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Visual scoring of interstitial lung disease in systemic sclerosis (SSc-ILD) from CT scans is laborious, 
subjective and time-consuming. This study aims to develop a deep learning framework to automate 
SSc-ILD scoring. The automated framework is a cascade of two neural networks. The first network 
selects the craniocaudal positions of the five scoring levels. Subsequently, for each level, the second 
network estimates the ratio of three patterns to the total lung area: the total extent of disease (TOT), 
ground glass (GG) and reticulation (RET). To overcome the score imbalance in the second network, 
we propose a method to augment the training dataset with synthetic data. To explain the network’s 
output, a heat map method is introduced to highlight the candidate interstitial lung disease regions. 
The explainability of heat maps was evaluated by two human experts and a quantitative method that 
uses the heat map to produce the score. The results show that our framework achieved a κ of 0.66, 
0.58, and 0.65, for the TOT, GG and RET scoring, respectively. Both experts agreed with the heat 
maps in 91%, 90% and 80% of cases, respectively. Therefore, it is feasible to develop a framework for 
automated SSc-ILD scoring, which performs competitively with human experts and provides high-
quality explanations using heat maps. Confirming the model’s generalizability is needed in future 
studies.

Systemic sclerosis (SSc) is a rare autoimmune connective tissue disease affecting different organs with high 
mortality1, of which interstitial lung disease (ILD) is the primary cause2. The extent of interstitial lung disease 
in systemic sclerosis (SSc-ILD) on lung CT images has been identified as an independent predictor of disease 
progression and mortality in patients with SSc3. Quantification of SSc-ILD extent is also needed for treatment 
initiation and evaluation of its efficacy2. Several scoring systems have been proposed to quantify SSc-ILD from 
chest CT scans4and the most useful and commonly used quantitative method in the clinical setting is proposed 
by Goh and colleagues4,5. In this scoring system, CT images are scored in five axial slices, corresponding to 
levels of: a) origin of the great vessels; b) main carina; c) pulmonary venous confluence; d) halfway between the 
third and fifth level; e) 1 cm above the right hemi-diaphragm5. At each level, three visual scores are estimated 
as the percentage of total lung area that is covered by: total disease extent (TOT), ground-glass opacities (GG) 
and reticular patterns (RET), as shown in Figure 1. TOT area is the union of the areas from GG and RET, 
making TOT scores less than or equal to the sum of GG and RET scores. Each of these scores is used in risk 
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stratification, where TOT and RET are associated with mortality5, while GG can differentiate SSc-ILD from 
idiopathic pulmonary ILD6.

Nonetheless, visual scoring remains a challenging task, because of difficulties in recognizing different 
patterns and estimating its ratio to the whole lung. From Figure 1it is conceivable how difficult it is to identify 
different patterns and estimate their ratios for each level, especially when GG and RET overlap. Therefore, an 
atlas was published to provide a guiding consensus document to reduce inter-observer variability7. Despite this, 
ILD scoring is still laborious and dependent on rater experience. Therefore, an automatic scoring tool is needed 
to overcome these limitations8,9and to make the scoring available for clinical practice. An automated scoring tool 
would consist of two steps: 1) selecting the five levels (axial CT slices) according to anatomical landmarks; and 2) 
estimating the score for each selected slice by recognizing the different patterns and estimating their proportion 
to the total lung area. Recently, deep neural networks have been proposed for anatomical level localization10and 
quantification of imaging features3,11,12, which are closely related to the two steps needed for automated ILD 
scoring. While several methods combined the two steps together to estimate other imaging biomarkers13–16, 
there are few published works applied on SSc-ILD scoring.

The purpose of this study was, therefore, to build a fully automated framework to select the five anatomical 
levels and score the extent of SSc-ILD for each level directly, without needing manual segmentations. The main 
contributions of this paper are as follows:

• To the best of our knowledge, we are the first to propose an automated framework for SSc-ILD scoring with-
out pixel-wise fibrosis annotation.

• We introduced a data synthesis method to generate training images with exact SSc-ILD scores, leading to 
significant improvement in the SSc-ILD scoring.

• We proposed replacement-based heat maps, which can visually explain the network’s output, making the 
framework more easily acceptable for clinicians. The reliability of heat maps was evaluated by an automatic 
evaluation method and by two human experts.

• Our framework performed competitively to experienced human experts, while costing only several seconds.

Fig. 1. Illustration of five levels in the same CT volume from one patient of systemic sclerosis. Interstitial lung 
disease scores from human experts are annotated on the top of each image. The level numbers are annotated at 
the bottom. TOT = total disease extent, GG = ground glass opacity, RET = reticular pattern.
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Related work
An automated scoring framework may consist of two networks: 1) level selection (i.e. localization) from 3D 
medical images; and 2) scoring of the resulting 2D image slices. This section therefore reviews related studies of 
these two topics and their application on SSc-ILD.

Automated level selection
Existing methods show that, despite trained on global image-level labels, convolution neural networks (CNNs) 
have a remarkable ability to localize objects-of-interest17. Level selection aims to localize the anatomical level or 
anatomical landmarks4,5 from 3D CT images. In recent years, there are a great number of works on landmark 
localization in 3D medical images (see Table 1), e.g. localization of the upper and lower edge of lungs18in chest CT 
images, the lumbar vertebra10,19,20in spine CT images, the anatomical landmarks in cardiac ultrasound images21, 
anatomical structure localization in CT images22,23, probe localization in liver CT images17. The network design 
of these works all consist of a feature extractor followed by several fully connected layers. The feature extractors 
consist of several CNN blocks (a CNN layer, a normalization layer and an activation layer) with residual 
connections20. Although these works are all developed for non-SSc patients, the success of regression networks 
on the aforementioned works shows its potential on level selection of SSc patients.

Automated scoring
A large number of deep neural networks has been proposed for scoring tasks in general medical imaging, which 
were not focused on scoring SSc-ILD. An indirect method is to develop a segmentation network and score 
images based on lesion segmentation results, such as idiopathic pulmonary fibrosis24. The limitation of such 
an indirect scoring method is that it requires pixel-wise segmentation labels. A direct method is to develop 
a network to output the score directly without any segmentation. If the scoring output contains less than 5 
categories, researchers usually treat it as a classification task, such as Gleason scoring of prostate cancer in 
histopathology images25–27, grading of ulcerative colitis in endoscopic images28, grading of abnormalities in 
knee MRI29, diabetic retinopathy grading in eye fundus images30, osteoarthritis severity grading in knee MRI31, 
fibrosis estimation32. When the scoring is a real (floating point) number or contains more than 5 categories, 
regression neural networks are preferred, e.g. Agatston scoring in chest CT images33, ventricle function indices 
estimation in ultrasound images34, coronary calcium scoring in chest CT scans35,36, bone mineral density (BMD) 
and the estimation of percentage of lung emphysema from CT scans37. Because we aimed to estimate the ratio 
of fibrosis to the total lung area without segmentation, a regression neural network was adopted in our work.

Automated scoring for SSc-ILD
To the best of our knowledge, there are no automated level selection methods published for SSc scoring. In 
addition, there are only two automated scoring frameworks developed for SSc patients (see Table 1). Chassagnon 
et al3. developed networks, which could output the fibrosis areas and severity quantification for SSc patients. 
However, their work used segmentation networks to output the pixel labels as a basis for computing the final 
biomarkers, which is time-consuming and requires laborious manual pixel-wise annotations for training. Since 
pixel-wise annotations for GG and RET are even more difficult to obtain due to unclear boundaries between the 
two patterns, only TOT patterns have been segmented to assess SSc-ILD. In contrast to only segmenting TOT 
pattern, Su et al38. developed a severity scoring model for connective tissue disease associated ILD (CTD-ILD, 
including SSc-ILD) that could segment GG, RET and honeycombing patterns, separately. This also requires 

Patients Task Network Target Dataset

Non-SSc Localization Regression Lung upper and lower edge18 Chest CT

Lumbar vertebra20 Spine CT

Anatomical structures23 Body CT

Anatomical plane landmarks21 Cardiac ultrasound

Probe localization17 Liver CT

Scoring Segmentation Idiopathic pulmonary fibrosis24 Chest CT

Classification Grading of ulcerative colitis28 Endoscopic

Grading of abnormalitie29 Knee MRI

Diabetic retinopathy grading30 Eye fundus

Osteoarthritis severity grading31 Knee MRI

FIbrosis estiation32 Chest CT

Regression Ventricle function indices34 Cardiac ultrasound

Coronary calcium scoring35,36 Chest CT

Percentage emphysema37 Chest CT

Agatston scoring33 Chest CT

SSc included Scoring Segmentation SSc-ILD assessing3 Chest CT

CTD-ILD assessing38 Chest CT

Table 1. Summary of related works for automated scoring frameworks on medical imaging.
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laborious pixel-wise annotations. As far as we know, there are no published methods on automated scoring of 
SSc-ILD without the need for pixel-wise fibrosis annotations.

Materials and methods
The proposed two-step framework is shown in Figure 2. A level selection network (L-Net) selects the five 
anatomical levels from the input 3D CT scans. Subsequently, five 2D slices were selected according to the five 
level positions and an SSc-ILD scoring network (S-Net) estimates three scores (TOT, GG and RET) for each 
input 2D slice.

Dataset
The dataset was collected retrospectively and consisted of de-identified high-resolution CT scans of 230 patients 
suspected of SSc, who were referred to our multidisciplinary healthcare program39 for suspected SSc (Table 2). 
The CT scans were performed with an Aquilion 64 scanner (Canon Medical Systems), with 120 kVp, median tube 
current 140 mA, median CTDIvol 8.2 mGy, rotation time 0.4 seconds, collimation 64× 0.5mm and 0.8 helical 
beam pitch40. Images were reconstructed with filtered back projection and using an FC86 kernel, 0.64× 0.64 
mm median pixel spacing, and a slice thickness and increment of 0.5 and 0.3 mm, respectively. Approval of all 
ethical and experimental procedures and protocols was granted by the Institutional Review Board of the LUMC 
under Protocol Nos. P09.003/SH/sh, REU 036/SH/sh, REU 043/SH/sh, and B19.008/KB/kb. All patients have 
given informed consent for the use of data in this prospective Combined Care in Systemic Sclerosis (CCISS) 
cohort study. All methods have been performed in accordance with the relevant guidelines and regulations. CT 
data were accessed for this retrospective study on 18-03-2021. The data was anonymized previously, therefore 
there was no access to data that could identify individual participants during or after data collection. The dataset 
was randomly split into two disjoint groups with 180 and 50 patients for training and testing, respectively. The 
180 training patients were randomly divided into four groups of equal size for four-fold cross-validation (45 
patients for validation in each fold).

Before training the L-Net, all CT scans were resized to a fixed size of 256× 256× 256-pixel matrix. After 
resizing, the pixel spacing along the x and yaxis was 1.26 mm. The average spacing along the z-axis was 1.2 mm. 
CT values were truncated between -1500 HU and 1500 HU. The world positions of five levels for each CT scan 
were manually selected by a rheumatologist (Observer-A, 5-year experience) and a radiologist (Observer-B, 20-

Characteristic
Patients, 
(n=230)

Age [years] (standard deviation) 54 (14.0)

Female (%) 191 (83.0)

Interstitial lung disease detected on CT (%) 96 (41.7)

Anti-centromere antibodies positive (%) 88 (38.3)

Anti-topoisomerase antibodies positive (%) 56 (24.3)

Pulmonary arterial hypertension (%) 8 (3.5)

Disease Subset:

 Non-cutaneous (%) 29 (12.6)

 Diffuse cutaneous (%) 62 (27.0)

 Limited cutaneous (%) 133 (57.8)

 Alternative diagnosis* (%) 6 (2.6)

Table 2. Dataset properties of patients suspected of systemic sclerosis. ∗Morphea scleroderma, undifferentiated 
connective tissue disease (UCTD), UCTD with Sjögren’s syndrome, puffy fingers without systemic disease, and 
two cases of very early diagnosis of systemic sclerosis (VEDOSS).

 

Fig. 2. Proposed framework for SSc-ILD scoring based on two cascaded neural networks. L-Net outputs five 
values of anatomical levels. S-Net outputs three values for automatic SSc-ILD scoring. TOT = total disease 
extent, GG = ground glass pattern, RET = reticular pattern.
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year experience) in consensus. Subsequently, we converted the world positions of the five levels to relative slice 
numbers in the resampled 3D CT scans (the bottom slice was regarded as number 0, corresponding to the base 
of the lung)41. These slice numbers were used as the ground truth. To increase the image diversity for training 
the L-Net, we randomly cropped patches with a fixed size of 256× 256× 192 (ordered by xyz) on-the-fly during 
training. These patches always covered all five levels and could also be fitted into the GPU memory of 11 GB.

While L-Net was trained and tested using the down-sampled CT volumes, S-Net used the 2D axial slices of 
five levels with the original in-plane resolution (512× 512) from the aforementioned 230 scans. High-resolution 
images include fine spatial details, which can help to distinguish and grade the three fibrosis patterns. All 2D 
slices were scored in consensus by two experts to obtain the ground truth. Additionally, to evaluate inter/intra-
observer agreement 16 patients (80 axial slices) were randomly selected from the testing dataset and the two 
experts scored them independently. Then they independently scored the same 80 axial slices again after six weeks. 
The TOT, GG and RET scores can range from 0% to 100%, and were estimated with a precision of five percent 
(Appendix Figure A1), following the protocol by Goh et al5. To augment our dataset, two neighboring slices 
(above and below the chosen slice of each level) were added for training. Because the spacing of neighboring 
slices is only 0.3 mm, we assumed that these represent the same score. In addition, the 2D training images were 
augmented on the fly by random rotation (±30◦), scale (95% - 105%) and shift (±10 pixels) along the horizontal 
and vertical direction.

After we completed the separate training of L-Net and S-Net, we cascaded them together to build a whole 
framework for inference. The relative slice number prediction from L-Net was converted to absolute physical 
height (mm) in the original CT. We then selected the slice which has the closest distance to the converted 
physical height. This slice (512× 512) was the input to the S-Net to obtain the final score estimation.

Network design
Inspired by10, we experimented with different 3D VGG42 networks as the structure L-Net (Figure 3-A), including 
VGG11, VGG16 and VGG19. Deeper networks like 3D ResNet5043would lead to GPU memory problems with 
the same input patch size, so no deeper networks were tested further. Therefore, VGG11 was finally selected for 
L-Net. As for the S-Net, we evaluated different 2D networks with different capacities including SqueezeNet44, 
VGG11,16, and 1942, ResNet1843, ResNet50, ResNeXt5045, DenseNet46, ShuffleNet47, ConvNeXt48, and finally 
decided to adopt ConvNeXt for S-Net due to its state of the art performance (Figure 3-B). Compared with the 
original VGG11 proposed in42, L-Net extends all convolutional and max-pooling layers from 2D to 3D. The 
feature extractor (convolutional layers) of the S-Net was initialized by pre-trained weights from ImageNet48, 
while the fully connected layers were initialized randomly using a normal distribution. The architecture and 
training details of L-Net and S-Net are shown in Table 3. 

Techniques to overcome label imbalance
From Appendix Figure A1, we could find that the score distribution is highly askew-some high scores even do 
not exist in the training dataset. The noticeable score imbalance with 50% of TOT scores being 0 would limit 
the networks’ performance. Therefore, to ensure a balanced score distribution during training, we developed a 
sampling method that randomly selects training images with a probability inversely proportional to the ratio 
of each TOT score49. In this way, the scores that appear less frequently (i.e. higher scores) would be used for 
training more frequently. To further address the label imbalance and to increase data diversity, we synthesized 
training images with SSc-ILD scores that are lacking in the original dataset, by digitally inserting GG and RET 
patterns into healthy training images.

The flowchart of data synthesis is shown in Figure 4-A. First, we created two patches full of different patterns, 
one for GG and one for RET, by manually extracting local CT patches from training images with high scores in 
these two patterns separately. Subsequently, the healthy training images (TOT=0) were augmented by the digital 
insertion of these patterns. The candidate lesion regions for the pattern insertion were randomly generated by 
defining up to three ellipses with random centers, orientations and axes lengths (lengths range from 1 to 150 
pixels), which were then cropped by the lung mask to ensure the patterns will be inserted in the lung area only. 
The lung mask was automatically generated by a multi-atlas based automatic lung segmentation algorithm50. 
To avoid introducing unrealistic borders during pattern insertion, the inserted patterns gradually fade out at 
the edge, by a Gaussian decay in intensity. To increase the pattern diversity of synthetic data, we always applied 
random rotation (±180◦) and scale (95%-105%) to the patterns before each pattern insertion. The disease 
severity scores were then adapted according to the area of inserted patterns. Some synthetic image examples and 
their scores were shown in Figure 4-B. The synthetic data constitute half of the training dataset, while validation 
and testing were performed on real patient data only. Although some generative models like GANs51or diffusion 
models52 may output more realistic images, however, we did not introduce them in this work because these 
generative models cannot provide precise scores for the generated images. To overcome the label imbalance in 
our small dataset, we need not only synthetic images but also their corresponding ground truth scores.

Heat map visualization: network explainability
Application in clinical practice is limited, if the output of a deep learning network is difficult to explain. Therefore, 
inspired by the occlusion-based visualization method53, we developed a replacement-based method to generate 
heat maps, indicating which areas were important for the S-Net in recognizing different disease patterns. The 
method details are as follows.

A rectangular patch full of healthy lung tissue, in advance cropped from a lung region of healthy slices, was 
used to cover the test image from top-left to bottom-right step-by-step, separately. The patch size was 64× 64 
pixels with a step size of 16. The output score from the S-Net of the original test image was regarded baseline. 
Each time we slide the healthy patch, the original image was occulted by the healthy patch at a different position. 
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Table 3.  Details of network design and training scheme for L-Net and S-Net.

 

Fig. 3. Network architecture selection for L-Net (A) and S-Net (B). #par: number of trainable parameters; 
#FLOPs: number of floating point operations; MAE: mean absolute error. VGG11 and ConvNeXt achieve the 
lowest MAE for L-Net and S-Net, respectively. p-values in (A) were obtained by the Wilcoxon signed rank test 
between each network and VGG11; p-values in (B) were obtained by the Wilcoxon signed rank test between 
each network and ConvNeXt.
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We could obtain the new score from S-Net and record its change at each position. A heat map of the image is then 
generated using the magnitude of the score change (∆P ). A negative score change (∆P < 0) implies that the 
network regarded the original patch as diseased since the score decreased after concealing the area with healthy 
tissue. If the output score remains unchanged (∆P = 0), the original patch was already considered healthy. A 
score increase (∆P > 0) means that the network produced a false positive, since the inserted healthy patch 
was apparently classified as diseased. To make sure that the replaced pixels are in the lung area, the rectangular 
healthy patch was cropped by the lung mask before each replacement. The patch edge fades gradually by linearly 
increasing transparency to make it more natural.

This replacement-based heat map was inspired by the occlusion-based visualization method53. The difference 
is that the occlusion-based method would cover the original image using a patch with a constant value, which 

Fig. 4. Data synthesis flowchart and examples. (A) Flowchart to synthesize images with different disease 
patterns. Blue arrows indicate the generation of random candidate lesion regions; blue arrows indicate the 
generation of candidate regions, red arrows indicate the filling of patterns; green arrows indicate the insertion 
of patterns. (B) Four pairs of synthetic examples. The upper row shows the original images; the lower row 
shows the corresponding synthetic images. Green arrows point to GG; red arrows point to RET. Different 
pattern combinations are shown from left to right: only GG, only RET, GG and RET without overlap, GG and 
RET with overlap. The scores of these synthetic images are shown on the image in the order of [TOT, GG, 
RET]. TOT = total disease extent, GG = ground glass pattern, RET = reticular pattern.
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would introduce artifacts, while our replacement-based method covers the original image using a patch cropped 
from a healthy CT scan, which still includes lung texture and makes the generated image more natural.

In order to evaluate the performance of the heat maps, blinded to the network’s output, two human experts 
independently rated their agreement with the heat maps using a Likert scale, with five labels (1-5): “Strongly 
disagree”, “Disagree”, “Neutral”, “Agree” and “Strongly agree”, using dedicated software (Appendix Figure A2).

Additionally, we developed an automatic method to evaluate the heat map’s explainability. By thresholding 
the heat map, the different patterns were segmented and their areas were divided by the total lung area, to 
obtain a derived SSc-ILD score. Subsequently, we tested the network’s consistency by the correlation between the 
derived SSc-ILD score and the network’s output. The optimal threshold was obtained from the validation dataset 
by varying the threshold from -4% to 0% and selecting the one with the smallest mean absolute error (MAE) 
between the derived SSc-ILD score and S-Net output.

Statistical analysis and evaluation
To evaluate our networks, the following statistical analyses were performed by an in-house Python 3.8 script 
with corresponding libraries.

The MAE and standard deviation (STD) are reported. MAE were calculated as follows:

 
MAE =

1

n

n∑
i=1

|Yi − Ŷi|, (1)

where i ∈ N  is the index of samples, N represents the total number of samples, Ŷi is the network’s estimated value, 
and Yi the measured PFTs value. To evaluate the inter-observer agreement, Cohen’s linearly weighted kappa (κ
)54and intra-class correlation coefficient (ICC)55 were used. Weighted κ, a measure to assess the agreement level 
between two raters when evaluating ordering categorical items, was calculated by scikit-learn 0.24.256 based the 
equation:

 
κ =

Po − Pc

1− Pc
 (2)

where Po is the proportion of observed agreements and Pcis the proportion of agreements expected by chance. 
ICC, a measure reflecting both degree of correlation and agreement between measurements, was calculated by 
pingouin 0.4.057based on a single-rating, absolute-agreement, 2-way mixed-effects model55. To statistically test 
differences between groups, a paired T-test and Wilcoxon signed rank test were performed, as implemented by 
scikit-learn 0.24.2. A P value of less than 0.05 was considered to indicate a statistically significant difference. All 
metrics were calculated based on the testing dataset unless stated otherwise.

Network implementation details
Our neural networks, L-Net and S-Net, were implemented using PyTorch 1.7.1 (https://pytorch.org). For both 
networks, the loss function was the mean squared error (MSE). The Adam optimizer was used with a learning 
rate of 1e-4, a weight decay of 1e-4 and 500 epochs. Multithreading was used to accelerate the on-the-fly data 
augmentation. The workstation was equipped with an Intel(R) Xeon(R) CPU Gold 6126 @ 2.6GHz with 90 GB 
memory and a GPU RTX 2080TI with 11 GB memory. The source code and trained models are published at 
https://github.com/Jingnan-Jia/ssc to facilitate reproduction of results.

Experiments and results
SSc-ILD scoring performance
First, we trained and evaluated the L-Net (Figure 5) and S-Net (Table 4), separately. Figure 5 shows that the ICC 
of the five consecutive levels was 0.72, 0.84, 0.81, 0.96 and 0.97. No significant bias was observed among the five 
levels (P=0.20, 0.93, 0.42, 0.49, and 0.76, respectively. Subsequently, an end-to-end framework was built as a 
cascade of the trained L-Net and S-Net (called L&S-Net), in which the input slices for S-Net were automatically 
selected by the L-Net (Table 5). For none of the levels, the automatic scoring results of L&S-Net showed any 
significant differences as compared to solely S-Net which received the manually selected slices (Table 5).

Comparison with human experts
The inter- and intra-observer agreement in the sub-group of 16 patients (80 axial slices) from the testing dataset 
were compared with our proposed method (Table 6). The inter-observer agreement was higher during the 
second scoring session. The intra-observer agreement of Observer-B was higher than Observer-A, and the inter- 
and intra-observer agreement in GG scoring was always lower than in TOT and RET scoring.

For scoring TOT, our automatic method was close to the first rating by Observer-A (Obs-AT1), but Observer-B 
was closer to the consensus than our method. For GG the model had a fair agreement with human consensus, 
while the observers agreed moderately, and for RET the model’s agreement was moderate, but moderate/
substantial for observers. Except for the second GG scoring by Observer-B (Obs-BT2, P < 0.05), other human 
observations did not perform significantly better than our method. The Bland-Altman plots (Appendix Figure 
A3) illustrate the performance of an individual human score (Obs-BT2) and our automatic network.

The average time of fully automated scoring for the five levels is less than ten seconds per patient, while 
human experts need around ten minutes (around 2.5 minutes to identify five levels and another 7.5 minutes to 
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score three patterns of five levels). The comparison to related work and corresponding discussion is presented 
in Appendix-2.

Heat map explanation and its evaluation
The replacement-based heat maps of the automatic scoring for the three different patterns are shown in Figure 
6 of different patients from the testing subset. The proposed visualization method can show areas of different 
patterns and display the severity with different colours. The yellow and red areas in the heatmaps (Figure 6) 
denote the negative score change after the area has been covered by a healthy patch, which means that the 
original patch is “diseased”. A red area means more severe and more obvious patterns than a yellow area. The 
green and blue areas mean that the network produced a false positive, since the inserted healthy patch was 
apparently classified as diseased. The heat maps can also help to find the cause of errors, as shown in the last row 
in Figure 6, where the GG scoring result (30%) is far lower than the ground truth (90%). From the heat maps, we 
can see only about 30% of the whole lung was activated (yellow and red area) and the GG pattern was missed in 
around 1/3 of the right lung (blue area). Alternative heat maps are presented in Appendix Figure A4 to indicate 
false negatives and positives.

From the semi-quantitative evaluation of the heat maps, Observer-A rated the heat maps with “Strongly 
Agree” or “Agree” in 97.0%, 94.2% and 89.8% of cases for TOT, GG and RET, respectively (Figure 7, upper row). 
Ratings of “Strongly agree” or “Agree” by Observer-B occurred in 84.0%, 85.8% and 70.2% of cases for TOT, GG 
and RET, respectively. Thus, on average they agreed in 90.5%, 90.0% and 80.0% with the heat maps, respectively.

After applying an optimized threshold value (Appendix Figure A5) to the heat maps on the testing dataset, a 
significant linear correlation was found between the heat map-derived SSc-ILD score and the L&S-Net’s output 
(Figure 7, lower row). For TOT, GG and RET, 84%, 87% and 83% of the S-Net’s output variation can be explained 
by the heat maps, respectively.

Discussion
In this study, we developed a deep learning framework to perform fully automated SSc-ILD scoring in chest 
CT scans. By cascading two separate networks, the framework was able to select the five anatomical levels from 
3D CT scans and then quantify the extent of three different disease patterns for each level. The training of the 
framework only needs visual scores as the ground truth without the requirement of prior manual segmentations. 
Heat maps can intuitively explain the network’s output, and can be used to derive coarse segmentations of the 
different patterns that are consistent with the network’s output. Our framework has the potential to serve as an 
alternative to visual SSc-ILD scoring of lung involvement in systemic sclerosis.

Explanation and discussion on results
Our framework consists of two networks, trained independently: L-Net for automatic level selection and S-Net 
for automatic ILD scoring. For the L-Net, the selection of the first level is more difficult (ICC = 0.72) than other 
levels because indicating the origin of the great vessels is variable as it was not defined precisely. Nevertheless, 
the automatically selected levels were accurate enough, because the ultimate scoring did not show significant 
differences compared with the single S-Net’s performance with manually annotated slices. This may be due to the 
fact that disease patterns appear and disappear only gradually from one slice to the other.

In our paper we demonstrated that different network structures with different capacities did not necessarily 
show a significant difference (see Figure 3). That implies that network design is not the bottleneck for our task. 
Our further investigation showed that the key issue, hindering the network performance, is the low quality of 

Fig. 5. Testing results of the L-Net in selecting slices on the five levels, L1-L5. (A) Bland-Altman plot and (B) 
Correlation plot. The average spacing between slices was 1.2 mm.
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dataset. Therefore, we improved the training method by introducing synthetic training images that significantly 
improved the network’s performance.

For the ILD scoring network, the pre-trained weights, balanced sampling and the proposed data synthesis all 
helped to steadily improve the network’s performance for all three patterns (see Table 4). Comparing experiment 
(ii) and (iii), we can find that adding “Balance sampling” lead to a decrease in the effectiveness of “Data 
synthesis” for S-Net without pre-training. This is because “Data synthesis” already alleviated the data imbalance 
to a great extent. Then “Balance sampling” only introduces a lot of repeated samples for training. Compared to 
the combination, single “Data synthesis” will not introduce any repeated samples for training. Therefore, the 
combination of “Balanced sampling” and “Data synthesis” perform worse than single “Data synthesis” for the 
S-Net trained from scratch. Our random ILD insertion method is very effective and easy to implement, which 
only requires two small patches fully covered by GG and RET. Generally, ILD in SSc has a specific distribution, 
e.g. classical subpleural sparing earlier in the disease58, which was not simulated by our synthesis method. The 
scoring results were however not affected by this limitation, since the neural network only needs to estimate the 
ratio of ILD, irrespective of the location of ILD. Nevertheless, there is still some space for improvement in GG 
scoring. Also for human experts, GG is more difficult to define and identify than RET patterns, because of the 
limited spatial resolution of CT and consequential ‘partial volume’ effect. Moreover, some GG patterns resemble 
noise from image acquisition or reconstruction. Conversely, reticular lesions are larger than voxel size and can 
be visually or automatically identified as structures, such as thickened interlobular septa or thickened airways 
causing pathological reticular patterns. Our proposed network may help in distinguishing noise from actual 
pathological ground glass lesions when noise patterns can be identified.

With the help of the replacement-based heat map, we visualized which areas contribute to which scores 
respectively. Two experts evaluated the heat maps independently and both gave very satisfactory ratings. After 
we applied a threshold to the heat map, the ratio of different patterns to the total lung area was consistent with 
the automatic ILD scores by L&S-Net. The quantitative measurement shows that our proposed heat maps can 

Agreement Comparison

TOT* GG RET

MAE [%]↓ κ↑ ICC↑ MAE [%]↓ κ↑ ICC↑ MAE [%]↓ κ↑ ICC↑
Inter-
observer

Obs-AT1vsObs-BT1 5.25 0.59 0.76 4.00 0.54 0.66 3.81 0.61 0.82

Obs-AT2vsObs-BT2 4.25 0.67 0.88 3.94 0.58 0.80 3.44 0.63 0.86

Intra-
observer

Obs-AT1vsObs-AT2 4.38 0.63 0.83 3.50 0.56 0.73 3.06 0.67 0.84

Obs-BT1vsObs-BT2 3.50 0.74 0.89 3.69 0.62 0.74 2.69 0.72 0.90

vs GT

Obs-AT1vs GT 7.06 (0.41) 0.51 0.73 5.63 (0.51) 0.44 0.68 4.94 (0.37) 0.56 0.76

Obs-AT2vs GT 6.19 (0.14) 0.58 0.82 5.38 (0.78) 0.46 0.59 4.75 (0.13) 0.58 0.78

Obs-BT1vs GT 6.56 (0.42) 0.58 0.80 5.38 (0.32) 0.48 0.63 4.63 (0.18) 0.61 0.84

Obs-BT2vs GT 4.94 (0.40) 0.67 0.86 4.94 (0.001)† 0.55 0.75 4.19 (0.18) 0.63 0.80

L&S-Net vs GT 6.40 0.54 0.79 6.13 0.39 0.55 4.44 0.61 0.84

Table 6. SSc-ILD scoring performance of human experts (Observer-A and Observer-B) in two scoring 
sessions (T1 and T2, with 6 weeks interval) and our proposed network in a subset of 16 patients from the 
testing dataset. ∗TOT = total disease extent, GG = ground glass pattern, RET = reticular pattern, GT = 
Ground truth (human consensus score), MAE = mean absolute error,κ= Cohen’s weighted kappa, ICC = 
Intra-class correlation coefficient. Data between parentheses are P values from the Wilcoxon signed rank test 
comparing observers with our proposed method. Obs-AT1/T2 and Obs-BT1/T2 denote the observations from 
Observer-A and Observer-B at the first or second scoring session, respectively. † Significantly better than our 
method (P<0.05).

 

Level

MAE of TOT* MAE of GG MAE of RET

LS-Net [%] S-Net [%] P LS-Net [%] S-Net [%] P LS-Net [%] S-Net [%] P

1 4.20 ± 7.94 6.28 ± 11.57 0.33 2.34 ± 6.88 2.81 ± 6.71 0.57 3.49 ± 6.25 5.14 ± 9.67 0.42

2 4.61 ± 6.89 4.74 ± 7.46 0.06 3.11 ± 7.67 3.33 ± 7.62 0.88 3.35 ± 5.67 3.72 ± 6.15 0.49

3 5.61 ± 8.00 6.17 ± 8.63 0.64 4.65 ± 8.42 4.82 ± 8.19 0.56 4.33 ± 5.24 4.69 ± 6.13 0.74

4 7.12 ± 8.87 6.88 ± 9.23 0.17 5.88 ± 9.58 5.98 ± 9.59 0.10 4.99 ± 6.75 4.93 ± 6.65 0.90

5 8.12 ± 10.00 7.58 ± 9.99 0.11 7.13 ± 10.49 6.75 ± 10.41 0.40 6.15 ± 8.26 5.74 ± 7.78 0.11

ALL 5.86 ± 8.46 5.90 ± 8.77 0.21 4.56 ± 8.80 4.66 ± 8.83 0.13 4.40 ± 6.55 4.49 ± 6.70 0.28

Table 5. MAE comparison of SSc-ILD scoring between the whole framework (L&S-Net) and sole S-Net. ∗
Mean absolute error (MAE) ± standard deviation (STD) is presented expressed as %, TOT = total disease 
extent, GG = ground glass pattern, RET = reticular pattern, ALL = Calculated based on the results from all the 
five levels.
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accurately explain the L&S-Net’s output. This can increase the clinicians’ confidence in the network’s output. A 
heat map “highlights” the detected pathology that may help the physician with a quick image interpretation. 
Exploring the heat map can also be used to check the quality of the automatic score. The heat map could be 
regarded as a coarse segmentation of TOT, GG and RET. Normally it is not practical to have large datasets of 
SSc ILD pattern segmentations because it is very time-consuming and laborious. The heat maps can act as an 
initial step to obtain manual segmentation reducing annotation time. From this perspective, we successfully 

Fig. 6. Heat map visualization for various test images. The percentages on the scale now indicate how much 
the output score (in percent points) changes after replacing an area with a healthy patch. Each row represents 
one axial slice from a different patient. The first column is the original image and the subsequent three columns 
show the heat maps of the three disease patterns. Different colours represent the magnitude of score change. 
From top to bottom, the images show increasing disease severity. The automatic ILD score is shown on the 
top of each image followed by the ground truth (human consensus) between parentheses. TOT = total disease 
extent, GG = ground glass pattern, RET = reticular pattern.
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obtained a coarse ILD pattern segmentation network for patients suspected of SSc without the requirement of 
a segmentation ground truth. Compared with the normal binary segmentation3, the advantage of our heat map 
is that it also gives an indication of the severity of a disease pattern, as shown by the colour, instead of a binary 
classification into either healthy or disease.

We observed that human experts gave higher ratings to the GG heat maps than RET, although the MAE of 
automatic GG scoring was actually consistently higher than RET. This can be explained by the fact that human 
experts have more confidence in recognizing RET patterns, so they use more strict criteria for RET heat maps. 
Since they were less confident in their GG recognition, reflected by the lower inter-/intra-observer agreement, 
this resulted in more tolerance for GG heat maps.

In the visual ILD scoring system, the use of only five anatomical levels has been a compromise, for clinical 
practice. It is already very time-consuming and laborious to manually select the five levels and score three 
patterns for each level (taking around ten minutes). Our method, however, could automatically complete the 
level selection and ILD scoring in several seconds. In addition, our method can be easily extended to score all 
slices of the entire CT volume, which is practically not feasible for humans.

Limitations
Our method has some limitations. The L-Net was initialized with a random distribution instead of pre-trained 
weights. This may be improved if pre-trained weights from a large 3D medical image dataset are available. The 
quality of data synthesis could clearly be improved further. The current pattern insertion method may distort the 
structure of airways and vessels and introduce some periodic artefacts. In future research, how to generate more 
realistic synthetic patterns with accurate labels can be a research direction to explore. The data used in this study 
is from a single model CT scanner within a single healthcare programme with tightly-controlled acquisition and 
reconstruction parameters. Because of the lack of publicly available independent testing dataset, whether this 
method could be used across a range of CT scanners, sites and protocols still needs to be verified. The ILD scores 
of our synthetic training images were obtained by the ratio of different patterns, while the ILD scores of the real 
images were estimated by the human observer without any pattern segmentation or contours. Therefore, there 
may be a systematic bias between them, which could contribute to the disagreement between our framework 
and experts.

Conclusion
In conclusion, we proposed the first fully automated framework to estimate scores for ground glass opacities, 
reticular patterns and total disease extent from 3D CT scans, specific for systemic sclerosis. The output scores 
can be clearly explained by the replacement-based heat maps. The results show its potential as an objective 
alternative for visual scoring of systemic sclerosis and could be extended to other applications where a diagnosis 
is based on scores at different anatomical levels.

Fig. 7. Heat map performance evaluated by the two observers (pie charts in the upper row) and the association 
between the heat map derived ILD scoring and L&S-Net’s output (scatter plots in the lower row), to indicate its 
explainability. TOT = total disease extent, GG = ground glass pattern, RET = reticular pattern.
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Data availability
All code used to develop and verify the deep neural networks in this study has been published at  h t t p s : / / g i t h u b 
. c o m / J i n g n a n - J i a / s s c _ s c o r i n g     . All data and materials used in the analysis can be available upon request for the 
purposes of reproducing or extending the analysis via the corresponding author, in accordance with local and 
institutional guidance and legal requirements.
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