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Pulmonary function tests (PFTs) are important clinical metrics to measure the severity of interstitial lung
disease for systemic sclerosis patients. However, PFTs cannot always be performed by spirometry if there
is a risk of disease transmission or other contraindications. In addition, it is unclear how lung function is
affected by changes in lung vessels. Therefore, convolution neural networks (CNNs) were previously proposed
to estimate PFTs from chest CT scans (CNN-CT) and extracted vessels (CNN-Vessel). Due to GPU memory
constraints, however, these networks used down-sampled images, which causes a loss of information on small
vessels. Previous literature has indicated that detailed vessel information from CT scans can be helpful for PFT
estimation. Therefore, this paper proposes to use a point cloud neural network (PNN-Vessel) and graph neural
Graph network (GNN-Vessel) to estimate PFTs from point cloud and graph-based representations of pulmonary vessel
Lung vessels centerlines, respectively. After that, we combine different networks and perform multiple variable step-wise
regression analysis to explore if vessel-based networks can contribute to the PFT estimation, in addition to
CNN-CT. Results showed that both PNN-Vessel and GNN-Vessel outperformed CNN-Vessel, by 14% and 4%,
respectively, when averaged across the intra-class correlation coefficient (ICC) scores of four PFTs metrics. In
addition, compared to CNN-Vessel, PNN-Vessel used 30% of training time (1.1 h) and 7% parameters (2.1
M) and GNN-Vessel used only 7% training time (0.25 h) and 0.7% parameters (0.2 M). We combined CNN-
CT, PNN-Vessel and GNN-Vessel with the weights obtained from multiple variable regression methods, which
achieved the best PFT estimation accuracy (ICC of 0.748, 0.742, 0.836 and 0.835 for the four PFT measures
respectively). The results verified that more detailed vessel information could provide further explanation for
PFT estimation from anatomical imaging.
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1. Introduction is a risk of disease transmission, e.g. in patients with COVID-19 [4,

5] or other contraindications such as myocardial infarct, pulmonary

Systemic sclerosis (SSc) is a rare immune-mediated connective tis-
sue disease that affects different organs. Up to 90% of SSc patients
have lung involvement, with pulmonary function abnormalities such as
interstitial lung disease (ILD) [1]. To evaluate progression of SSc-ILD,
various pulmonary function tests (PFTs) are used as key measures, such
as diffusion capacity for carbon monoxide (DLCO), forced expiratory
volume in 1 s (FEV,), forced vital capacity (FVC) and total lung capac-
ity (TLC) [1-3]. PFTs, however, cannot always be performed if there

* Corresponding author.

embolism or ascending aortic aneurysm [6,7].

CT scans provide high-resolution details of the lungs, and is hence
regarded the gold standard for diagnosing SSc-ILD [9,10]. Therefore,
when PFTs are not possible and CT scans have been made previously
of SSc patients for other purposes, it could be of interest to estimate
PFTs from CT images. In addition, the clinical research community
is interested to investigate the relation between structural (especially
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Fig. 1. Overview of the four PFT estimation methods. The data-preprocessing steps are on the left and neural network architectures on the right. The existing methods [8] are
shown on the upper part (gray background), the work proposed in this paper is on the bottom part (green background). The shape of each grid image is marked next to it. Each
of the four networks consists of an encoder and a global average pooling (GAP) layer, followed by a fully-connected (FC) block. The FC block includes two fully connected layers
with 1024 nodes for each of them. The four output nodes represent DLCO, FEV;, FVC and TLC, respectively.

vascular) changes due to SSc and pulmonary function. Previous work
has extracted some quantitative biomarkers from chest CT of SSc
patients, which correlated with PFTs [3,10-12]. For instance, two lung
vascular tree-based biomarkers, extracted from the lung vessel radius
histogram, were found to be correlated with DLCO [11]. However,
these biomarkers are investigated only in terms of their correlations
with PFTs but do not estimate PFT values directly. Thus, there is a need
to investigate the use of high-resolution pulmonary vessel masks from
CT scans to directly estimate PFTs.

Deep neural networks have shown some promise for PFT estimation
from CT scans [4,8,13] due to their powerful capability to extract
features from images. To the best of our knowledge, there are just three
works on the PFT estimation using deep learning from CT scans. The

first work is for patients with lung cancer [4]. A network was developed
to estimate FEV; and FVC, which achieved R values of 0.73 and 0.82,
respectively. Their network consisted of a ResNet-50 [14] for feature
extraction and a bidirectional long short-term memory (BiLSTM [15])
network for PFTs prediction. The second work is for subjects at risk
of lung cancer [13]. Two separate networks were trained to estimate
FEV; and FVC, respectively. Both of the previous methods estimated
FEV; and FVC only, lacking DLCO and TLC. In addition, none of them
were developed for SSc patients. The third work for PFT estimation
is for SSc patients [8]. The potential of convolution neural networks
(CNN) was verified to estimate the complete set of PFTs. Intra-class
correlation coefficient (ICC) values were achieved for DLCO, FEV,, FVC
and TLC as 0.71, 0.76, 0.80 and 0.81, respectively, from CT scans of SSc
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patients (see Fig. 1-I, CNN-CT). In addition, motivated by the manually
extracted vascular tree-based biomarkers [11], it was verified that CNN
trained by 3D binary vessels could also be used to estimate complete
PFTs (with lower accuracy) [8] (see Fig. 1-J, CNN-Vessel).

The limitation of this previous work for SSc patients [8] is that
the 3D images were down-sampled before being fed into networks,
due to GPU memory limitation (see Fig. 1-B and D). This led to
approximately 20x loss of detailed vessel information. Down-sampling
is a compromise that has to be made, because even with a batch size
of 1, the GPU usage was still at least 11 GB, and to use the original
resolution CT, a single GPU of at least 220 GB is needed, which does
not yet exist. Because the absence of small vessels was reported to
influence PFTs significantly [11], we assumed that the better perfor-
mance could be achieved by overcoming the information loss of small
vessels during the development of PFT-estimation networks. Therefore,
the goal of this study was to explore the possibility of improving the
deep-learning-based PFT estimation performance by efficiently utilizing
detailed vessel information.

Given that most voxels of 3D binary vessel images are background,
we propose to convert binary vessel images to two different data
formats — point clouds and graphs, to efficiently utilize the relevant
vessel voxels. A point cloud is a sparse representation of the binary
vessel image and contains structural information on the pulmonary
vessels. Such a representation could help networks on extracting struc-
tural features relevant to PFT estimation. However, point clouds do
not explicitly represent the geometric relationships between points.
Given that points in vessels are not completely independent but belong
to different sub-branches, such information could be useful to PFT-
estimation networks. Therefore, we also built graphs of vessels by using
edges to explicitly connect the points in the same sub-branches.

Thus, our contributions are as follows

We, for the first time, propose to use a point cloud neural net-
work (PNN-Vessel) and a graph neural network (GNN-Vessel) to
estimate PFTs from pulmonary vessels.

We explored the architectures and training strategies for PNN-
Vessel and GNN-Vessel.

We explored how pulmonary vasculature influences pulmonary
function and verified that higher resolution of vessels, which
include more small vessels, could lead to higher PFT estimation
accuracy.

We, for the first time, successfully combined CNN, PNN and GNN
together and achieved the best PFT estimation performance.

The remaining paper is organized as follows. In Section 2, the
related work was reviewed. Then, our solution for the PFT estimation
based on point clouds and graphs is described in Section 3. Detailed
experiment setting and results are shown in Section 4. Finally, in
Section 5, the experiment results are discussed.

2. Related work
2.1. Point cloud and point neural network (PNN)

A 3D point cloud is a set of discrete data points in space, which is
commonly used in 3D scanners, LIDAR and RGB-D cameras [16]. In a
3D point cloud, each point position has its set of Cartesian coordinates
(x,y,z) and other extra features like color and depth [17]. A point
cloud is stored as an unordered set of vectors with shape of (N, D+C),
where N is the number of points, D is the dimension of the coordinates
(normally 3 for points in 3D space) and C is the number of extra
features.

In the past years, a great number of different neural networks were
proposed for point cloud data. PointNet is a pioneering deep neural
network that directly analyzes point clouds for both classification and
segmentation [18]. The basic idea of PointNet is to learn a spatial
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encoding of each point through a sequence of shared multi-layer per-
ceptions (MLPs) and then aggregate all individual point features to a
global point cloud signature by a global pooling [18]. Before the global
pooling, each point is processed identically and independently, which
ensures invariance to permutations but also ignores the local context.
To overcome this limitation, PointNet++ [19] was released subse-
quently and became one of the most influential networks by leveraging
local neighborhoods at multiple scales. PointNet++ hierarchically ab-
stracts features of point clouds using a number of set abstraction (SA)
blocks. An SA block consists of a subsampling layer to down-sample the
incoming points, a grouping layer to query neighbors for each point,
and a simplified PointNet to extract and aggregate features. Because
PointNet++ affirmed the significance of leveraging local neighboring
information, more networks were proposed to aggregate spatially-local
correlation information. In PointCNN [20], an X-Conv operator was
introduced, which can weight and permute input features before they
are processed by a typical convolution. This is the generalization of a
CNN on the point cloud domain. Inspired by the success of transformers
in natural language processing [21] and image analysis [22], Point
Transformer [23] networks were designed with self-attention layers for
point clouds.

The latest network, which achieved the best performance on most
of the benchmarks, is PointNeXt [24]. It used the same design of
PointNet++ [19] but applied different hyper-parameters and training
strategies for different tasks. It concluded that by just optimizing train-
ing strategies (e.g. data augmentation and optimization techniques) for
different tasks, PointNet++ could exceed the current state of the art.
Inspired by this works, the PNN-Vessel described in this paper also uses
the design of PointNet++ and explores the optimal training strategies
and hyper-parameters for PFT estimation.

2.2. Graph and graph neural network (GNN)

A graph is a data structure that models a set of objects (nodes) and
their relationships (edges) [25]. Because of the unstructured nature
of graph data, CNNs cannot be applied directly to graphs. Therefore,
a great number of networks were proposed to mimic the principle
of CNNs by aggregating information from neighboring nodes using
different aggregation strategies [26-30]. ChebConv [30] is one of the
earliest attempts, and approximates spectral graph convolutions using
Chebyshev polynomials. GCN [27] simplifies ChebConv by utilizing
only the first two Chebyshev polynomials while still outperforming
it on real-world datasets. The core operations of a GCN is aggre-
gating (average or maximum) neighboring features, followed by an
MLP layer to increase/decrease feature dimensions and a non-linear
activation function. Simplifying Graph Convolution (SGConv) [26] is
a simplified version of GCN, which aims to reduce computational costs
without sacrificing too much performance. GraphConv [28] was pro-
posed as a hierarchical version of k-GNNs, based on the k-dimensional
Weisfeiler-Lehman (WL) algorithm, which is able to work with the fine-
and coarse-grained structures of a given graph. Graph Isomorphism
Network Convolution (GINConv) [29] implements graph isomorphism
tests [31] in a neural network. Graph Attention Network Convolution
(GATConv) [32] was introduced with the concept of self-attention
mechanisms to graph convolutions. Each node computes attention co-
efficients with all of its neighbors, allowing different neighbors to
contribute differently to the updated node representation. The key
difference between PNN-Vessel and GNN-Vessel is that PNN-Vessel
regards all neighboring points that have nearest distances, whereas
GNN-Vessel only considers points as neighbors if they have an direct
edge between them. This is critical in our task where two neighboring
points in a vascular tree should belong to the same vessel branch.
Therefore, we proposed the GNN-Vessel to estimate PFTs from our built
vessel graph dataset.
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Fig. 2. Measured PFTs distribution on the whole dataset.

3. Methodology

In this section, we describe how to convert 3D grid vessel images to
point cloud and graph datasets. We then separately illustrate our two
proposed networks: PNN-Vessel and GNN-Vessel.

Two previously developed for PFT estimation are shown in Fig. 1-I
and J, which were trained by down-sampled CT images and down-
sampled binary vessel images separately. The two new methods devel-
oped in this paper are shown in Fig. 1-K and L. The high-resolution
3D grid vessel images were skeletonized resulting in two types of data.
The first type of data is point cloud with coordinates and vessel radius
as the features of each point. The second type of data is graph with
coordinates and vessel radius as the features of each node, and edge
between two adjacent nodes. PNN-Vessel and GNN-Vessel were then
developed for the two datasets, respectively. The details of dataset
preparation and network design are described below.

3.1. Acquisition of CT images and PFTs measurements

In this study, we retrospective selected a cohort of 316 patients
referred to our specialized outpatient health care program (focused
on combined care in systemic sclerosis) at Leiden University Medical
Center. These patients, identified by the referring rheumatologists as
having a definitive diagnosis of Systemic Sclerosis (SSc) or presenting
with a strong clinical suspicion, were examined by high-resolution com-
puted tomography (HRCT) scans and subsequent pulmonary function
tests (PFTs) within 10 days. All subjects underwent scanning at full
inspiration without contrast enhancement using an Aquilion 64 CT
scanner (Canon Medical Systems), configured at 120 kVp, a median
tube current of 140 mA, a rotation time of 0.4 s, a collimation of
64 x 0.5 mm and a helical beam pitch of 0.8; leading to a median
CTDIvol of 8.2 mGy. The images were reconstructed with filtered
back projection and an FC86 kernel, with a median pixel spacing of
0.64 mm x 0.64 mm, with a slice thickness and increment of 0.5 and
0.3 mm, respectively. PFTs were performed using a spirometer under
ERS/ATS guidelines [33,34] including DLCO, FEV,, FVC and TLC.
While DLCO was measured in units of mm/Hg/min, FEV;, FVC, TLC
were measured in units of liter (Fig. 2). We divided this dataset into two
distinct subsets: 253 CT-PFT pairs were allocated for four-fold training
and cross-validation, while the remaining 63 pairs were reserved for
the separate testing phase. Written informed consent was provided
by all patients. Approval of all ethical and experimental procedures
and protocols was granted by the Institutional Review Board of the
LUMC under protocol numbers P09.003/SH/sh, REU 036/SH/sh, REU
043/SH/sh and B19.008/KB/kb. For the current specific analysis no
separate research protocol was submitted.
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3.2. Dataset preparation

3.2.1. Dataset preparation for CNN-CT and CNN-Vessel

We reproduced previously developed CNN-CT and CNN-Vessel net-
works [8]. The dataset preparation for CNN-CT and CNN-Vessel are
shown in Fig. 1-A, B, C, and D. After we obtained CT scans (Fig. 1-A),
the corresponding binary vessels masks were automatically segmented
by a graph-cut based method [35] (Fig. 1-C). This vessel segmenta-
tion method achieved the top three in VESSEL12 Challenge (Team
name is “LKEBChina” in the VESSEL12 website https://vessel12.grand-
challenge.org/Results). To develop CNN-CT and CNN-Vessel, we down-
sampled all CT scans and binary vessel images to an isotropic spacing
of 1.5 mm, then cropped 3D patches of fixed size (240 x 240 x 240
voxels, see Fig. 1-B and D).

3.2.2. Dataset preparation for PNN-Vessel

After we obtained the binary vessel masks, the centerlines of the
vessel trees were extracted using skeletonization [36] with the calcu-
lated radius embedded in the centerline voxels, as illustrated in Fig. 1-E
and F. The detailed calculation of vessel radius is shown in Fig. 3.
At each location in the vascular tree, the radius was calculated by a
skeletonization method (DtSkeletonization method of Mevislab 2.731).
This method selects voxels that are located at the center of a blood
vessel by eroding the extracted vessels, and the corresponding radius is
estimated by measuring the distance between the vessel boundary and
the center. After we obtained the centerlines, we converted the points
on the centerlines to a list of vectors, each of which includes three
elements of spatial coordinates and one element of the corresponding
vessel radius (Fig. 1-G). Before the conversion, the average size of
each 3D vessel grid image is about 512 MB with a mean size of
512 x 512 x 1000 pixels along x, y and z axes. After the conversion,
the size of each image decreased dramatically to 0.3 MB. Each image
is now represented as an array with a shape of N x 4, where N is
the number of points on the vessel centerlines, with a mean value of
75,000. 4 means the four features for each point: the coordinates along
the x, y and z axes, and the radius at that point.

3.2.3. Dataset preparation for GNN-Vessel

As shown in Fig. 1-H, each vessel centerline tree is defined as a
graph and the voxels of the centerlines are defined as nodes in a graph.
Each node has four features: coordinates (x, y, z) and radius value (R).
The edges exist between two adjacent voxels. The mean number of
nodes is 75 k, with the mean number of edges of 132 k.


https://vessel12.grand-challenge.org/Results
https://vessel12.grand-challenge.org/Results
https://vessel12.grand-challenge.org/Results

J. Jia et al. Computers in Biology and Medicine 182 (2024) 109192
PointNet (simplified) Set abstraction block in PointNet++
(A) (B)
Shared MLP GMP
0x®
—_ - = N
3y + s

£a— ¢ —{ ¢ | o ooy |
£le x A +Citq

X S N

GMP: global max-pooling

Nj, Nj+1: number of points at it" and (i+1 )th layer

K: number of points in a neighborhood ball query —>

Rpar: radius of neighborhood ball Sampling & Shared
D: number of dimensions, 3 (2) for points in 3D (2D) space grouping PointNet
Ci, Cj+1: channel number of it" and (i+1)th layer

Fig. 4. Architecture of PointNet and PointNet++ [24].

3.3. PNN-Vessel design

We designed a point-cloud-based neural network named PNN-Vessel,
which extracts features from 3D point clouds to regress to four PFTs
values. As shown in Fig. 1 (K), it consists of an encoder, a global average
pooling (GAP) layer and a decoder. The decoder consists of two FC
layers with 1024 channels for each of them. The encoder consists of
two set abstraction blocks. The details of the set abstraction blocks
are shown in Fig. 4. The ith set abstraction take an input point cloud
of size N; x (D + C;), representing N; points with D-dim coordinates
and C;-dim feature for each point. It first subsamples N,,; points by
a farthest point sampling (FPS) strategy [19]. With the N, points as
the center, N,,, groups of point sets were extracted and each group
included K neighboring points. The N,,; groups of point sets were
then passed to a shared PointNet, resulting in N;,; points with D-dim
coordinates and C,,;-dim features. Therefore, after a set abstraction
block, the number of points was decreased from N; to N, ; while the
number of features was increased from C; to C,, . Finally, features from
the last set abstraction layer are passed into a GAP layer that combines
point features followed by two FC layers that output four PFTs values.
Inspired by PointNeXt, we successively tuned the hyper-parameters to
achieve the optimal combination of hyper-parameters.

3.4. GNN-Vessel design

Although the point cloud format offers detailed information about
the structure of the pulmonary vessels, they do not leverage connectiv-
ity information, an aspect relevant to the tree hierarchy of pulmonary
vessels. In the vessel centerlines, points that are physically close to each
do not necessarily belong to the same vessel. To utilize the connectivity
information, we built a dataset using graphs of vessel centerlines (see
Section 3.2) and trained the graph neural networks to estimate PFTs.
The structure of our designed GNN-Vessel is shown in Fig. 1 (L). It
consists of an encoder, a global average pooling (GAP) layer and a
decoder. The decoder consists of two FC layers with 1024 channels
for each of them. The encoder consists of two graph convolution
network (GCN) blocks. Each GCN block includes one graph attention
convolution (GATConv) layer [32], followed by ReLU activation and
instance normalization (IN) layers. The graph attention network (GAT)
is a combination of a graph neural network and an attention layer.
The attention layer helps focusing to the important information from
the data instead of global data. As shown in Fig. 5, the GATConv

layer consists of a shared MLP, an attention calculation block and a
aggregation block, which correspond to the following equations:

x| = F(x") 1
a;; = softmax;(ReLU(x; || X;) - w) 2)
=Sy ) ®

where x", x/, and x? are the input, intermediate and output features of
node i. F(-) represents the MLP layer which is shared by all nodes. «;; is
the attention weight between node i and ;. || denotes the concatenation
operation. N; is the neighborhood of node i in the graph (see Fig. 5).

3.5. Combination of different networks

After we developed PNN-Vessel and GNN-Vessel, it is of great
interest to see if the combination of different networks could result in
better performance. We proposed two methods to verify this.

In the first method, we developed a combined network (see Fig. 6)
which consists of several different encoders, corresponding to the pre-
trained feature extractors for different data formats, and one decoder,
which consists of two FC layers. A GAP layer, standardization layer
and concatenation layer were used to fuse the features from different
encoders. Because of GPU memory limitation, CNN-CT and CNN-Vessel
could not be in the encoder at the same time. Given that all image
information of vessel has already been included in CT, we chose to
exclude CNN-Vessel from the combined network. The three encoders
were initialized with the weights from the trained single CNN-CT, PNN-
Vessel and GNN-Vessel, separately. The FC layers were initialized from
scratch. The whole combined network was trained by 100 epochs with
learning rate of 1le-4 and batch size of 1.

In the second method, we performed multiple variable regression
analysis to evaluate if the vessel based networks could contribute fur-
ther to the estimation of PFTs, in addition to the estimation of CNN-CT.
Multiple variable stepwise linear regression (a statistical technique used
to measure the impacts of several explanatory variables on a dependent
variable) was performed with DLCO as the dependent variable and
the estimated DLCO from CNN-CT, CNN-Vessel, PNN-Vessel and GNN-
Vessel as independent variables. We performed the same analyses for
FEV,, FVC and TLC as dependent variables.
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Fig. 5. Illustration of the graph attention convolution (GAT) layer [32]. Different colors correspond to different nodes. The feature vector of each node is shown next to the node

with the same color.
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Fig. 6. Illustration of the combined network. Global average pooling (GAP) was
performed on the features from different extractors. After that, these features become
1-dimension vectors. Each of them were then performed instance normalization (IN)
before concatenation (Conc.). The concatenated 1-dimension features were then fed
into two fully-connected (FC) layers.

3.6. Evaluation metrics and statistical analysis

We used various metrics to evaluate the agreement between our
network output and measured values (from spirometry). The mean
absolute error (MAE) was used to reflect the absolute agreement. Since
the unit and scale of the four PFTs are different, we also used the mean
absolute percentage error (MAPE), which is the ratio of MAE to the real
measurements, to reflect the relative uncertainty of prediction. MAE
and MAPE were calculated as follows:

n
1 ~
MAE =~ 3" |, - . )

i=1

n

100%
MAPE =
P>

i=1 !

Y, -7

()

where i € N is the index of samples, N represents the total number of
samples, )7, is the network’s estimated value, and Y; the measured PFTs
value.

We used the Pearson correlation coefficient (R) to indicate the linear
correlation. The coefficient R can be interpreted as negligible (R < 0.1),
weak (0.1 to 0.39), moderate (0.4 to 0.69), strong (0.7 to 0.89) or very
strong (over 0.9) [37]. We also used the intra-class correlation coeffi-
cient (ICC) as a measure of reliability, which represents not only the
linear correlation, but also the absolute agreement. ICC was calculated
by Pingouin 0.4.0 [38] based on a single-rating, absolute-agreement,
2-way mixed-effects model [24]. ICC values can be explained as poor
(below 0.5), moderate (between 0.5 and 0.75), good (between 0.75 and
0.9) and excellent (above 0.9) reliability [39]. Bland-Altman plots were
used to analyze the mean differences (bias) and limits of agreement.
These statistical analyses were performed by an in-house python 3.8
script with corresponding libraries. All the following experiment results
are based on four-fold cross-validation unless otherwise stated. The
multi-variable step-wise linear regression provide the extra regression
performance on the hold-out testing dataset.

4. Experiments and results

We conducted three sets of experiments to explore: El. training
strategies and hyper-parameters for PNN-Vessel, E2. training strategies
and hyper-parameters for GNN-Vessel and E3. strategies to combine
different networks.

4.1. Experimental settings

Our neural networks were implemented using PyTorch 1.11.0
(https://pytorch.org). Mixed-precision [40] was applied during training
to minimize the occupation of GPU memory and accelerate training.
The loss function was the mean squared error (MSE):

MSE = 2 Y v, - 72, ©)
nia

where i € N is the index of samples, Y; is the vector of measured
PFTs, ¥, is the vector of predicted PFTs. The Adam optimizer was used
with 100 epochs. Multiprocessing was used to accelerate on-the-fly
data augmentation. The workstation for training and validation was
equipped with an Intel(R) Xeon(R) CPU Gold 2.6 GHz with 90 GB mem-
ory and a NVIDIA GPU GeForce RTX 2080TI with 11 GB memory. The
trained networks and source code for network development are pub-
licly available at https://github.com/Jingnan-Jia/PFT regression for
the convenience of reproducing our method, applying our model to
other datasets or using our model as a pre-trained model for other tasks.

4.2. E1: Training strategies and hyper-parameters for PNN-Vessel

Because this is the first work on point cloud based network for PFT
estimation, it is unclear what are the optimal training strategy and
data augmentation techniques. As we mentioned in Section 3.3, instead
of inventing a new network architecture, we adopted PointNet++ as
the backbone of PNN-Vessel and explored the best combination of
different hyper-parameters and data augmentation techniques. Inspired
by PointNeXt, the explored techniques include (see Table 1):

» Random scaling (+10%). A method for data augmentation, which
randomly scales the coordinates of the whole point cloud by a
factor in +10%.

Random shifting (+3 mm). A method for data augmentation,
which randomly shifts the coordinates of the whole point cloud
within 3 mm.

L2 Loss regularization (0.01) [41]. It stabilizes training by
reducing the sum of the squares of the trainable parameters. The
equation of the loss function after the introduction of L2 Loss
regularization with weight of 0.01 is

N

L=MSE+001) w?, )
i=1

where M SE is the original loss function of PNN-Vessel, N is

the number of trainable parameters, and w; is the weight of ith

parameter, 0.01 is the weight of L2 loss regularization.
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Table 1
Hyper-parameter optimization results for PNN-Vessel based on four-fold cross-validation.
Techniques ICC AICC*  Decision”
DLCO FEV, FVC TLC
Baseline® 0.379 0.427 0.473 0.449 v
+ Random scaling (+10%) 0.266 0.301 0.368 0.344 -0.112 X
+ Random shifting (+3 mm) 0.378 0.450 0.439 0.445 -0.004 X
+ L2 Loss regularization (0.01) 0.331 0.455 0.446 0.420 -0.015 X
+ CCNorm 0.395 0.483 0.540 0.562 +0.062 v
Input points - 56 K 0.456 0.585 0.640 0.652 +0.089 v
R, — 40 mm 0.520 0.602 0.652 0.693 +0.034
LR decay — Cosine 0.531 0.583 0.630 0.664 -0.015 X
Optimizer —» AdamW 0.544 0.610 0.683 0.726 +0.024 v/

a AICC: Average change of ICC, comparing to the previous best performance.

b Decision: Include the technique (v) in the following experiments if 4 ICC > 0; exclude
the technique (X) if 4 ICC < 0.

¢ Baseline: batch size is 20; Number of input points is 7 K; R,,, is 10; Optimizer is
Adam.

Coordinate center normalization (CCNorm). A method for data
augmentation, which makes the mean of the coordinates of the
whole point be zero. The equation of CCNorm is

Yym=Y -Y ®)

where Y represents the original coordinates, and Y is the mean
of coordinates.

Tuning the number of input points. As we mentioned at the
end of Section 3.2, the number of points for different samples
are different. To align input data, we randomly selected a fixed
number (N; in Fig. 4) of points for each patient to feed PNN-
Vessel for each training iteration. For points less than N;, some
points of the patient were repeatedly sampled. Higher number of
input points means more detailed vessel information.

Tuning the radius of neighboring query balls [19]. As shown
in Fig. 4, increasing R,,; could increase the receptive field for
each set abstraction layer. The principle of tuning R,,;, for PNNs
is just like adjusting the kernel size for CNNs.

Cosine learning rate (LR) decay [42]. LR is decayed with a
cosine annealing for each batch.

AdamW optimizer [43]. It was reported to perform better opti-
mization than Adam Optimizer [43].

We did not explore the influence of jittering or label smoothing,
which were used in PointNeXt [24], because jittering would destroy
the continuity of blood vessels and label smoothing is for classification
tasks instead of our PFTs regression tasks.

Table 1 shows the influence of the different parameters. The tech-
niques improving the PNN-Vessel performance included using CCNorm,
increasing the number of input points from 7 K to 56 K, increasing
Ry, from 10 mm to 40 mm, and replacing optimizer Adam with
a new optimizer AdamW. The techniques that do not improve PNN-
Vessel performance included random scaling (+10%), random shifting
(+3 mm), L2 Loss regularization (0.01), cosine LR decay. Fig. 7 shows
the scatter plot and Bland-Altman plot of the final optimal network. The
output of PNN-Vessel shows moderate correlation with DLCO and FEV,
(R=0.57 and 0.65) and strong correlation with FVC and TLC (R=0.71
and 0.74). The mean differences for all PFTs (0.03, 0.07, 0.09 and 0.01)
are close to 0, indicating that there is no systematic bias between the
estimated and measured PFTs.

When we compare the PFT estimation performance between CNN-
Vessel (Table 2-i) and PNN-Vessel (Table 2-v), the ICC values of four
PFTs were improved from 0.51, 0.52, 0.59 and 0.62 to 0.54, 0.61,
0.68 and 0.73, respectively. Nevertheless, because they have different
network structures and different numbers of input points, it is not clear
whether such an improvement is due to different network design or
different input resolutions. Therefore, we conducted a series of experi-
ments with the number of input vessel points gradually increasing from

Computers in Biology and Medicine 182 (2024) 109192

7 K to 70 K (higher number of input points means higher resolution
and more details of vessels). The results are shown in Table 2 (higher
numbers than 70 K were not applied because of GPU memory limi-
tation). When we gradually increase the number of input points from
7 K to 56 K, the PFT estimation performance is gradually increasing
as well. When we increased the number of input points from 56 K
to 70 K, the network did not show significant improvements anymore
(DLCO and FVC predictions improved slightly while predictions for
FEV; and TLC slightly decreased). When we compare Table 2-i and ii,
we found that given the similar number of input vessel points, CNN-
Vessel performed better than PNN-Vessel. However, when the number
of points was increased gradually, the accuracy of PNN-Vessel grew
steadily and finally outperformed CNN-Vessel.

4.3. E2: Training strategies and hyper-parameters for GNN-Vessel

Since training GNN is much faster than PNN-Vessel, we used Op-
tuna (https://optuna.org) to automatically search the optimal hyper-
parameters for GNN-Vessel. The search algorithm was set to Tree-
structured Parzen Estimator (TPE) [44], which was reported to outper-
form both manual and random search algorithms. The hyper-parameters
that may influence the performance of GNN-Vessel include learning
rate, batch size, number of convolution layer, convolution kernel and
normalization method. Possible data augmentation techniques include
random scaling, random shifting and random sampling. Random scaling
or shifting has already reported not to improve the PFT estimation
performance (see Table 1). Random sampling (e.g. sampling 56 K
nodes from the whole graph) would take substantially longer time,
because each sampling of points require the re-indexing of remaining
edges. Therefore, we decided not to introduce data augmentation
techniques for GNN-Vessel. Therefore, the search space for possible
hyper-parameters are shown in Table 3. The hyper-parameter search
stopped after 100 search iterations. We selected some intermediate
results to show the influence of different hyper-parameters in Table 4.
The best PFT estimation performance was achieved by increasing the
batch size from 8 to 32, increasing hidden channels from 32 to 128,
increasing convolution layers from 1 to 2, increasing learning rate from
le-3 to le-4, changing the normalization layer from batch normal-
ization to instance normalization [45] and changing the convolution
kernel from GCNConv to GATConv layer [32]. Fig. 8 shows the scatter
plot and Bland-Altman plot of the final optimal GNN-Vessel. The output
of GNN-Vessel shows moderate correlation with DLCO, FEV,, FVC and
TLC (R=0.54, 0.58, 0.62 and 0.68).

4.4. E3: Combination of different networks

The comparison of different networks proposed in this work (PNN-
Vessel and GNN-Vessel) and existing methods (CNN-CT and CNN-
Vessel) are shown in Table 5. CNN-CT and CNN-Vessel used the same
training time (3.7 h) and have the same trainable parameters (30.1 M).
This is because they have the same network design and input sizes.
Compared to CNN-Vessel, PNN-Vessel used about 30% training time
(1.1 h) and 7% parameters (2.1 M). GNN-Vessel used 7% training time
(only 0.25 h) and 0.7% parameters (0.2 M). Notably, although GNN-
Vessel receive additional edge information, its performance is worse
than PNN-Vessel. Nevertheless, both PNN-Vessel and GNN-Vessel out-
performed CNN-Vessel, by 14% and 4%, respectively, when averaged
across the ICC scores of four PFTs metrics.

Table 6 shows the results of the combined network with different
feature extractors. It shows that leaving out GNN-Vessel could achieve
better performance than leaving out PNN-Vessel, which indicates the
PNN-Vessel contributes more than GNN-Vessel. Although none of the
combined networks outperformed the individual CNN-CT in Table 5 on
the average ICC or R values. Most of the MAE values of the combined
networks were lower than the counterparts in the individual CNN-CT
in Table 5.
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deviation of the differences).
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Table 2

Influence of number of points in PNN-Vessel based on four-fold cross-validation.
Experiment Network Input Training Params. GPU memory ICC

points (K) time (h) ) (GB) DLCO FEV, FVC TLC

i CNN-Vessel — ~ 7* 4.4 30.2 10.2 0.510 0.524 0.593  0.622
i PNN-Vessel 7 1.8 2.1 2.6 0.245 0.373 0.488  0.578
iii PNN-Vessel 14 2.0 2.1 3.4 0.314 0.482 0.577  0.608
iv PNN-Vessel 28 2.7 2.1 5.1 0.484 0.513 0.602  0.664
v PNN-Vessel 56 4.0 2.1 8.8 0.544 0.610 0.683 0.726
vi PNN-Vessel 70 4.2 2.1 10.8 0.550 0.602 0.694  0.720

* Average number of voxels for each down-sampled vessel image.
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Table 3
Hyper-parameter search space setting for GNN-Vessel. Bold values were finally selected
after hyper-parameter search.

Hyper-parameters Search space (candidate values)

Learning rate le-3, 1le-4

Batch size 8, 16, 32, 64

Hidden channels 32, 64, 128, 256

Convolution layers 1,2,3 4

Convolution kernel ChebConv [30], GINConv [29], GCNConv [27], GATConv
[32],

SGConv [26], GraphConv [28]

Normalization BatchNorm [46], InstanceNorm [45], LayerNorm [47],
GraphNorm [48],
DiffGroupNorm [25]
Table 4

Hyper-parameter optimization process for GNN-Vessel based on four-fold cross-
validation.

Techniques ICC AICC
DLCO FEV, FVC TLC

Baseline? 0.431 0.480 0.504 0.525

Batch size — 32 0.441 0.467 0.503 0.563 +0.009
Hidden channels — 128 0.478 0.511 0.510 0.591 +0.029
Convolution layers — 2 0.493 0.490 0.522 0.606 +0.005
Normalization — InstanceNorm 0.482 0.508 0.536 0.616 +0.008
Convolution kernel - GATConv 0.515 0.520 0.566 0.635 +0.024
Learning rate — le-3 0.521 0.550 0.601 0.657 +0.023

2 Baseline hyper-parameters: learning rate of le—4, batch size of 8, hidden channels
of 32, 1 GCNConv layer, and Batch normalization.
b AICC: Average change of ICC, comparing to the previous best performance.

Multivariable step-wise linear regression was performed via four-
fold cross-validation dataset with DLCO as the dependent variable and
the estimated DLCO from CNN-CT, CNN-Vessel, PNN-Vessel and GNN-
Vessel as independent variables. We performed similar analyses for
FEV;, FVC and TLC (Table 7). The results in Table 7 showed that
CNN-CT always performed the best among the four networks. The
inclusion of CNN-Vessel could not improve the PFT estimation accuracy
significantly (this is why it was not in Table 7). The inclusion of
PNN-Vessel significantly improved the performance for all measures,
while the additional inclusion of GNN-Vessel further improved the
performance for DLCO and TLC. After we obtained regression equations
from validation dataset, we applied them to the separate testing dataset
(see Table 7). The testing performance shows the similar tendency
with validation performance. We can also observe that the CNN-CT
was always assigned the highest weights, followed by PNN-Vessel and
GNN-Vessel. This indicates that CNN-CT contributes the most to PFT
estimation, PNN-Vessel contributes less, and GNN-Vessel contributes
the least.

5. Discussion

The value of binary vessel masks in estimating PFTs were prelim-
inary verified in the literature by a manually designed method [11]
and a CNN-based automatic method [8]. The estimation accuracy of the
previous state-of-the-art CNN-based method was assumed to be (partly)
limited by down-sampled vessels because of the GPU limitation. These
finding and hypothesis motivated our research to use PNN and GNN
to achieve higher estimation accuracy by utilizing higher-resolution
vessels. In this paper, we converted high-resolution binary pulmonary
vessels to point cloud and graph data, then proposed PNN-Vessel and
GNN-Vessel to estimate PFTs based on these two datasets, respectively.
After applying proper training strategies and hyper-parameters, both of
them showed considerable improvement compared to the existing CNN-
Vessel model, which was trained on low-resolution grids containing
vessel masks.
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Random scaling (+10%) decreased the accuracy of the PFT es-
timation significantly (see Section 4.2). This finding is contrary to
the finding in PointNeXt [24]. This is because the tasks in [24] are
independent on the scale of the point cloud data, while PFT estimation
is dependent on the scale of lung vessels. Larger vessel trees normally
represent larger lung sizes, which is directly related to higher PFT
values [52].

When we compare Table 2-i and ii, CNN-Vessel achieved better
performance than PNN-Vessel given a similar number of input points
(7 K). However, when we gradually increased the number of input
points for each point cloud data, the PFT estimation performance of
PNN-Vessel gradually increased and finally outperformed CNN-Vessel
(Table 2-i) using the same GPU (11 GB in RTX2080Ti). It verified
our assumption that more detailed vessel information leads to better
PFT estimation performance. However, when the number of input
points was increased from 56 K to 70 K (GPU memory increased from
8.8 GB to 10.8 GB, almost reaching the GPU limit of 11 GB), not all
estimations of the four PFTs increased anymore. This may suggest that
56 K points already include enough vessel details to estimate PFTs.
Therefore, contrary to CNN-Vessel, PNN-Vessel, which uses only 2.1
MB trainable parameters, is able to receive high-resolution vessels and
extract valuable features from them.

Although graph data include additional edge information compared
to point cloud data, the GNN-Vessel performed worse than PNN-Vessel.
One possible reason is their network structures differ, which leads to
different learning capacities. Another reason may be because the train-
ing set of point cloud data for PNN-Vessel was augmented by random
shuffling and sampling, while GNN-Vessel applied no augmentation.
It means that PNN-Vessel was trained by numerous different samples,
while GNN-Vessel was trained by limited number of different samples.
The third reason may be because the pulmonary vessels used in this
work were segmented by an automated graph-cut based method [35].
Thus, any imperfections in the segmentation would be amplified in
graphs, due to imperfect connectivity. Since point clouds do not contain
this explicit connectivity, PNN-Vessel may be able to deal with these
imperfections.

Under the current network combination setting, the combined net-
works did not show significantly better performance than the single
CNN-CT on the average ICC or R values. This may be because the
training of different networks requires different learning rates, batch
sizes, etc. For instance, we set batch size to 1 and learning rate to
le-4 for the combined networks, while the optimal batch size for
individual CNN-CT, PNN-Vessel and GNN-Vessel is 1, 20 and 32, re-
spectively (the training of individual PNN-Vessel and GNN-Vessel could
not be converged with batch size of 1) and the optimal learning rate
is le-4, le-3, 1e-3, respectively (CNN-CT with learning rate of le-3
would encounter exploding gradients during training). Such conflicts
of hyper-parameters may negatively affect the training of combined
networks.

From the multi-variable step-wise regression analysis, we found
that by including PNN-Vessel and GNN-Vessel, the estimation of all
PFTs could be significantly improved to different extents. It verifies
our assumption that more detailed vessel information could provide
more explanation of PFTs. It is worth noting that the inclusion of
CNN-Vessel did not improve the estimation performance of PFTs. This
may be because that the information of 3D grid vessels are already
included in the 3D CT images. The reason why simple multi-variable
linear regression perform better than complex combined network may
be that the combined network has too many features to learn. Although
the features before FC layers are extracted by different networks, these
features are all extracted from vessels or CT images containing vessels.
Therefore, there may be a great number of repeated or similar features
which increase the learning difficulty of combined networks.

PFT estimation is a topic that few researchers have explored. To the
best of our knowledge, there are only three published works [4,8,13]
for PFT estimation from chest CT (see Table 8). Two of them [4,13]
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Table 5

PFT estimation performance comparison based on four-fold cross-validation between different networks.
Network Training Params. ICC R MAE

time (h) (M) DLCO FEV, FvC TLC DLCO FEV, FvC TLC DLCO FEV, FvC TLC

CNN-CT 3.7 30.1 0.708 0.756 0.803 0.809 0.712 0.771 0.831 0.824 1.044 0.411 0.490 0.630
CNN-Vessel 3.7 30.1 0.512 0524 0.589 0.615 0.568 0.545 0.641 0.680 1.201 0.515 0.621 0.764
PNN-Vessel 1.1 2.1 0.544 0.610 0.683 0.726 0.568 0.645 0.710 0.741 1.153 0.448 0.539 0.672
GNN-Vessel 0.3 0.2 0.521 0.550 0.601 0.657 0.544 0579 0.617 0.676 1.241 0.490 0.593 0.715

Table 6

Ablation study for PFT estimation performance of combined network with different feature extractors based on four-fold cross-validation.
Feature extractor ICC R MAE
CNN-CT PNN-Vessel GNN-Vessel DLCO FEV, FVC TLC DLCO FEV; FvC TLC DLCO FEV; FvC TLC
4 v 0.711 0.756 0.789 0.772 0.731 0.781 0.802 0.792 0.989 0.345 0.424 0.578
4 4 0.689 0.716 0.756 0.760 0.701 0.774 0.815 0.812 1.023 0.350 0.433 0.534
v v 4 0.671 0.718 0.746 0.768 0.714 0.779 0.810 0.821 1.011 0.355 0.434 0.520

Table 7

Multivariable stepwise linear regression analysis results on four-fold cross-validation and testing datasets. Numbers in bold
indicates the best results for the corresponding PFTs.

PFTs Weights of networks Cross-validation dataset Testing dataset
CNN-CT PNN-Vessel ~ GNN-Vessel R ICC MAE R ICC MAE
1 0.712 0.708 1.044 0.751 0.726 1.012
DLCO 0.754 0.246 0.730 0.717 0.977 0.782 0.764 0.967
0.672 0.105 0.223 0.750 0.732 0.967 0.756 0.748 0.988
FEV 1 0.771 0.756 0.411 0.735 0.728 0.511
! 0.641 0.359 0.792 0.767 0.334  0.760 0.742 0.470
FVC 1 0.831 0.803 0.490 0.821 0.801 0.480
0.642 0.358 0.842 0.825 0.378  0.827 0.836 0.374
1 0.824 0.809 0.630 0.827 0.801 0.600
TLC 0.504 0.496 0.840 0.832 0.489 0.828 0.787 0.625
0.455 0.387 0.158 0.845 0.837 0.478  0.851 0.835 0.489

Table 8
Comparison between our method (combination of three networks based on multivariable linear regression results) and previous automatic methods for
the estimation on PFTs. Because previous methods did not estimate DLCO and TLC, the corresponding results are not included.

Method Study population  Backbone #Subjects MAE R

DLCO FEV, FvC TLC DLCO FEV; FVC TLC
[4] Lung cancer CNN (ResNet) [49] 546 - 0.329 0.370 - - 0.729 0.822 -
[13] Lung cancer risk CNN (I3D) [50] 16148 - 0.220 0.220 - - - - -
CNN-CT [8]  SSc CNN (X3D) [51] 316 1.012 0.511 0.480 0.600 0.751  0.735 0.821 0.827
Our method  SSc CNN, PNN, GNN 316 0.988 0.470 0.374 0.489 0.756  0.760 0.827 0.851

are for patients with (the risk of) lung cancer and only FEV,; and FVC There are some limitations to our research. The first limitation is

were estimated in the two works. The other one [8] is for patients with
SSc, and it estimated four PFTs using a CNN (X3D) network. These
three works used different kinds of CNNs (ResNet [7], I3D [9] and
X3D [10] respectively) as the backbones. None of them proposed new
networks as well. Compared to them, we are the first to estimate PFTs
using PNN and GNN instead of CNN. Our method is also the first work
which combined CNN, PNN and GNN together and achieved the better
performance than CNN [8] alone. The comparison between our method
and CNN-CT [8] is fair because we used the same dataset. However, the
results of [4,13] are for reference only, since they are based on different
datasets sizes, networks and diseases. Nevertheless, compared with the
previous works which, our work estimates a more comprehensive set
of PFT measurements for SSc patients with higher accuracy, rendering
it more clinically relevant for SSC patients, that is likely of additional
clinical value.

Our work may also provide a general solution to overcome the high
GPU memory requirement in deep learning. By segmenting the objects
of interest and then converting the results to point cloud or graph data
type, higher prediction accuracy may be achieved using PNN, GNN or
their combination.

10

that, in order to use automatic hyper-parameter search tool (Optuna),
we did not apply data augmentation for GNN-Vessel. This may limit its
performance. In the future, we will explore the efficient data augmen-
tation methods for GNN-Vessel. Another limitation is that this paper
explored the influence of three modalities (CT, point cloud and graph).
If more image modalities are available in the future, we can explore
the potential scalability of our methods on other modalities.

6. Conclusion

In this paper, we skeletonized pulmonary vessels and proposed
PNN-Vessel and GNN-Vessel to estimate PFTs from point cloud and
graph-based dataset, respectively. Compared with CNN-Vessel, which
was developed based on 3D grid images, PNN-Vessel achieved signif-
icantly better performance with shorter training time and GNN-Vessel
achieved slightly better performance with substantially shorter training
time. The proper combination of the three networks (multiple variable
step-wise regression analysis) verified that more detailed vessel infor-
mation could provide more explanation of PFT estimation. We conclude
that the detailed geometry of the vessels aids in the estimation of PFTs.
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