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Abstract. Medical imaging is essential for the diagnosis and treatment 
of diseases, with medical image segmentation as a subtask receiving high 
attention. However, automatic medical image segmentation models are 
typically task-specific and struggle to handle multiple scenarios, such as 
different imaging modalities and regions of interest. With the introduc-
tion of the Segment Anything Model (SAM), training a universal model 
for various clinical scenarios has become feasible. Recently, several Med-
ical SAM (MedSAM) methods have been proposed, but these models 
often rely on heavy image encoders to achieve high performance, which 
may not be practical for real-world applications due to their high com-
putational demands and slow inference speed. To address this issue, a 
lightweight version of the MedSAM (LiteMedSAM) can provide a viable 
solution, achieving high performance while requiring fewer resources and 
less time. In this work, we introduce Swin-LiteMedSAM, a new vari-
ant of LiteMedSAM. This model integrates the tiny Swin Transformer 
as the image encoder, incorporates multiple types of prompts, including 
box-based points and scribble generated from a given bounding box, and 
establishes skip connections between the image encoder and the mask 
decoder. In the Segment Anything in Medical Images on Laptop challenge 
(CVPR 2024), our approach strikes a good balance between segmenta-
tion performance and speed, demonstrating significantly improved over-
all results across multiple modalities compared to the LiteMedSAM base-
line provided by the challenge organizers. Our proposed model achieved 
a DSC  score of  0.8678 and an NSD  score of  0.8844 on the validation 
set. On the final test set, it attained a DSC score of 0.8193 and an 
NSD score of 0.8461, securing fourth place in the challenge. The code 
and trained model are available at https://github.com/RuochenGao/ 
Swin_LiteMedSAM. 
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1 Introduction 

Medical imaging diagnosis is fundamental for evaluating diseases, and medical 
image segmentation, which involves the extraction of specific structures such as 
tumors and organs from medical images, consistently receives significant atten-
tion. Deep learning methods have demonstrated effectiveness in this field, leading 
to the development of numerous models tailored for specific scenarios. How-
ever, each scenario typically requires training a dedicated segmentation model, 
demanding substantial effort. In recent years, inspired by the rapid develop-
ment of large language models (LLMs) in the natural language processing (NLP) 
field, researchers have begun exploring the application of large models in com-
puter vision. Segment Anything Model (SAM) [ 5] is one such innovation, aim-
ing to unify the segmentation task for general images by training with a huge 
amount of data. while SAM holds potential, the distinct features of medical 
images can hinder its performance in medical image segmentation. Therefore, 
recent works [ 8, 10] focus on adapting the SAM model for medical applications 
by re-training with a large volume of medical images. Despite achieving high 
performance in various medical image segmentation tasks, SAM models’ large 
parameter volume and the high spatial resolution of medical images require sub-
stantial computational resources and processing time. This poses challenges for 
practical deployment of SAM models in real-world applications, or even for non-
industry academic groups conducting research on them. Consequently, lite SAM 
models are gaining more attention as a solution to this problem. 

The original SAM model is composed of three main components: an image 
encoder, a prompt encoder, and a mask decoder. Among these, the image encoder 
is the primary factor contributing to high computational and memory costs due 
to the usage of ViT-H [ 3]. To mitigate resource consumption and accelerate pro-
cessing, various studies have aimed to make the image encoder more lightweight. 
For instance, FastSAM [ 15] introduces a CNN-based framework, while Mobile-
SAM [ 13] tackles this issue by distilling knowledge from the ViT-H image encoder 
into a tiny ViT-based encoder. Additionally, EfficientSAM [ 11] employs  the  
Masked Autoencoders (MAE) [ 4] framework to efficiently transfer knowledge 
from a large image encoder to a small one, resulting in a more resource-efficient 
design with better performance. EfficientViT-SAM [ 14] further enhances this 
approach by incorporating EfficientViT [ 1] with fused MBConv blocks [ 9] to cre-
ate a lightweight image encoder. Recently, the challenge Segment Anything in 
Medical Images on Laptop 1, hosted at CVPR 2024, sought universal prompt-
able medical image segmentation models deployable on laptops or edge devices 
without GPU reliance. The organizers developed LiteMedSAM 2 as a baseline, 
using the distillation strategy described in [ 13]. Although LiteMedSAM focuses 
on optimizing the image encoder to reduce resource usage, segmentation perfor-
mance is compromised. Therefore, our goal is to enhance performance without 
highly sacrificing efficiency. To achieve this, we use a lightweight Swin Trans-

1 https://www.codabench.org/competitions/1847/. 
2 https://github.com/bowang-lab/MedSAM/tree/LiteMedSAM. 
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former as image encoder and also introduce two additional prompts, box-based 
points and box-based scribble, except the original box prompt. To this end, we 
introduce our model, Swin-LiteMedSAM. The key contributions of our model 
are as follows: 

– Instead of transferring knowledge to a tiny ViT, we employ a tiny Swin Trans-
former [ 6] as the image encoder. The Swin Transformer is designed to han-
dle large images more efficiently, both in terms of computation and memory 
usage compared to ViT. Moreover, skip connections are established between 
the image encoder and mask decoder to enhance feature integration. 

– We introduce additional types of prompts beyond boxes, including box-based 
points and box-based scribble. These prompts are automatically generated 
from the given bounding box and effectively improve model performance with-
out significantly increasing resource costs. 

– Overall, Swin-LiteMedSAM achieves substantial improvements in perfor-
mance over LiteMedSAM while maintaining high inference speed. 

2 Method 

2.1 Data Preprocessing 

To accelerate the model’s training and inference stages and reduce memory con-
sumption, we resize the input image to .256 × 256. This is achieved by first  
resizing the images while maintaining their original aspect ratio based on the 
longest side, and then do zero padding to reach the final size of .256 × 256. For  
data normalization, we use the method described in [ 8]. Please refer to [ 8] for  
more details. 

Note that gray-scale images such as CT, MR, US, and PET typically have 
only one channel, whereas RGB images from modalities like endoscopy, der-
moscopy, and fundus imaging usually have three channels. To maintain consis-
tency during model training, we replicated the channel dimension for gray-scale 
images, converting them from one channel to three channels. 

2.2 Proposed Method 

Our model’s structure is shown in Fig. 1. It mainly comprises three components: 
an image encoder, a prompt decoder, and a mask decoder. The function of these 
three components are detailed below. 

The image encoder architecture is inspired by the original tiny ViT design of 
LiteMedSAM. The input first passes through two convolutional layers, which 
capture low-level spatial features and adjust the number of channels to 64. 
Following this, the encoder consists of four stages, with their depths arranged 
according to the tiny ViT configuration as (2, 2, 6, 2). The structure of the 
Swin block used in our encoder is illustrated in Fig. 2. We have slightly modified 
the standard Swin block by adding a convolutional block with batch normal-
ization between the windowed multi-head self-attention (W-MSA) module and
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Fig. 1. Overview of the Swin-LiteMedSAM architecture. 

the Multi-Layer Perceptron (MLP). This modification enables our encoder to 
effectively capturing both global and local features. Furthermore, the number 
of channels and spatial resolution across four stages remain consistent with the 
original design. Finally, a head branch consisting of several convolutional layers 
and layer normalization adjusts the channel number to 256. 

In the prompt encoder, we introduce two additional types of prompts: box-
based points and a box-based scribble, alongside the original box prompt. The 
box-based points and the box are combined to form a sparse embedding, while 
the box-based scribble is used for dense embedding. For the box-based prompt, 
drawing from insights provided by [ 10] and  [  2], which demonstrate the effective-
ness of using multiple points over a single point, we opt to utilize four points in 
our prompt encoder. To achieve this, we divide the bounding box area into four 
equivalent sub-parts based on the central point. We then randomly generate one 
point in the non-zero area of each sub-part, resulting in four points distributed 
inside the box. If a sub-part contains only zeros, we select the central point. This 
approach ensures a relatively sparse distribution of points covering more area.
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Fig. 2. The overall structure of the Swin Transformer block. 

Furthermore, a box-based scribble is randomly generated within the box using 
the algorithm in [ 16]. All pixels in the scribble are set to 1 and placed into the 
corresponding part of an all-zero matrix with a shape of (256, 256) to create a 
mask for the dense embedding. Similarly, if all pixels in the box are zeros, the 
scribble is set to an all-zero matrix of shape (256, 256) to ensure the prompt 
encoder focuses on the sparse prompt embedding part, as illustrated in Fig. 3(a). 

(a) (b) (c) 

Fig. 3. (a) Box-based points and scribble generation strategies during the training 
stage. (b) Box-based points generation strategy during the inference stage. (c) Box-
based scribble generation strategy during inference stage. 

Then in the mask decoder, we follow the SAM original design by using a 
two-way transformer to process embeddings from the prompt encoder and image 
encoder. Moreover, we build skip connections between the image encoder and 
mask decoder, concatenating outputs from the last three stages and fusing them 
with several convolutional layers. This output is then combined with the two-way 
transformer’s output and passed through an upscaling block to double the image 
resolution. Similarly, the upscaled output is concatenated with the first stage’s 
output from the image encoder, and the resulting output is further upsampled 
to return back to the original spatial resolution.



Swin-LiteMedSAM for Medical Image Segmentation 75

For the loss function, it consists of a mask prediction loss .Lmask and a IoU 
score prediction loss .Liou: 

.L = Lmask + Liou, (1) 

where .Lmask is the summation of the Dice loss and binary cross-entropy by 
comparing the predicted mask with the ground truth mask, while .Liou is the 
MSE loss between the predicted and actual IoU scores. 

2.3 Inference Strategy for Box-Based Points and Box-Based 
Scribble 

The strategy for generating box-based points and box-based scribble has some 
difference between the training and inference stages. During the training stage, 
the range for generating four points is within the entire bounding box, which 
aims to expose the model to diverse cases and helps improve its generalization 
capabilities. However, randomly generating points within the whole box might 
not be ideal during the inference stage, as objects are typically located near the 
central part of the box. Random generation can easily place some points near 
the boundary, which is less effective and even negatively impact performance. 
Furthermore, for the situation of a single point prompt, the central point of 
the box is always the first choice [ 2]. Likewise, the two corner points of the box 
already provide some external and surrounding information of objects. Therefore, 
points should be better distributed in the relatively central part of the box. For 
a given bounding box, represented by its upper left point (.xmin, .ymin) and  
bottom right point (.xmax, .ymax), we introduce two variables, .shifth and .shiftw, 
to adjust the coordinates along height and width directions so that four points 
do not occur in the peripheral area, as shown in Fig. 3(b). This adjustment is 
denoted as follows: 

. 

x′
min = xmin + shiftw,
y′
min = ymin + shifth,

x′
max = xmax − shiftw,
y′
max = ymax − shifth.

Here, the new upper left point (.x′
min, .y′

min) and bottom right point (.x′
max, 

.y′
max) form a new box and randomly generate four points within it. The range 

of .shiftw is .(0, 1
2w), and the range of .shifth is .(0, 1

2h), where  .w and . h are the 
width and height of the image, respectively. In this study, we adjusted the range 
of .shiftw to .( 15w,

2
5w) and the range of .shifth to .( 15h,

2
5h) to ensure that the 

distribution of points is closer to the center. Additionally, .shiftw and .shifth are 
randomly adjusted within their ranges for each sample to achieve better overall 
performance. We also follow the same points distribution strategy as in the 
training stage to ensure that the four points are positioned in the four quadrants 
of the image. 

Then Fig. 3(c) illustrates the strategy of generating a scribble in the inference 
stage. Considering the empirical distribution of points, we believe that placing
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Table 1. Evaluation Platform environment settings. 

System Ubuntu 20.04 Desktop 
CPU Intel Xeon(R) W-2133 @3.60GHz 
RAM 8GB 
Docker version 20.10.13 

Table 2. Training environment settings. 

System Red Hat 9 
CPU AMD EPYC 7513 @2.60GHz 
RAM 256GB 
GPU (number and type) One NVIDIA A100 40G 
CUDA version 12.4 
Programming language Python 3.10 
Deep learning framework PyTorch 2.2.2 
Specific dependencies Monai, Einops, Timm and Transformers 

the scribble closer to the edges is more effective than points for capturing contour 
information. Therefore, we adjusted the range of .shiftw to .( 18w,

1
6w) and the 

range of .shifth to .( 18h,
1
6h) to expand the area for generating a scribble. Note 

that we generate the scribble in non-zero areas, based on the prior knowledge 
that people typically avoid drawing scribble in regions with zero pixel values. 

3 Experiments 

3.1 Dataset and Evaluation Metrics 

Training and Validation Dataset. We only use the provided challenge 
dataset, without additional public datasets. This dataset includes 11 modalities: 
CT, MRI, PET, X-ray, ultrasound, mammography, OCT, endoscopy, fundus, 
dermoscopy, and microscopy, totaling more than one million 2D image-mask 
pairs. 

Testing Dataset. The testing set in this challenge is hidden, with all testing 
images newly collected from 20+ different institutions worldwide. 

Evaluation Metrics. The evaluation metrics are the Dice Similarity Coefficient 
(DSC) and Normalized Surface Dice (NSD) for accuracy, and Docker container 
running time for efficiency. These metrics together determine the ranking. Note 
that only mean results are available. The evaluation platform environment is 
presented in Table 1.
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3.2 Implementation Details 

Training Environment Settings. The training environments are presented in 
Table 2. 

Training Protocols. Our training strategy consists of two stages. In the first 
stage, we utilize knowledge distillation to transfer information from the large 
ViT-B image encoder to the tiny Swin Transformer as our image encoder. To 
note, we pre-saved the output image embeddings from the ViT-B encoder to 
speed up the distillation process. In the second stage, we take the pre-trained 
image encoder from the first stage and proceed to train the entire model. The 
training details of these two stages are listed in Table 3. 

Data Sampling Strategy. During the training, we randomly sample image 
cases from the dataset. If the case is 3D, such as a CT, MR, or PET scan, we 
randomly sample a slice from the 3D image. If the case is 2D, such as an X-ray or 
microscopy image, we use the image directly. This strategy significantly reduces 
training time and ensures a more balanced distribution of training samples across 
different modalities. 

Data Augmentation. We apply vertical and horizontal flips to the image, each 
with a 50% probability. 

Inference Environment Settings. During the inference stage, the running 
environment differs from the training stage. A docker container is built, starting 
with a ‘python:3.10-slim’ image and installing the CPU version of PyTorch 2.2.2. 
All other aspects still remain same with the training stage. 

Table 3. Training protocols of the first stage and the second stage. 

The first stage The second stage 
Pre-trained Model MedSAM ViT-B Tiny Swin Transformer 
Batch size 64 16 
Patch size 256. × 256. × 3 256. × 256. × 3 
Total epochs 10 25 
Optimizer AdamW AdamW 
Initial learning rate (lr) 2e-4 2e-4 
Lr decay schedule ReducedLROnPlateau ReducedLROnPlateau 
Training time 60.8 h 46 h 
Loss function L1 Loss MSE Loss+Dice Loss+BCE Loss 
Number of model parameters 10.51M 36.77M 
Number of flops 47.70G 55.20G
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4 Results and Discussion 
4.1 Quantitative Results on Validation Set 

Table 4 shows that Swin-LiteMedSAM achieves higher average DSC (86.70%) 
and NSD (88.55%) scores compared to LiteMedSAM, which recorded 83.81% 
for DSC and 83.26% for NSD. In general, Swin-LiteMedSAM achieved a more 
balanced and comprehensive performance across the nine modalities compared 
to LiteMedSAM. It showed significant improvement in PET and Microscopy 
while maintaining strong performance in most modalities. However, the model 
experienced a noticeable drop in DSC and NSD scores for the US modality. 

Then Table 5 further highlights the importance of each component in our pro-
posed method, particularly the inclusion of skip connections, as well as both box-
based points and scribble, in achieving superior segmentation performance. Here, 
the introduction of two additional box-based prompts provide limited improve-
ment. This could be due to two factors. First, some prompts may have been 
placed in sub-optimal positions due to the random way, negatively impacting 
overall performance. Second, inadequate training can be a contributing factor. 
Although the data sampling strategy helped balance the distribution of modali-
ties and accelerated the training process, it significantly reduced the number of 

Table 4. Comparison between LiteMedSAM and our proposed Swin-LiteMedSAM. 

Target LiteMedSAM Swin-LiteMedSAM 
DSC (%) NSD (%) DSC (%) NSD (%) 

CT 92.26 94.90 91.46 94.70 
MR 89.63 93.37 87.12 91.19 
PET 51.58 25.17 69.43 56.99 
US 94.77 96.81 85.57 90.63 
X-ray 81.05 85.35 83.98 88.88 
Dermoscopy 92.47 93.85 94.20 95.65 
Endoscopy 96.04 98.11 95.29 97.63 
Fundus 94.81 96.41 95.83 97.39 
Microscopy 61.63 65.38 77.45 83.91 
Average 83.81 83.26 86.70 88.55 

Table 5. Ablation study of the proposed method. The check mark shows including the 
module in the method. Here, Swin-T indicates tiny Swin Transformer. 

Swin-T Skip connection Box-based points Box-based scribble DSC (%) NSD (%) 
.� 85.79 86.75 
.� .� 86.48 87.74 
.� .� .� 86.22 87.79 
.� .� .� .� 86.70 88.55
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training samples. This reduction can hinder the effective training of the prompts, 
which require a high volume of diverse cases to perform optimally. 

4.2 Quantitative Results on Testing Set 

As shown in Table 6, our proposed method significantly outperforms LiteMed-
SAM across most imaging modalities in terms of DSC and NSD, while also 
reducing runtime of all the modalities. Specifically, for CT images, our method 
achieved an absolute DSC improvement of .17.15%, corresponding to a relative 
improvement of .30.76%, and an NSD increase of .18.51%, corresponding to a 
relative improvement of .31.75%, compared to LiteMedSAM, also with a faster 
runtime. For PET and X-ray modalities, our method demonstrated competitive 
DSC and NSD results. In PET, it achieved a marginal NSD improvement while 
maintaining similar DSC performance, and significantly reduced runtime. For 
X-ray, despite a slightly lower DSC compared to LiteMedSAM, the difference is 
minimal, demonstrating a still competitive result. 

Furthermore, we observed significant instability in the original LiteMed-
SAM. Taking CT modality as an example, LiteMedSAM performed exception-
ally well on the validation set, surpassing Swin-LiteMedSAM. However, when 
evaluated on the testing set, performance of CT experienced a significant per-
formance drop, with DSC falling from .92.26% to .55.75% and NSD dropping 
from .94.90% to .58.48%. Although Swin-LiteMedSAM encounters a similar issue 
with the CT modality, the performance drop is much less severe. Furthermore, 
this issue is observed in other modalities as well, further approving that the 
Swin-LiteMedSAM model offers better stability and generalization, which are 
essential for the real world applications. 

Table 6. Quantitative evaluation results for final testing set 

Target LiteMedSAM.
a Proposed Swin-LiteMedSAM 

DSC (%) NSD (%) Runtime (s) DSC (%) NSD (%) Runtime (s) 
CT 55.75 58.48 32.68 72.90 76.99 25.14 
MR 64.80 62.75 15.91 68.61 70.13 13.44 
PET 76.94 66.98 12.99 76.50 67.63 10.52 
US 85.24 89.73 8.27 88.01 92.43 7.58 
X-ray 85.51 94.40 8.79 84.58 94.32 6.89 
Endoscopy 94.41 96.95 13.85 94.58 97.17 11.36 
Fundus 87.47 89.58 11.72 80.71 82.93 9.85 
Microscopy 84.36 86.15 11.85 87.08 88.94 10.48 
OCT 73.31 80.20 8.39 84.39 90.97 6.87 
Average 78.64 80.58 13.99 81.93 84.61 11.01 

. 
a The model weights and results are released by the challenge organizer.
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4.3 Qualitative Results on External Public Dataset 

Since the ground truth for the challenge validation and testing set is not avail-
able, we select SegRap2023 [ 7], a public head and neck CT dataset containing 
annotations for multiple organs, to verify the model’s performance. 

As depicted in Fig. 4, we showcase three representative examples from Seg-
Rap2023 to visually check our model’s performance. In the first case, our 
model demonstrates strong performance in brain segmentation. This is primar-
ily attributed to the brain’s large size and distinct contrast with surrounding 
tissues. Moving to the second case, we observed that our model maintains good 
performance even with smaller targets such as the spinal cord, esophagus, and 
trachea. However, in the third case, our model’s performance falls short com-
pared to the ground truth. The main issue arises from the ambiguous semantics 
in medical images. For instance, when aiming to segment the oral cavity, our 
method only identifies the teeth. This discrepancy stems from the fact that the 
box prompt for the oral cavity can also be interpreted as segmenting teeth. It is 
hard to provide a more precise prompt in this case to specify the intended target 
for segmentation. 

4.4 Limitation and Future Work 

One main limitation of our method for this challenge is that our model is using 
2D images for training and validation, whereas medical imaging data, such as 
CT, MRI, and PET, are typically in 3D format. Currently, we process these 3D 
images by making predictions on individual 2D slices, which does not fully utilize 
the 3D anatomical information and might hinder the performance improvement. 
The key issue is that the prompts input to the model are generally based on 
2D information, such as bounding boxes and points. In the future, we aim to 
explore how to provide effective prompt information in 3D and adapt the model 
to handle 3D images directly. 

Additionally, we applied certain manual rules to control the distribution of 
box-based points and the scribble, which is impossible to find the optimal setting 
and can easily do harm to the overall performance if not set properly. Further-
more, due to variations in medical modalities and the shapes of segmentation 
targets, the distribution of points and scribble should be adjusted accordingly. 
Therefore, developing a learning-based method for generating box-based points 
and scribble would be highly beneficial and could further enhance the model’s 
performance.
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Fig. 4. Visual comparison between ground truth and our proposed method, with each 
row representing one case from SegRap2023. (a), (b), and (c) represent the original 
image with box prompts, ground truth, and the prediction results of our proposed 
model, respectively. 

5 Conclusion 

In this paper, we introduce Swin-LiteMedSAM, a lightweight box-based seg-
ment anything model. Our model utilizes the tiny Swin Transformer as image 
encoder, enabling it to extracts high-level features more effectively. Additionally, 
the introduction of box-based points and box-based scribble provide more spa-
tial cues, which improve segmentation accuracy without substantially increasing 
computational costs or demanding extensive manual annotation. Overall, our 
approach achieves stronger and more stable performance across different med-
ical imaging modalities while maintaining fast inference speed, outperforming 
the LiteMedSAM model.
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