeans classified these
contours as belonging to the same cluster as the inner ones, which
are partially disconnected/unnested. This example shows how CD-
clust has increased sensitivity to the nestedness relationship be-
tween contours, which could be useful in cases where one wants
to flag groups of contours with a different nestedness relationship.

The previous result hints at the strength of contour depth in iden-
tifying shape outliers. For ID, the user must select a depth threshold
for the outliers. CBD uses an automatic mechanism to determine it.
We explored the utilization of clustering methods to identify the
shape outliers, using the shape outliers dataset and K = 2. The sec-
ond column of Fig. 7 shows an example of the results. As can be
observed, CDclust assigned all the 16 shape outliers to the same
group. It also assigned contours with extreme magnitudes to the
group of outliers, highlighting as inliers the highly central core of
circular contours. KMeans and AHC, relying on distances rather
than on the inclusion relationships, do not achieve a clear separa-
tion. KMeans splits the shape outliers, assigning 11 to the green
cluster and 5 to the orange one. Furthermore, in the orange clus-
ter KMeans mixes representative contours with shape outliers. For
K=2, AHC only separated one magnitude outlier from the rest,
combining shape outliers and inliers. This result is sensitive to

Figure 6: Selection of the optimal number of clusters using µReD.
The line plot depicts the mean µReD per K-clustering across ten
samples. The shaded area corresponds to a 95% confidence inter-
val. K = 3 and K = 8 (vertical dashed lines) attain the highest and
lowest mean µReD, respectively. The bottom section presents exam-
ples of the resulting clusterings for one of the samples.

AHC’s linking method and the K used. When we tried larger values
for K, AHC assigned shape outliers to low cardinality clusters, pro-
ducing a satisfactory separation of the inliers similar to CDclust’s.
Nonetheless, needing to tinker with both K and the linking method
hinders the method’s practicality. The results indicate that CDclust
can also be used to separate outliers from inliers, permitting us to
automatically obtain a robust outlier-free cluster, which can be used
in downstream procedures.

8. Case Studies

In this section, we demonstrate how CDclust+ReD can be used
to perform non-parametric multi-modal visual analysis of real
datasets. We use eID because it is the fastest depth notion available
and because contours in real data tend to intersect. For CDclust, we
use the same configuration as in the previous section. For CVP,
we implement the pipeline as described in [FKRW16]. In sum-
mary, CVP uses agglomerative hierarchical clustering of the PCA-
reduced SDF representations of the contours to find the modes of
variation. The cluster representatives are the geometric medians of
each cluster in PCA space. The bands are computed from the SDFs
by adding and subtracting from the mean SDF a user-selected num-
ber of standard deviations (we use one standard deviation for the
results in this section).

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

 14678659, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.15083 by L

eiden U
niversity L

ibraries, W
iley O

nline L
ibrary on [11/07/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Chaves-de-Plaza et al. / Depth for Multi-Modal Contour Ensembles 9 of 12

Figure 7: Comparison of clustering results of CDclust, KMeans,
AHC and the reference labels for the non-nested cluster and shape
outlier datasets with K = 2.

For visualization of the results, we use spaghetti plots and con-
tour boxplots [WMK13]. We render contour boxplots using a sin-
gle hue to accommodate multiple modes of variation and con-
sider the median (thick solid line) and the confidence bands (semi-
transparent polygon with the same hue as the median line). We do
not render the outliers for clarity of exposition. Nevertheless, for
CDclust+ReD, we filter out the bottom ten percent of contours with
the lowest depth per cluster and then compute the band with the re-
maining contours. We use the same computer as in the experiments
with synthetic data.

8.1. Segmentation Ensembles

Data With the advent of deep learning-based auto-contouring
technologies, segmentation of organs-at-risk (OARs) in radiother-
apy has been largely automated [MCCC∗20]. Nevertheless, clini-
cians still need to perform a quality assessment of the segmenta-
tions, which requires understanding the uncertainty in the predic-
tions. We consider the computerized tomography (CT) of a patient

with head and neck cancer treated at HollandPTC between 2018
and 2020. The IRB approved the research protocol for the use of
patient data in research, all patients signed an informed consent
form. We trained 30 segmentation models based on the popular
UNet architecture [RFB15] on different subsets of the training split
of the dataset of the Head and Neck Auto Segmentation MICCAI
Challenge [RZS∗17]. The MICCAI dataset contains CT scans of
patients with head and neck cancer with ground truth segmenta-
tions of nine OARs. To further augment the ensemble size and the
variability of the predictions, we trained each model using differ-
ent learnable weight initializations. Using the resulting models to
segment the parotid gland yields an ensemble of 120 scalar maps
of per-voxel softmax probabilities. For the analysis, we focused on
540×540 pixels 2D slices of the OARs. We obtain the contours by
thresholding the probabilities with an iso-value of 0.8.

Analysis Fig. 8 illustrates a depth-based multimodal analysis of a
slice of the ensemble of segmentations of the right parotid gland us-
ing depths. We focused on the parotid gland because it is not always
clearly visible in CT, which can increase inter-clinician variability.
In these cases, a visual statistical summary can help clinicians un-
derstand the range of predictions. The spaghetti plot (a) provides an
overview of 120 segmentations, revealing trends that are challeng-
ing to disentangle visually due to occlusion. Using contour box-
plots based on the eIDs of the ensemble (b) simplifies data display
and showcases variability in wide confidence bands. Notably, the
median contour differs significantly from the outer band boundary,
suggesting multiple modes of variation. To validate this hypothe-
sis, we used CDclust with K = 2 (max average ReD). The resulting
clustering reveals a split into inner and outer sections (c). The or-
ange cluster has more members, which explains its representative
shape being selected as the median in (b). While contour boxplots
improve on spaghetti plots, occlusion persists. In (d), clinicians can
drill down by clicking on the cluster of interest in the vertical pro-
portions bar, revealing that most of the teal cluster’s variation is
concentrated in the bottom right, where confidence bands are wider.

8.2. Weather Forecast Ensembles

Data A common use case for contour statistical models is to an-
alyze meteorological forecast data. We consider data from the Eu-
ropean Centre for Medium-Range Weather Forecasts (ECMWF).
Specifically, the ECMWF Ensemble Prediction System (EPS) pro-
vides ensembles of predictions for different variables like precip-
itation, temperature, and pressure. The forecasts include N = 50
perturbed members and a control run. We analyze the same data as
in [FKRW16], which is the forecast from 00:00 UTC 15 October
2012. More details about this type of data can be found in [LP08].
The region under consideration encompasses 101× 41× 62 grid
points, which corresponds to latitude, longitude, and geopotential
height dimensions. For the analysis, we consider 2D fields, cor-
responding slices of the region where the geopotential height is
500hPa. To obtain contours from this field, we threshold them us-
ing an iso-value of 5600m. The spaghetti plot in Fig. 9 depicts the
extracted contours laid over the geographical region they span.

Analysis Fig 9 (b) shows the results of utilizing CVP to analyze
the forecast ensemble [FKRW16]. The majority of the ensemble’s

© 2024 The Authors.
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Figure 8: Different stages of the ensemble analysis process. a) and
b) present an overview of the ensemble using a spaghetti plot and
a contour boxplot based on the depths of the complete ensemble. c)
and d) present a multi-modal analysis of the ensemble. c) depicts
an overview of the different modes of variation and d) focuses on
the less representative variation mode.

members belong to the purple (25) and orange (23) clusters. and
the geometric medians (solid lines) are similar in shape, with the
orange one exhibiting more pronounced curves towards the mid-
dle of the map. The green cluster contains the fewest members (3),
and its shape differs from the other two, especially at the left of the
map. When performing non-parametric analysis with CDclust (c),
one can observe trends similar to CVP’s. In particular, the propor-
tions (24, 17, and 10 members) remain similar, and the shapes of
the representatives too. This shows that both clustering procedures
identified similar trends in the data. The two methods mainly dif-
fer in the bands’ shapes and the representatives’ smoothness. The
depth-based bands are generally thicker, and the trajectories of the
representatives are more distinct because they are made from inlier
contours in the ensemble. In contrast, CVP synthesizes bands and
representatives, producing smoother graphical elements. A clear
visual difference that arose in this case study is the blob in CD-
Clust’s green cluster. Both methods use a threshold to define the
bands’ extents: unit standard deviation for CVP and keeping the top
90% contours depth-wise for CDclust. The blob arises because two
members of the CDclust’s green cluster (which agree with CVP)
contain such a feature, but only one was flagged as an outlier and
removed. This difference highlights the importance of trying dif-
ferent values for the threshold parameters of both methods. Finally,

Figure 9: Comparison of parametric (b) and non-parametric (c)
analysis of the ensemble of 500 hPa geopotential contour lines
(ECMWF ENS forecast from 00:00 UTC, 15 October 2012 valid
at 00:00 UTC, 20 October 2020). (a) presents an overview of the
ensemble using a spaghetti plot. The horizontal colored bar in (b)
and (c) encodes the cluster’s proportions in decreasing order.

our results reinforce that, in practice, analysts can benefit from con-
sidering parametric and non-parametric analysis [ZLC∗23].

9. Discussion and Conclusions

Contour depth has gained prominence in non-parametric analy-
sis across domains such as meteorological forecasting and med-
ical image segmentation [WMK13, MW18, CdPMS∗24]. The ef-
ficacy of contour depth methods hinges on their scalability with
increasing ensemble size. Our contributions significantly enhance
existing methods by introducing a linear time algorithm for Ep-
silon Inclusion Depth (eID) computation. Furthermore, we intro-
duce an inclusion matrix, facilitating depth computation on en-
semble subsets without reevaluating the inclusion relationship, a
process dependent on domain resolution. These accelerated depth
computation methods find applications in progressive depth com-
putation [SPG14] and interactive depth updating.

We also generalize contour depth using relative depth and in-
troduce CDclust to address the assumption of contours drawn
from the same distribution. To our knowledge, CDclust is the first
depth-based contour clustering algorithm. Experiments on syn-
thetic data demonstrate that CDclust largely agrees with KMeans
and Agglomerative Hierarchical Clustering, but exhibits sensitiv-
ity to clusters violating the nestedness relationship. The desirabil-
ity of this property depends on the application. We further demon-
strated CDclust’s practical utility by analyzing ensembles arising
from two domains. In medical image segmentation, we showcase
how clinicians can disentangle trends through multi-modal analy-
sis. This positions contour depth methodology for interactive re-
finement of segmentations [WLC∗22, TJL∗20] based on represen-
tative selection [MW18]. Our meteorological forecasting example
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compares non-parametric and parametric multi-modal analyses, re-
vealing the visualization-altering assumptions of CVP’s method.
Adopting both parametric and non-parametric lenses is crucial in
practice [ZLC∗23]. The proposed methods and the contour-depth
Python library contribute to this approach.

There are several future work avenues. First, eID’s formulation
facilitates obtaining a linear algorithm based on precomputed maps.
It is unclear whether other depth notions like contour band depth
[WMK13] can profit from similar strategies. Second, the runtime
of linear eID depends on the grid resolution, reducing its effec-
tiveness in cases that require multiple evaluations. Addressing this
dependency and implementing parallelism, for instance, via a GPU
implementation, would increase the contour depth methodology’s
reach. Third, using ReD to select the optimal K showed suboptimal
clusters can obtain high ReD. While alternative schemes are possi-
ble, we found running CDclust multiple times helps avoiding local
optima. Finally, CDclust uses a global depth notion. Future inves-
tigations could adapt CDclust to enable local analysis [MW18] for
multi-scale insights. Additionally, working directly with the scalar
field from which contours arise and integrating speedups into func-
tional depth cases are intriguing future research avenues [ME19].
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