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A B S T R A C T

This paper explores how artificial intelligence (AI) techniques can address common challenges in astronomy
and (bio)medical imaging. It focuses on applying convolutional neural networks (CNNs) and other AI methods
to tasks such as image reconstruction, object detection, anomaly detection, and generative modeling. Drawing
parallels between domains like MRI and radio astronomy, the paper highlights the critical role of AI in
producing high-quality image reconstructions and reducing artifacts. Generative models are examined as
versatile tools for tackling challenges such as data scarcity and privacy concerns in medicine, as well as
managing the vast and complex datasets found in astrophysics. Anomaly detection is also discussed, with an
emphasis on unsupervised learning approaches that address the difficulties of working with large, unlabeled
datasets. Furthermore, the paper explores the use of reinforcement learning to enhance CNN performance
through automated hyperparameter optimization and adaptive decision-making in dynamic environments. The
focus of this paper remains strictly on AI applications, without addressing the synergies between measurement
techniques or the core algorithms specific to each field.
. Introduction

Artificial intelligence (AI) has revolutionized numerous scientific
ields, playing a pivotal role in advancing our understanding across
iverse disciplines. From climate science to genomics, AI-driven tech-
iques have enabled researchers to tackle complex problems, analyze
ast amounts of data, and generate new insights at an unprecedented
ace. One of the most transformative impacts of AI has been in the
ealm of data science, where machine learning algorithms and ad-
anced computational methods have become integral tools for re-
earchers.

In both astronomy and medical imaging, AI and data science are
ssential, revealing notable similarities in their methodologies and
hallenges. Though seemingly disparate, these fields share a com-
on reliance on sophisticated data analysis techniques to interpret

omplex datasets and uncover hidden patterns. As we delve into the
astness of the universe and the intricacies of the human body, we
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E-mail address: amir.javadpour@oulu.fi (A. Javadpour).

observe common techniques driven by a shared quest for knowledge
and understanding.

Both fields grapple with the task of managing extensive datasets.
In astronomy, researchers process immense celestial data from next-
generation telescopes like the Large Synoptic Survey Telescope (LSST)
and the Square Kilometre Array (SKA). For example, the LSST is ex-
pected to detect and catalog approximately 20 billion galaxies, produc-
ing around 10 terabytes of data each night and up to 60 petabytes
over its 10-year survey period. Similarly, the SKA data center will
receive around 600 GB/s of data during a typical 6-hour observation,
amounting to several petabytes. After near-real-time processing, includ-
ing cleaning, calibration, and averaging, the data is reduced to about
100 TB, which is then stored for further analysis (Wang et al., 2020).

Similarly, medical and biomedical imaging face the challenge of
handling large-scale, high-resolution datasets. Medical imaging tech-
nologies such as Magnetic Resonance Imaging (MRI), Computed To-
ttps://doi.org/10.1016/j.ascom.2024.100921
eceived 4 April 2024; Received in revised form 25 November 2024; Accepted 9 D
vailable online 18 December 2024 
213-1337/© 2024 The Authors. Published by Elsevier B.V. This is an open access a
ecember 2024

rticle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://www.elsevier.com/locate/ascom
https://www.elsevier.com/locate/ascom
https://orcid.org/0000-0002-4932-1660
mailto:amir.javadpour@oulu.fi
https://doi.org/10.1016/j.ascom.2024.100921
https://doi.org/10.1016/j.ascom.2024.100921
http://creativecommons.org/licenses/by/4.0/


S. Rezaei et al.

t
c

u
a
m
a
i
a
t
p
t
c

(
e
s
b
T
a
u
d
i
r
i
s
t
a
l
f

i
i
a
h
p
o
t
a
a
s
r
t
n
a
c
l
t

t
s
m
d
B
a

i
d
r
t

b
p
k

Astronomy and Computing 51 (2025) 100921 
mography (CT) scans, and Positron Emission Tomography (PET) scans
generate massive volumes of data. For instance, a single full-body MRI
scan can produce up to 1 gigabyte of data, and with thousands of
scans conducted daily worldwide, the aggregate data volume quickly
becomes enormous. Biomedical projects like the Human Connectome
Project (Van Essen et al., 2012) have already generated over 1 petabyte
of imaging data mapping the brain’s neural networks. Future initia-
ives like the UK Biobank aim to scan 100,000 participants, further
ontributing to the data deluge.

The challenges in medical imaging extend beyond sheer data vol-
me. High-resolution images require precise and rapid analysis to
ssist in diagnosis and treatment planning. The complexity of hu-
an anatomy and the need to detect subtle anomalies make manual

nalysis time-consuming and prone to error. AI and machine learn-
ng offer powerful solutions by automating image analysis, enhancing
ccuracy, and speeding up diagnosis. Techniques such as convolu-
ional neural networks (CNNs) are particularly effective in identifying
atterns and abnormalities in medical images, aiding in the early detec-
ion of diseases like cancer, neurological disorders, and cardiovascular
onditions.

This review delves into the synergies between astronomy and
bio)medical imaging, emphasizing their shared reliance on data sci-
nce and machine learning. The focus is on elucidating the profound
imilarities in the challenges, algorithms, and methodologies within
oth domains, with particular attention given to CNN applications.
hese powerful neural networks have found remarkable utility in both
stronomy and medical imaging, serving as a common thread that
nderscores the harmonious integration of advanced technologies in
isparate scientific disciplines. In astronomy, CNNs have been pivotal
n handling diverse celestial datasets. For instance, they play a crucial
ole in the automated classification of celestial objects, facilitating the
dentification of variable stars, galaxies, and exoplanets in large-scale
urveys. Similarly, in medical imaging, CNNs contribute significantly to
he automated analysis of intricate scans, aiding in detecting anomalies
nd segmenting relevant structures. The commonality in using CNNs il-
ustrates a shared commitment to leveraging cutting-edge technologies
or pattern recognition in complex datasets.

In astronomy and medical imaging, applying AI and data science
s not just a convenience but a necessity. The ability to process and
nterpret vast amounts of data efficiently and accurately is crucial for
dvancing our understanding of the universe and improving human
ealth outcomes. This paper aims to extract valuable lessons from these
arallels for researchers in both fields. By scrutinizing the applications
f CNNs, we illuminate the potential for cross-disciplinary collabora-
ion, urging scientists to draw insights from each other’s methodologies
nd experiences. The intersection of astronomy and medical imaging,
s evidenced by the shared challenges and solutions involving CNNs,
erves as a rich ground for collaborative endeavors, fostering enhanced
esearch achievements. By illuminating these parallels and offering
angible examples, this paper strives to underscore the interconnected-
ess between astronomy and medical imaging and inspire collaboration
mong researchers. The fusion of knowledge from these distinct yet
onverging fields can drive advancements in data science, machine
earning, and ultimately, the broader understanding of our universe and
he intricacies of human health.

This paper is structured as follows: it begins with a subsection in
the introduction that provides an overview of CNNs, explaining their
architecture and fundamental principles. The paper then explores the
similarities between MRI and radio interferometry, highlighting their
shared reliance on advanced imaging techniques. Next, it addresses
he comparable challenges of object detection in astronomy and cell
egmentation algorithms in biomedical imaging. The discussion then
oves to comparing the literature on generative models and anomaly
etection algorithms, identifying common challenges across both fields.
y drawing these parallels, the research underscores the adaptability

nd versatility of CNNs as indispensable tools in overcoming shared

2 
obstacles. The paper concludes by discussing future paths for interdisci-
plinary collaborations between astronomers and biomedical scientists,
emphasizing the potential for mutual advancements through shared
knowledge and techniques.

1.1. Convolutional Neural Networks (CNNs)

CNNs are a class of deep learning algorithms that excel at processing
structured grid data, such as images, by capturing and representing
ntricate patterns and structures. This capability has made CNNs in-
ispensable across various applications, including image and video
ecognition, medical image analysis, and astronomical data interpre-
ation. Their robustness and versatility highlight their significance as

powerful tools in both scientific research and practical applications.
The architecture of CNNs comprises convolutional layers, pooling lay-
ers, and fully connected layers, which work together to enable the
network to automatically and adaptively learn spatial hierarchies of
features from input images. In the following, we provide more details
on these layers. In Fig. 1, we provide an overview of the CNN main
layers and their functionality.

Convolution Layer: A convolutional layer is a fundamental building
lock of CNNs designed to process and extract features from input data,
articularly images. It operates by applying a set of learnable filters,
ernels, across the input data in a sliding window fashion. See Fig. 1 for

a graphical representation of convolution layer. Kernels are typically
smaller than the input dimensions, move across the input data with
a defined stride, and padding (adding extra pixels around the input
image or feature map to maintain spatial dimensions) can be added
to maintain the spatial dimensions.

Max Pooling: A Max Pooling (maximum pooling) layer is typically
positioned after convolutional layers in a CNN to perform dimension-
ality reduction and feature extraction. The operation of a max pooling
layer involves within the sliding a window, over the feature map and
selecting the maximum value within each window. This process effec-
tively downsamples the input representation, reducing its dimensions
while retaining the most significant features. By doing so, max pooling
reduces the computational load of the network, making it more efficient
and faster. Additionally, it enhances the robustness of the network by
maintaining the most activated features, which are usually the most
important for distinguishing patterns in the data.

Dense Layer: Also known as a fully connected layer, it is a critical
component in neural network architectures. Its name derives from the
fact that each neuron in the layer is connected to every neuron in the
preceding layer, facilitating the combination of features extracted from
earlier layers. Dense layers are primarily used to transition from spatial
feature maps to a final classification or regression output, making them
essential for learning complex mappings between inputs and outputs
in neural networks. Typically, dense layers are followed by activation
functions, which introduces non-linearity into the network, enabling it
to model intricate relationships between inputs and outputs. The choice
of activation function is crucial as it influences the network’s training
dynamics and overall performance. Readers are encouraged to refer
to Sharma et al. (2017) for a more in-depth exploration of activation
functions.

2. MRI and radio interferometry imaging

Magnetic Resonance Imaging (MRI) plays a crucial role in medical
imaging by providing detailed anatomical information essential for
accurate diagnosis and treatment planning. However, MRI can be slow
due to the need for high-resolution images and precise signal sampling.
To address this issue, significant advancements such as Parallel Imaging
(PI) and Compressed Sensing (CS) have been made. PI utilizes arrays
of receiver coils to acquire multiple signals simultaneously, preserving
image quality while accelerating imaging by exploiting spatial sensitiv-

ity information. On the other hand, Compressed Sensing leverages the
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Fig. 1. This figure represents the functionality of CNNs considering the convolution and maxpooling layers.
Table 1
A comprehensive examination of MRI and Radio Astronomy perspectives across different aspects.

Aspect MRI Radio astronomy

Purpose Medical imaging for diagnosis and research Studying celestial objects and phenomena in the universe

Imaging Target Internal structures of the human body Distant astronomical objects and celestial bodies

Frequency Range Radio frequencies Radio wavelengths (typically longer than those used in MRI)

Instrumentation MRI scanner Radio telescopes

Signal Source Hydrogen nuclei in the body Electromagnetic radiation from celestial sources

Detection Mechanism Measurement of RF signals emitted by
excited nuclei

Capture and analysis of radio waves emitted by celestial objects

Spatial Resolution High spatial resolution, often sub-millimeter Spatial resolution vary based on the size and design of the radio
telescope

Temporal Resolution High temporal resolution, capturing
dynamic processes

Temporal resolution depends on observation duration and
instrument capabilities

Applications Medical diagnosis, soft tissue imaging,
functional studies

Studying galaxies, pulsars, quasars, cosmic microwave
background, etc.

Technological Challenges Minimizing artifacts, optimizing
signal-to-noise ratio

Managing interference, achieving high sensitivity, and mitigating
atmospheric effects

Examples of Discoveries Visualization of internal organs, detection of
abnormalities

Discovery of pulsars, mapping cosmic microwave background,
identification of distant galaxies

Usage in Different Fields Mainly in medicine and biological research Astronomy, astrophysics, and cosmology

Data Analysis Techniques Image reconstruction, signal processing for
clinical interpretation

Spectroscopy, interferometry, data processing for astronomical
interpretation

Impact on Society Significant impact on medical diagnostics
and healthcare

Deepening our understanding of the universe, contributing to
astrophysical knowledge

Collaboration Opportunities Collaboration with medical professionals
and biologists

Collaboration with astrophysicists, astronomers, and cosmologists

Key Technologies Superconducting magnets, RF coils,
advanced image processing algorithms

Large radio dishes, interferometers, sophisticated data analysis
software
sparsity of MRI signals, enabling rapid data acquisition and reconstruc-
tion from undersampled k-space data (k-space, often referred to as the
measurement space, is a conceptual space representing spatial frequen-
cies.). By exploiting redundancy in the image domain, CS algorithms
accurately reconstruct high-quality images from fewer measurements,
substantially reducing scan times. With the advent of AI, new CS
algorithms leverage deep learning and CNNs to achieve this from even
fewer measurements, enhancing efficiency and reconstruction quality
further.

Simultaneously, in radio astronomy, the impracticality of construct-
ing a single massive telescope — necessary to achieve the high res-
olution needed to observe fine details in distant celestial objects —
led to the adoption of interferometry. By combining signals from mul-
tiple smaller telescopes, interferometry effectively simulates a much
larger aperture, providing the desired resolution. This approach in-
volves collecting signals in k-space (Fourier space), a conceptual space
representing spatial frequencies, similar to MRI. The complexities of
signal correlation and reconstruction in k-space necessitate advanced
computational methods to achieve precise images of the cosmos. Inter-
ferometric arrays, such as the Very Large Array (VLA) and the Atacama
Large Millimeter/submillimeter Array (ALMA), collect vast amounts
3 
of data in k-space that require sophisticated algorithms for accurate
image reconstruction. These methods must account for factors such
as signal noise, atmospheric distortion, and the relative positions of
the telescopes, making the reconstruction process highly complex and
demanding.

Table 1 represents an overview of the comparison between radio
astronomy and MRI, two fields that utilize radio frequencies for distinct
purposes. In MRI, radio frequencies are employed to interact with
hydrogen nuclei (protons) present in the human body. These hydrogen
nuclei possess a property called spin, which makes them behave like
tiny magnets when subjected to a magnetic field, such as the one
generated by the MRI scanner. On the other hand, radio astronomy
harnesses radio frequencies to capture and interpret electromagnetic
radiation from celestial sources, contributing to our understanding of
the Universe. Table 1 underscores the unique applications and tech-
nological innovations in both MRI and radio astronomy, showcasing
their pivotal roles in advancing scientific knowledge and technology. In
the following, we offer foundational insights into radio astronomy and
MRI. Readers interested in delving deeper into MRI signal acquisition
and image reconstruction are encouraged to consult (Ramzi, 2022),
while (van der Veen et al., 2019) offers additional insights into imaging
within radio interferometry.
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Fig. 2. Radio Interferometry enhances astronomical observations by combining signals
from multiple radio receivers, optimizing resolution and sensitivity. In-phase combina-
tion and varying baseline lengths contribute to constructive interference, allowing for
versatile imaging of celestial structures.

2.1. Fundamentals of radio interferometry

Radio interferometry measures the sky brightness distribution us-
ing aperture synthesis technique. Aperture synthesis, also known as
interferometry, is a method in radio astronomy that allows for high-
resolution imaging of celestial objects without needing a single, ex-
tremely large telescope. This technique involves multiple radio tele-
scopes spread over a large area, working together as an array to collect
radio signals from astronomical sources (Thompson et al., 2017). One
key concept in aperture synthesis is the u-v plane, also known as
the visibility plane, which is a mathematical representation of the
spatial frequency domain (u and v). It is related to the baseline length
(B), the angle between the baseline and the source in the sky 𝜃,
and the wavelength of the observed radiation 𝜆. Fig. 2 illustrates the
principles of radio interferometry, where astronomical observations
are enhanced by combining signals from multiple radio receivers.
By aligning the signals in-phase, the system maximizes constructive
interference, thereby improving the resolution and sensitivity of the
observations. The varying lengths of baselines — the distances between
different receivers — allow the interferometer to capture a wide range
of spatial frequencies. This versatility enables detailed imaging of
celestial structures across various scales, from small, compact sources
to expansive, diffuse regions in space. The spatial frequencies for two
orthogonal directions are given by:

𝑢 = 𝐵 𝑠𝑖𝑛(𝜃)∕𝜆, 𝑣 = 𝐵 𝑐 𝑜𝑠(𝜃)∕𝜆

Visibility data of spatial frequencies 𝑢, 𝑣 can be expressed as follows:

𝑉 (𝑢, 𝑣, 𝑤) = ∭ 𝐼(𝑙 , 𝑚, 𝜈) 𝑒−2𝜋 𝑖(𝑢𝑙+𝑣𝑚+𝑤(
√

1−𝑙2−𝑚2−1)) 𝑑 𝑙 𝑑 𝑚 𝑑 𝜈 (1)

It is a function of sky brightness distribution 𝐼(𝑙 , 𝑚, 𝜈) or 𝐼𝑜𝑏𝑠, angular
coordinates 𝑙, 𝑚 and frequency 𝜈. Eq. (1) represents the complete
forward problem in which we relate the visibility data to the surface
brightness distribution of the sky. However, due to a limited number
of baselines, sparse sampling of the 𝑢− 𝑣 plane occurs, leading to gaps
and incomplete information on certain angular scales. Here, we show
the imposed sampling by the function 𝑆(𝑢, 𝑣)𝑆(𝑤), which affects the
observed visibilities by Eq. (2). In practice, the distribution of baselines,
telescope locations, and observation strategy collectively determine the
sampling function. The goal is to sample the u-v plane adequately to
ensure proper coverage of spatial frequencies.
𝑉 ′(𝑢, 𝑣, 𝑤) = 𝑉 (𝑢, 𝑣, 𝑤) ⋅ 𝑆(𝑢, 𝑣)𝑆(𝑤) (2)

4 
To make the image of the sky observed by radio waves, we need to
solve the inverse imaging problem given sampled 𝑉 ′(𝑢, 𝑣, 𝑤) to get an
approximation of 𝑉 (𝑢, 𝑣, 𝑤) and therefore 𝐼(𝑙 , 𝑚, 𝜈). The inverse Fourier
transform to get an estimation of the sky surface brightness distribution
is as follows:

𝐼 ′(𝑙 , 𝑚, 𝜈) = ∭ 𝑉 ′(𝑢, 𝑣, 𝑤) 𝑒−2𝜋 𝑖(𝑢𝑙+𝑣𝑚+𝑤(
√

1−𝑙2−𝑚2−1)) 𝑑 𝑢 𝑑 𝑣 𝑑 𝑤 (3)

In summary, the fundamentals of radio astronomy, particularly the
aperture synthesis and interferometry equations, showcase the intri-
cate processes involved in capturing and reconstructing high-resolution
images of celestial objects. Remarkably, these methods share signif-
icant similarities with the principles underlying MRI in the medical
field, which will be discussed in the next section. Both disciplines
rely on capturing raw data in a conceptual space (uv-space in radio
astronomy and k-space in MRI). This data must then undergo complex
post-processing steps to transform it into meaningful images. The so-
phisticated algorithms used in both fields, whether to correct for signal
noise, atmospheric distortion, or to exploit data sparsity, underscore
a shared reliance on advanced computational techniques. These par-
allels highlight a fascinating intersection between the two domains,
emphasizing the universal challenges and innovative solutions in signal
acquisition and image reconstruction, demonstrating how both fields
utilize the same foundational backbone to achieve their goals.

2.2. Fundamentals of MRI imaging

Magnetic Resonance Imaging (MRI) is a medical imaging technique
that uses strong magnetic fields and radio waves to generate detailed
images of the internal structures of the body. It serves as a pivotal
imaging modality in medicine, demonstrating extensive applications
crucial for diverse medical purposes. For instance, in the diagnosis and
management of epilepsy (Bernasconi et al., 2019), brain activity as-
sessment (Zhao et al., 2016), brain tumors detection (Kalpathy-Cramer
et al., 2014) and segmentation (Neve et al., 2022), liver superior
contrast imaging providing both morphologic and physiologic infor-
mation (Vu et al., 2018), cancer diagnosis (Andraş et al., 2021), etc.
Advanced MRI techniques such as perfusion MRI are sensitive to mi-
crovasculature and are beneficial in tumor classification (Zacharaki
et al., 2009), stroke region identification, and characterizing various
diseases.

Similar to Radio Interfrometry Imaging (Section 2.1), fundamental
principles of MRI are particularly rooted in the mathematical concept
of Fourier transforms (Greengard and Lee, 2004). The magnetic field
gradients are applied in different directions during the MRI scan. These
gradients cause variations in the resonance frequency across space,
leading to different frequencies in the acquired signals. The mathemat-
ical operation decomposes functions of time or space into constituent
frequencies, facilitating the conversion of raw MRI data into mean-
ingful images. The following equation exemplifies the mathematical
operations:

𝑉 (𝑘𝑙) = ∭ 𝜌(𝑟)𝑒−𝑖2𝜋 𝑘𝑙𝑟 𝑑3𝑟 (4)

In Eq. (4), 𝑉 (𝑘𝑙) represents the MRI signal acquired at a specific fre-
quency 𝑘𝑙 along the 𝑘𝑙 axis in k-space. 𝜌(𝑟) shows the spatial distribution
of nuclear spin density within the imaged object, where 𝑟 is a three-
dimensional vector representing spatial coordinates. It describes how
the MRI signal in k-space is obtained through the Fourier transform of
the spatial distribution of nuclear spin density within the imaged object.

Collecting all the signals in MRI is hindered by several practical
and physical constraints such as time constraints, patient comfort and
compliance, susceptibility to motion artifacts, safety concerns, data
storage and processing challenges. Sampling in Fourier space is an
effective solution to shorten the examination time. Considering the
sampling function of 𝑆(𝑘𝑙), we have:
𝑉 ′(𝑘𝑙) = 𝑉 (𝑘𝑙) ⋅ 𝑆(𝑘𝑙) (5)
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and

𝜌′(𝑟) = ∭ 𝑉 ′(𝑘𝑙)𝑒−𝑖2𝜋 𝑘𝑙𝑟 𝑑3𝑘𝑙 (6)

Eq. (6) illustrates the inverse Fourier Transform operation applied to
he sampled 𝑉 ′(𝑘𝑙) to reconstruct the MR image. In the subsequent sec-
ion, we elaborate on the utilization of artificial intelligence techniques

to reconstruct 𝜌′(𝑟) in a manner that closely resembles 𝜌(𝑟).

2.3. MRI and RI similarities

MRI and radio astronomy share fundamental similarities in the
necessity for careful sampling strategies and the subsequent challenges
associated with collecting sampled data. In MRI, the process of collect-
ing signals involves spatial encoding through k-space sampling, where
inadequate sampling can result in aliasing artifacts and compromise
image quality. Similarly, in radio astronomy, the u-v plane serves as
the Fourier conjugate of the sky brightness distribution, and proper
sampling is vital for accurate image reconstruction. The challenge
lies in optimizing sampling density while considering time constraints
and minimizing artifacts. While more emphasized in radio astronomy,
both fields contend with the trade-offs between spatial and temporal
resolution, aiming to achieve a balance that guarantees the reliability
of the acquired data. A few studies in the literature have already
mentioned these similarities in an interdisciplinary manner (Monnier
et al., 2022; Terris et al., 2023; Farrens et al., 2020; Putzky and Welling,
2019).

In MRI, the limited number of radio frequency coils or sensors, akin
o the limited antenna pairs in RI, poses a challenge regarding the num-
er of signals that can be simultaneously acquired. Advanced sampling
echniques, such as parallel imaging and compressed sensing (CS), aim
o overcome this limitation. Parallel imaging utilizes multiple coils to
cquire signals, simultaneously reducing the total acquisition time (for
xample (Hamilton et al., 2017)). In radio astronomy, parallelization
oncepts analogous to parallel imaging find expression in beamforming
r phased array processing techniques. Unlike the traditional use of
arallel imaging in MRI, RI leverages the synergy of multiple antennas
o capture signals from celestial sources. Through beamforming, these
ndividual signals are intelligently combined to enhance the sensitivity
nd resolution of the array. Beamforming effectively synthesizes a ‘‘vir-
ual’’ antenna or beam that is steered electronically towards a specific
oint or region in the sky. It enables a broader field of view, facili-
ating simultaneous observations of multiple sky regions. The benefits

extend to rapid surveying, allowing astronomers to cover expansive
areas efficiently and dynamic tracking of celestial phenomena such
as moving sources or transient events (Chen et al., 2021). While not
a direct transplant of parallel imaging, the parallelization strategies
mployed in radio astronomy, particularly through beamforming, con-
ribute significantly to radio telescope arrays’ effectiveness, versatility,
nd innovative potential.

Conversely, compressed sensing exploits the sparsity of information
to recover the complete image from undersampled data efficiently. The
utilization of compressed sensing in both radio astronomy (Wenger
et al., 2010; Wiaux et al., 2009; McEwen and Wiaux, 2011) and

RI (Jaspan et al., 2015; Lustig et al., 2008, 2007) exhibits intriguing
parallels. In both contexts, CS promises to significantly accelerate data
acquisition, offering a common advantage of reduced measurement
requirements. In radio astronomy, this translates to more efficient
observations, particularly in wide-field surveys, where the sparsity of
celestial sources enables the reconstruction of detailed images from
 sparse set of measurements. Similarly, in MRI, the potential for
ubstantial reductions in data acquisition time is a key benefit, con-

tributing to enhanced patient comfort and minimizing the impact of
motion artifacts during scanning. Deploying CS in radio astronomy
and MRI presents researchers with common challenges. One shared
concern lies in the delicate balance between data reduction and image
 d
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quality. The computational complexity of CS algorithms poses another
shared challenge, requiring careful consideration to ensure the timely
processing of data in both fields. As radio astronomy and MRI re-
searchers navigate these shared challenges, collaborative efforts may
foster cross-disciplinary insights, ultimately advancing the efficient use
of compressed sensing across the broader spectrum of imaging sciences.

Other comparable challenges in both MRI and radio astronomy
arise from various sources of noise that can compromise the quality
of acquired signals and subsequently impact image fidelity. Common
noise types, such as thermal noise originating from electronic compo-
nents, atmospheric influences, and radio frequency interference, pose
challenges in maintaining signal integrity. In MRI, factors like patient
motion and susceptibility-induced artifacts contribute to noise, while RI
contends with calibration errors and ionospheric effects. These shared
challenges manifest in reduced signal-to-noise ratios, decreased spa-
tial and temporal resolution, and potential artifacts. Addressing these
noise-related issues through advanced signal processing techniques and
meticulous system calibration is essential for optimizing the quality and
reliability of imaging outcomes in both domains.

In conclusion, the common challenges encountered in optimizing
sampling strategies in MRI and radio astronomy underscore the in-
terdisciplinary nature of imaging sciences. Both fields grapple with
the critical importance of precise signal acquisition, recognizing that
inaccuracies in capturing phase-encoded signals can lead to undesirable
truncation artifacts. Additionally, shared obstacles related to noise,
including inherent thermal noise and external interference, further
emphasize the collective endeavor to maintain signal fidelity amidst
nvironmental complexities. Nonetheless, there is promise in innova-

tive methodologies such as parallel imaging and compressed sensing.
These approaches offer potential solutions to expedite data acquisition
and reduce measurement requirements. However, their implementation
necessitates careful consideration of the delicate balance between data
reduction and preserving image quality. Moreover, the computational
demands of these techniques pose additional challenges that must be
navigated.

2.4. AI role to overcome the challenges

AI algorithms, particularly CNNs, have emerged as valuable tools for
addressing noise and sampled data challenges in both MRI and RI. In
the context of MRI, adaptive sampling techniques have been introduced
to optimize data acquisition strategically. For instance, recent studies
have explored the combination of under-sampling pattern optimization
with content-based reconstruction networks, leveraging a pixel atten-
tion mechanism to extract multi-scale features (Yu et al., 2023; Yang
et al., 2023). Additionally, CNNs can mitigate motion artifacts during
MRI data acquisition by predicting and correcting distortions caused
y involuntary movements (Ben Yedder et al., 2021). Conversely, in

RI, where fixed antenna positions restrict sampling strategies, CNNs are
utilized for quality control in observed images (Radford et al., 2023).

NNs also excel in denoising applications, effectively distinguishing
stronomical signals from unwanted noise components. Studies such
s (Rezaei et al., 2022; Vafaei Sadr et al., 2019) exemplify using CNNs

to differentiate noise from genuine signals emitted by radio sources.
The following section delves into the comparative landscape of

utilizing CNNs for image reconstruction in MRI and RI building upon
the shared attributes outlined in Section 2.3. It explores the disparity
in research attention between the two fields, highlighting the domi-
nance of CNN-based algorithms in MRI reconstruction methodologies
ontrasted with their relatively underexplored application in RI.

2.4.1. Image reconstruction with CNNs
The literature underscores a notable discrepancy in using CNN-

based algorithms for converting signals from the Fourier domain (k-
space) to the image domain between MRI and radio astronomy. MRI
emonstrates a greater emphasis and research activity in this area
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compared to radio astronomy. This variation can be attributed to sev-
eral factors, including the historical dominance and clinical relevance
of MRI in medical imaging, prompting extensive research to enhance
its reconstruction techniques. Conversely, despite its fundamental role
in astrophysics, radio astronomy encounters fewer studies employing
CNN-based algorithms for k-space to image domain conversion, possi-
bly due to the distinct challenges of radio interferometry data and the
evolving nature of the field. This difference highlights the importance
of exploring and adapting advanced CNN-based approaches in radio
astronomy to capitalize on the benefits observed in the MRI domain.
In the following, we delve into key research contributions for image
reconstruction in both fields. Table 2 provides a comparative overview
f state-of-the-art algorithms for image reconstruction in both MRI and
I. Please note that this table provides only an overview of a handful
f algorithms. There are many researches in the literature such as

those discussed in Montalt-Tordera et al. (2021) that explore advanced
mage reconstruction techniques from k-space in MRI. This includes the
evelopment and application of methods such as compressed sensing,
eep learning-based algorithms, and iterative reconstruction techniques
hat aim to improve image quality, reduce scan times, and enhance
iagnostic accuracy. Another example is presented in Pezzotti et al.

(2020), which effectively addresses the challenge of undersampling k-
sampled data by accurately reconstructing high-resolution images while
minimizing common issues such as noise and blurring. Notably, this
model was evaluated in the context of the ‘‘FastMRI’’ challenge, a
ollaborative competition sponsored by Facebook AI Research and NYU
angone Health, which aimed to advance the state-of-the-art in MRI
mage reconstruction (Zbontar et al., 2018).

The application of AI specifically for reconstructing RI images in
the Fourier domain remains a relatively untapped area, suggesting
significant potential for breakthroughs in the field. Although there are
some examples in the literature, such as (Rezaei et al., 2022; Chiche
t al., 2023; Terris et al., 2023; Connor et al., 2022), that explore image

reconstruction within the image-domain, the use of AI in reconstructing
RI images from the Fourier domain has been limited. This is partly
because traditional RI image reconstruction has largely focused on
mage-domain techniques like deconvolution methods. The challenges
f reconstructing images from interferometric data have led to the
evelopment of sophisticated algorithms like WSClean (Offringa et al.,

2014). WSClean utilizes techniques such as ‘‘w-stacking’’ to correct for
he Earth’s curvature, ensuring accurate sky images by dividing data

into layers based on their ‘‘w’’ coordinate — a third dimension in the
u-v-w coordinate system used in interferometry — and combining them
to produce a clearer image. While radio astronomy must account for
arth’s curvature to produce accurate images, MRI instead focuses on
hallenges like noise reduction and resolution enhancement. Before the

advent of deep learning, MRI image reconstruction primarily depended
on classical signal processing and mathematical techniques like the in-
verse Fourier transform and compressed sensing algorithms. However,
CNNs and deep learning algorithms have increasingly surpassed these
traditional methods, offering superior and faster results for tasks akin
to deconvolution, though in MRI, these processes are typically referred
o as ‘‘denoising’’.

The transition to utilizing AI in this context represents a paradigm
hift, requiring novel algorithmic developments and computational
rameworks tailored to the unique characteristics of
ourier-transformed RI data. Several avenues for improvement can be
ursued to enhance the current state of research in this area. One
pproach involves refining AI architectures better to accommodate the
omplex frequency-domain data inherent in RI imaging. This may entail
he development of specialized neural network architectures capable of
ffectively processing Fourier-transformed data while preserving rele-
ant spatial information. Moreover, collaborative efforts with scientists

from other domains, such as MRI, can contribute to advancing the field
f RI image reconstruction. MRI researchers have expertise working
 b
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with Fourier-transformed data and have developed sophisticated recon-
struction techniques tailored to MRI imaging modalities. By integrating
perspectives from multiple disciplines, including computer science,
medical imaging, and signal processing, collaborative efforts can drive
the development of comprehensive and versatile solutions capable of
addressing the complex challenges inherent in RI image reconstruction.
A great example of such interdisciplinary work is Farrens et al. (2020)
in which the authors have developed an open source image processing
package, namely PySAP for various fields including MRI and RI. It
offers fast wavelet transforms, sparse image transforms and modular
optimization tools.

3. Segmentation and object detection

Segmentation models in computer vision are essential tools for
classifying individual pixels within an image, producing segmenta-
tion masks that assign each pixel to a predicted class. Unlike ob-
ject detection, which relies on bounding boxes to identify objects
and their locations, segmentation operates at the pixel level and pro-
ides detailed contour and region information. This information is
mportant for follow-up morphological and texture analysis of the
egmented objects and brings many biological-related insights. The
ncoder–decoder architecture is predominantly studied and applied in

biomedical segmentation. In biomedical imaging, cell segmentation is
ritical in identifying and separating individual cells within an image.
e will use cell segmentation as an example to explore the develop-
ent of deep learning models solving segmentation problems. Accurate

ell segmentation is particularly vital in cancer studies, where it aids
n quantifying tumor cells and offers insights into growth patterns
nd treatment responses (Ranjbarzadeh et al., 2023). Similarly, cell

segmentation contributes to the exploration of neural networks in
neurology, deepening our understanding of brain function and facil-
itating personalized medicine through tailored treatment plans based
on individual cell characteristics (Das et al., 2022). Furthermore, in
infectious disease research, cell segmentation assists in uncovering the
ynamics of pathogens within host cells.

Object detection techniques, on the other hand, have revolutionized
astronomical research by automating the identification and analysis of
celestial objects across vast datasets. Examples include asteroid detec-
tion and tracking (Du et al., 2024) and transient detection (Liu et al.,
2023), which identifies temporary astronomical phenomena. Likewise,
in medical and biomedical imaging, object detection is applied in tasks
such as tumor detection (Saeedi et al., 2023) and breast cancer detec-
tion (Mahmood et al., 2020). The parallels between object detection in
stronomy and cell segmentation in biomedical imaging underscore the
niversal applicability and transformative potential of CNNs. Table 3

offers an overview of the selected studies exploring the applications of
bject detection and segmentation algorithms. Highlighted within are
otable examples of CNN-based algorithms widely utilized across both
stronomical and (bio)medical fields. Fig. 3 presents an example illus-
rating the application of object detection and segmentation algorithms

in both astronomy and (bio)medicine. This figure emphasizes the simi-
larities between the data in these two fields and highlights the potential
challenges and problems they share. On the left, Amgad et al. (2022),
ocus on generating accurate annotations for cell nuclei to generate a

dataset for segmenting cell nuclei in breast cancer histology. Similarly,
in He et al. (2021), the authors use object detection algorithms to study
celestial objects by classifying them into quasars, stars, and galaxies.

3.1. Object detection

CNNs and their variations have become powerful tools, providing
obust solutions for object detection tasks in both astronomy and
edical science. In the following section, we focus on object detec-

ion algorithms in these fields. However, given the close relationship
etween object detection and instance segmentation algorithms, we
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Table 2
A comparative study of the image reconstruction techniques being used in MRI and Radio Interferometry (RI) from Fourier (k-space) domain.

Study Year Field Main contribution Challenges

Farrens et al.
(2020)

2020 MRI & RI An open source package for image
reconstruction, fast wavelet transforms and
optimization algorithms applicable to diverse
imaging domains.

GPU implementations, a wider range of
optimization algorithms and incorporating AI
algorithms are missing

Li et al.
(2024)

2024 MRI Encoding Enhanced (EN2) CNN for highly
undersampled data reconstruction. Utilizing
convolution along either the frequency or
phase-encoding direction, resembling the
mechanisms of k-space sampling.

limited validation: only on lung MRI with
Cartesian undersampling.

Yang et al.
(2023)

2023 MRI Optimizing k-space under-sampling pattern only applicable on single-coil data, potential biases
from synthesis network, and achieving robustness
in different imaging scenarios.

Zibetti et al.
(2022)

2022 MRI The joint learning of sampling patterns and
variational network parameters aims to improve
MRI reconstruction by acquiring information
from selective sample positions in k-space and
eliminating undersampling artifacts.

Algorithm Complexity and sensitivity of the
hyper-parameters in optimization.

Bahadir et al.
(2020)

2020 MRI LOUPE: an end-to-End learning framework that
can determine where to sample in k-space and
reconstructing under-sampled scans
simultaneously

consideration of physical implementation costs,
extension to non-Cartesian settings, and refining
the optimization process in relaxation of
thresholding operation.

Geyer et al.
(2023)

2023 RI CNN is being used totally in k-space. The input
is sampled k-space radio data while the output
is fully sampled. GAN has been used to
simulate real looking radio galaxies.

only perfectly calibrated data is being used.

Taran et al.
(2023)

2023 RI Conducting source localization directly from
sampled k-space data. Closely located sources
have also been considered. High completeness
has been reported in noisy data.

Generalization of the algorithm is not tested and
the real data validation is missing.

Schmidt
et al. (2022)

2022 RI inspired by super-resolution models,
reconstructs k-space (amplitude and phase) data

assumption on galaxy morphology might be
simplistic.
Fig. 3. This figure highlighting the similarities between the datasets in the astronomical and (bio)medical fields and the common challenges they face. The left panel (Amgad
et al., 2022) is an annotation effort for cell nuclei in breast cancer histology. While on the right, He et al. (2021) employs object detection algorithms to classify celestial objects
into categories such as quasars, stars, and galaxies.
also highlight the applications of these methods across both disciplines.
Mask R-CNN (He et al., 2017), Faster R-CNN (Ren et al., 2016), and
YOLO (You Only Look Once) are among the popular object detection
and instance segmentation algorithms that have been used in both
fields.

Mask R-CNN is a versatile framework that delivers multiple outputs
for object detection and segmentation tasks. It classifies objects by
determining the object class within each bounding box and enhances
the accuracy of the bounding box coordinates. Moreover, Mask R-
CNN creates segmentation masks that accurately delineate an object’s
shape at the pixel level, providing a detailed representation of its
7 
contours. In biomedicine, an example of Mask R-CNN’s application is
its use as a nucleus segmentation model citeLee2022. In astronomy,
Mask R-CNN has been employed in various applications, including the
classification, localization, and segmentation of galaxies based on their
morphology (Farias et al., 2020), offering pixel-level segmentation for
precise analysis.

Faster R-CNN operates through a two-stage process. Initially, it
employs a region proposal network (RPN) to generate region proposals
efficiently (stage one), followed by a classifier trained to predict object
classes and refine bounding box coordinates (stage two). Its efficiency
in medical imaging is evident in tasks like tumor detection (Mahmood
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Table 3
This table presents an overview of a few studies on object detection and segmentation in both astronomy and biomedicine applications. YOLO, Fast R-CNN, UNet and its variations
are among the most popular algorithms in both fields.

Study Year Field Main contribution Challenges

Cornu et al.
(2024)

2024 Astronomy,
Object
Detection

efficient in crowded fields and detecting small
blended objects, by introducing custom
elements and adaptations to the YOLO
framework.

Real-time computation load for astronomical image
viewers and services.

He et al.
(2023)

2023 Astronomy,
Object
Detection

Using multi-scale feature fusion modules and
transformers.

Generalizability to different types of celestial
bodies and imaging conditions, hyperparameter
optimization.

Rezaei et al.
(2022)

2022 Astronomy,
Segmentation

addressing both detection and characterization
of celestial sources, improving detection
performance and purity of detected objects.

segmenting low SNR objects, handling complex
source structures and generalizability to various
astronomical images.

Vafaei Sadr
et al. (2019)

2019 Astronomy,
Object
Detection

Enhances SNR of sources in the original map.
Then uses dynamic blob detection to detect
sources.

Generalizability to the location and size of the
region noise estimation, hyperparameter
optimization.

Oktay et al.
(2018)

2018 Biomedicine,
Segmentation

Attention Unet introduces attention gates to
highlight important features to select the
regions of interest.

The experiments with residual connections do not
provide a significant performance improvement.

Chen et al.
(2021)

2021 Biomedicine,
Segmentation

Transformers provide stronger encoders.
TransUNet has superior performance in medical
segmentation.

High computational requirements and long training
time

Stringer et al.
(2020)

2020 Biomedicine,
Segmentation

Cellpose is a generalized model for cell
segmentation without requiring model
retraining and parameter optimization.

Further improvement to segment irregularly
shaped cells.

Schmidt
et al. (2018)

2018 Biomedicine,
Segmentation

StarDist is designed for accurate dense cell
segmentation and has fewer parameters to
train.

a parametric shape model can also result in only
segment nuclei with reasonable complete shape.
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et al., 2020), where its precision and accuracy are particularly ben-
eficial. Similarly, in astronomical imaging, Faster R-CNN showcases
ts versatility by accurately detecting galaxies (Cao et al., 2023) and
arious other celestial objects (Jia et al., 2020). The robust performance

and adaptability of Faster R-CNN make it an indispensable asset in both
medical and astronomical research endeavors.

In contrast, YOLO employs a single-stage process, dividing the input
mage into a grid and directly predicting bounding boxes and class

probabilities from each grid cell. Despite its simplicity compared to
Faster R-CNN, YOLO has found applications in medical and biomedical
imaging, such as breast cancer detection (Quan et al., 2023), brain
tumor detection (Safdar et al., 2020). In the field of astronomy, YOLO
as been utilized to identify and classify celestial objects (He et al.,

2023; Grishin et al., 2023).
Although numerous object detection algorithms exist beyond Mask

R-CNN, Faster R-CNN and YOLO, these two are highlighted here due
to their widespread adoption and notable successes in both medi-
cal and astronomical applications. Their effectiveness underscores the
importance of tailored algorithms capable of addressing the unique
challenges posed by these domains.

3.2. Segmentation

Segmentation of cells and nuclei is a crucial step in many biolog-
ical applications, aiding in the understanding of diverse phenomena
within biological systems. Deep learning models have significantly
nhanced the accuracy and efficiency of cell segmentation. Similarly,
n astronomy, segmentation is essential for analyzing and interpreting
ast and complex datasets. It enables researchers to isolate and examine
pecific structures within cosmic images, facilitating the identification
nd segmentation of large-scale cosmic structures, the delineation of
tellar and galactic features, and the detection of celestial objects
midst noisy backgrounds. The precision and efficiency provided by
egmentation are vital for advancing our knowledge of both biological
ystems and the universe, supporting discoveries in various fields, from
tellar formations to the dynamics of galaxies.

U-Net and its variants have been extensively studied and used in
oth field. In Fig. 4, we present schematic diagrams of U-Net and its
 w
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variants, which are discussed in the following. U-Net was originally
ntroduced by Ronneberger et al. (2015) to improve cell segmentation

and tracking performance in 2015. Its encoder–decoder structure is
able to extract useful context and map it back to the output segmen-
tation mask. Several well-known U-Net based variants were proposed
subsequently to improve the segmentation performance and efficiency
further. U-Net++ (Zhou et al., 2018) enhanced the connection between
encoder and decoder networks using nested and dense skip pathways.
In this manner, the model bridges the semantic gap between encoder
and decoder feature maps. It incorporates deep supervision to enable

odel pruning and dense skip connections to improve gradient flow
uring training.

U-Net++ has been used to segment Bacillus subtilis cells from
icroscope images with low contrast and fuzzy edge information (Kong

et al., 2023). Similarly, U-Net and its variants have made significant
ontributions to astronomy. For instance, U-Net has been employed

to segment large-scale structures in cosmic simulations (Aragon-Calvo,
2019), while U-Net++ has been particularly effective in segmenting
filamentary structures within the interstellar medium (Zavagno et al.,
2023). Filamentary structures in astronomy refer to the thread-like
formation of gas and dust within the interstellar medium, which are
often associated with star formation regions.

Attention U-Net (Oktay et al., 2018) is another influential variant
from U-Net. It has been instrumental in addressing the segmentation
challenges posed by overlapping nuclei. Stacked U-Nets (SUNets) (Kong
et al., 2020) employ a two-stage learning framework to segment both
nuclei regions and the overlapping areas between them, merging the
results to achieve precise instance segmentation in histological im-
ages. Similarly, Attention U-Net, combined with a graph-based random
walk (Zhang et al., 2020), has been effectively utilized to extract in-
tances from heavily overlapped cell clumps. Researchers have further

explored integrating attention mechanisms with other U-Net variants,
such as combining attention gates with U-Net++ to segment cells of
varying sizes in multi-modal high-resolution microscope images (Yang
and Chen, 2023).

We observed that the development of U-Net variants tightly follows
he advancements in computer vision. Google’s Inception architecture
as integrated with U-Net to help automatically choose the convolution
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Fig. 4. This figure illustrates several prominent segmentation algorithms used in astronomy and (bio)medical imaging. The Encoder-Decoder model compresses and reconstructs
images to segment detailed features. U-Net improves upon this by adding skip connections to retain high-resolution details, making it highly effective for biomedical tasks. U-Net
with Deep Supervision adds intermediate layer supervision to enhance accuracy. U-Net++ further refines this with nested skip pathways and additional supervision for improved
feature fusion and segmentation performance. Each architecture addresses specific challenges in both fields, showcasing their versatility.
layers in the deep network (Punn and Agarwal, 2020). U-Net was
modified to employ dense blocks to deepen the network architec-
ture (Cai et al., 2020). Dense downsampling and upsampling paths
help reuse the features and provide a better localization in the output
image. In Chen et al. (2021), TransUNet was introduced specifically
for medical image segmentation such as multi-organ segmentation and
cardiac segmentation. It is based on incorporating transformers into
U-Net architecture. A two-branch architecture including U-net and
TransUNet, was designed to segment overlapping nuclei (Tran et al.,
2022). With this combination, the model can extract both local and
global features for more robust segmentation.

In astronomy, these advanced segmentation techniques have also
found significant applications as well. TransUNet, which merges the
attention capabilities of transformers with the U-Net architecture, ex-
cels at capturing long-range dependencies and contextual information
within images. This makes it particularly adept at segmenting complex
and diverse structures, such as small impact craters on the Moon
with high precision (Jia et al., 2021). On the other hand, Swin-UNet
integrates the Swin Transformer with U-Net, providing a hierarchical
approach to image processing. Renowned for their efficiency in han-
dling multi-scale images, Swin Transformers are crucial for accurately
segmenting astronomical objects of varying sizes and structures. Swin-
UNet has demonstrated its efficacy in segmenting clouds from remote
9 
sensing images (Gong et al., 2023) and detecting astronomical targets
in multi-color photometry surveys (Jia et al., 2023), showcasing its ver-
satility and adaptability across different resolutions and complexities in
astronomical applications.

4. Generative models

Generative models are machine learning algorithms that allow com-
puters to generate data that mirrors real-world observations. They
have been instrumental in fields such as computer vision, signal and
natural language processing, and robotics. The underlying principle of
generative models is to learn the distribution and covariance of the
training set where the input consists of a random noise vector. There
are several types of generative models, including but not limited to,
Gaussian Mixture Models (GMM) (Liang et al., 2022), Hidden Markov
Models (HMM) (Lane, 1999), and more recently, Generative Adversar-
ial Networks (GANs), Variational Autoencoders (VAEs) (Doersch, 2016;
Girin et al., 2020; Pan et al., 2019; Saxena and Cao, 2021; Creswell
et al., 2018), and diffusion models (Gottwald et al., 2024; Croitoru
et al., 2023; Cao et al., 2024; Takagi and Nishimoto, 2023).

GANs usually consist of two deep learning models contesting in
a zero-sum game framework (Goodfellow et al., 2020). A generator
network 𝐺 that generates new data instances and a discriminator
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Fig. 5. Primary elements of Generative Adversarial Networks.
network 𝐷 that evaluates them (see Fig. 5). The generator network
inputs a random noise vector and outputs a data instance. The dis-
criminator network takes a data instance as input (real or generated
by 𝐺) and predicts the probability that the data instance was drawn
from the real data distribution. The generator is trained to maximize the
likelihood of the discriminator’s misjudgment. Each GAN configuration
is a minimax two-player game, and the networks are trained together
in an adversarial manner using back-propagation.

Diffusion Models are also a more recent class of generative models
that have gained significant popularity in recent years. They work by
progressively adding Gaussian noise to a dataset and then learning
to reverse this process (Song et al., 2020; Nichol et al., 2021). This
approach enables them to create remarkably accurate and detailed
outputs. In more refined terms, a Diffusion Model is a specific kind of
latent variable model that utilizes a stable Markov chain to establish
connections to the latent space (Song et al., 2020). This sequence subtly
infuses noise into the data, aiming to derive an estimated posterior of
the latent variables that match the dimensionality of the actual data.
A notable advantage of Diffusion Models is their independence from
adversarial training. The challenges associated with adversarial training
are widely recognized (Shafahi et al., 2019). Therefore, when there are
non-adversarial options available that offer similar performance and
training efficiency, they are typically the preferred choice.

4.1. Applications in medicine

Generative models have shown immense potential in medicine.
They are used for medical imaging, drug discovery, disease diagnosis,
and personalized treatment planning. By learning from large datasets
of patient information and medical images, these models can generate
new synthetic data, augment existing datasets, and even predict future
medical outcomes. In the following, we will explain the applications
of generative models in three key areas: medical imaging, synthetic
patient data, and drug discovery.

4.1.1. Medical imaging
Medical imaging benefits from generative models in different ways

such as image synthesis and augmentation, image-to-image transla-
tion, and super-resolution. The models have been used to synthesize
medical images and augment existing datasets, addressing privacy chal-
lenges and dealing with rare diseases, where the available data is
limited. By generating synthetic images that mimic the characteristics
of real patient data, these models can significantly increase the size
and diversity of datasets, improving the performance of diagnostic
algorithms (Rashid et al., 2019; Frid-Adar et al., 2018; Sandfort et al.,
2019).

The second application of generative models in medical imaging
is image-to-image translation, which involves converting one type of
medical image into another. For instance, GANs have converted CT
10 
scans into ‘‘pseudo’’ MRI scans and vice versa. This can be particularly
useful in situations where a certain type of scan is not available or is too
risky for a patient (Zhang et al., 2018; Jabbarpour et al., 2022; Chen
et al., 2024).

Generative models have also been used to enhance the resolution of
medical images, a process known as super-resolution. High-resolution
images can provide more detailed and accurate information, which is
crucial for diagnosis and treatment planning (Kaji and Kida, 2019).

4.1.2. Synthetic patient data
Generating synthetic patient data is another application of Genera-

tive models. It can address key challenges related to patient data pri-
vacy and scarcity. For instance, researchers can leverage these models
to generate synthetic electronic health records (EHRs) that maintain the
statistical properties of real EHRs without containing any identifiable
patient information (Jadon and Kumar, 2023; Yale et al., 2020). A sig-
nificant use case of this method involves creating artificial datasets for
cancer studies, leveraging the publicly accessible cancer registry data
provided by the Surveillance Epidemiology and End Results (SEER)
program. This research scrutinized three distinct methodologies for
creating synthetic data: models based on probability theory, imputation
models rooted in classification, and generative adversarial neural net-
works. The synthetic datasets, which included over 360,000 individual
cases, demonstrated the potential of generative models in medical
research (Goncalves et al., 2020). An alternate study underscored the
value of synthetic data in the healthcare sector, pinpointing seven
applications: research in simulation and forecasting, hypothesis gen-
eration, testing of methods and algorithms, research in epidemiology
and public health, advancement of health IT, educational programs and
training, public distribution of data sets, and strategies for data linkage.
The study provided evidence that synthetic data are helpful in different
aspects of healthcare and research (Gonzales et al., 2023).

4.1.3. Drug discovery
Drug discovery is a complex and time-consuming process to iden-

tify novel compounds with therapeutic potential. Traditionally, this
involves extensive experimental screening of large chemical libraries.
Generative models have emerged as powerful tools to accelerate this
process by predicting promising drug candidates, refining molecular
structures, and analyzing vast datasets (Blanco-Gonzalez et al., 2023;
Gupta et al., 2021). Their application has led to the discovery of novel
molecular structures with potential therapeutic properties (Bilodeau
et al., 2022; Abbasi et al., 2022).

In a remarkable demonstration of the power of artificial intelli-
gence, scientists employed the protein folding prediction model, Al-
phaFold, to identify a new CDK20 small molecule inhibitor, achieving
this breakthrough in a mere 30 days (Ren et al., 2023). This unprece-
dented speed was made possible by AlphaFold’s ability to accurately
predict protein structures, which is a critical step in drug discovery.
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Cyclin-dependent kinase 20 (CDK20) is an enzyme that plays a role
in cell cycle regulation and has been implicated in the progression of
certain cancers. By understanding the three-dimensional structure of
CDK20, researchers could design a molecule that would specifically
bind to and inhibit its function.

In a parallel development, Evotec, a German biotech company,
declared the initiation of a phase 1 clinical trial for an innovative
anticancer compound, a product of their collaboration with Exscientia.
This firm, based in Oxford, harnesses the power of AI for the discov-
ery of small-molecule drugs. Utilizing Exscientia’s AI design platform,
Centaur Chemist, they were able to pinpoint the drug candidate in a
span of just 8 months (Savage, 2021). Centaur Chemist likely employs
 combination of machine learning algorithms and cheminformatics
echniques to generate and evaluate potential drug molecules rapidly.
his significantly accelerated drug discovery process is a testament to
he potential of AI in this field.

To put things into perspective, the conventional drug discovery
rocess typically spans four to five years. Another instance is ex-
mplified by Insilico Medicine. This firm announced that, through a
tructure-based generative chemistry approach, they had identified a
otent, selective, and orally bioavailable small molecule inhibitor of
DK8, a promising candidate for cancer treatment. Li et al. (2023).

Structure-based drug design leverages the knowledge of a target pro-
ein’s structure to create molecules that precisely fit and interact with
t. By employing generative models, Insilico Medicine could efficiently
xplore the chemical space to discover a suitable inhibitor for Cyclin-

dependent kinase 8 (CDK8). CDK8 is a regulatory kinase that is part
f the mediator complex, playing a key role in the regulation of gene
ranscription and having implications in cancer progression.

4.2. Applications in astrophysics and cosmology

Generative models have found significant applications in Astro-
hysics and Cosmology, providing novel ways to simulate and under-
tand complex cosmic phenomena. In the following subsections, we
ill explore the applications of generative models in three key areas:
alaxy formation, universe simulation, and the simulation of events like

gravitational waves and Radio Frequency Interference (RFI) for better
detection.

4.2.1. Galaxy formation
Generative models can generate synthetic galaxies that closely re-

semble real ones observed in the universe. They learn from large
datasets of galaxy images and use this knowledge to generate new
galaxies with varying characteristics such as size, shape, and color. This
has been particularly useful in understanding the underlying physics of
galaxy formation and evolution. For instance, GANs have been used to
generate realistic images of galaxies at different stages of their evolu-
tion, providing insights into the processes that drive galaxy formation
and transformation (Fussell and Moews, 2019; Lanusse et al., 2021).

4.2.2. Universe simulation
On the large scales, often in three dimensions, Generative models

have also been used to simulate the structure formation of the uni-
verse. These models are adept at producing new, physically plausible
representations of the cosmic web, the grand-scale architecture of the
universe. Employing these simulations led to the creation of a very
comprehensive and precise virtual depiction of the universe. These
simulations reconstruct the entire cosmic evolution, from the inception
at the Big Bang to the current state, providing researchers with a
dynamic platform to explore various cosmological theories and param-
eters. For instance, GANs have been used to generate fast and accurate
dark matter simulations, providing a valuable tool for cosmological
studies (Rodriguez et al., 2018; Perraudin et al., 2019; Ullmo et al.,
2021).
 t
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4.2.3. Other simulations
Generative models have also been used to simulate time-dependent

events like Gravitational Waves and Radio Frequency Interference (RFI)
for better detection. These models can efficiently constrain numerical
gravitational-wave population models at a previously intractable com-
plexity (Wong et al., 2020; McGinn et al., 2021). Within the scope of

FI, generative models have been instrumental in autonomously segre-
ating spectrogram (a visual way of representing the signal strength)

observations affected by RFI. This process effectively distinguishes
between the signals of interest and the RFI components (Vos et al.,
2019).

4.3. Similarities and differences

Generative models have revolutionized both medicine and astro-
physics by augmenting data and simulating complex phenomena. De-
pite differences in application context, data characteristics, and goals,
hese models demonstrate versatility across domains. Both fields lever-
ge generative models for data augmentation, simulation, and uncer-
ainty quantification, but differ in data dimensionality, privacy, and

model complexity. Interdisciplinary innovations have emerged, includ-
ing physics-informed GANs (Yang et al., 2019, 2020) and conditional
VAEs (Won et al., 2022), with astrophysics inspiring new medical
imaging techniques. GANs are widely used in both fields, while VAEs
are more commonly used in medicine for dimensionality reduction.
Diffusion models are gaining popularity in astrophysics for simulating
complex cosmic events (Cuesta-Lazaro and Mishra-Sharma, 2024). Fu-
ure directions include interdisciplinary research, transfer learning, and

addressing common challenges such as robustness and interpretability.
Physics-informed deep learning, which integrates physical laws into
neural networks, shows promise in both fields. Although more estab-
lished in astrophysics, where physical laws are well defined, researchers
actively explore its application in medicine, particularly in medical
imaging and personalized treatment planning.

5. Anomaly detection

Anomaly Detection (AD), also known as outlier detection, involves
identifying data samples that exhibit significant deviations from the
verall data distribution (Fernando et al., 2021; Chalapathy and Chawla,

2019). Therefore, it is essential to clearly define the concept of ‘overall
data distribution’ and establish specific criteria for identifying what
onstitutes a ‘significant deviation.’ The notion of overall data distri-
ution is rooted in normal data patterns, while significant deviation
ertains to abnormal data. These distinctions can be made by the user
hrough manual labeling of data into normal and abnormal categories
n a supervised algorithm, or they can be automatically detected by
he machine during training on the entire dataset in an unsupervised
anner (Ruff et al., 2020).

The emergence of deep learning algorithms has initiated a rev-
lutionary epoch in AD. For example, one of the most significant
dvantages of deep learning is its ability to model non-linearity and
utomatically learn features. The capability to precisely capture un-
erlying data distributions allows deep learning models to effectively
etect deviations from learned patterns (Thudumu et al., 2020). Deep

Anomaly Detection (DAD) has found numerous applications across a
wide range of domains, particularly in biomedical and astronomy fields.
Investigating the similarities and differences in DAD approaches, can
ead to significant improvements in DAD algorithms for both areas in

the future. By focusing on these similarities and differences, we aim
to bridge the gap in applying DAD algorithms between the biomedical
and astronomy domains. Below, we provide a summary of current

AD algorithms, categorizing them based on their training objectives
nd whether they require labels for normal or abnormal data during
raining.
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Fig. 6. Demonstration of the key elements of an Auto Encoder.
5.1. Unsupervised deep anomaly detection

Unsupervised anomaly detection does not rely on supervision data
to determine if a sample is normal or abnormal during training. This
makes unsupervised algorithms attractive to the DL community because
they do not require labeled datasets (Baur et al., 2020; Thudumu et al.,
2020). Two popular unsupervised DL architectures are Auto Encoders
(AEs) (Tschannen et al., 2018) and Generative Adversarial Networks
(GANs) (see Section 4 and Fig. 5). AE networks are a type of unsuper-
vised neural network algorithm where the target data array is set to be
the same as the input data array. As showed in Fig. 6, an AE consists
of three parts: an encoder, which learns patterns in the input data; a
bottleneck that creates a compressed representation; and a decoder that
reconstructs the input from this compressed representation. This model
is trained to minimize the reconstruction loss which is a distance func-
tion between the reconstructed data array and input one (Yang et al.,
2021; Dong et al., 2018). There are multiple variations of AEs including
sparse AEs (Wen et al., 2019), De-Noising AEs (Vincent et al., 2008)
and Variational AEs (Kingma and Welling, 2019). In the following,
we will explore the application of ADD techniques across two distinct
but conceptually similar domains: biomedical signals and spectroscopic
astronomy. Both fields involve complex time-series data that, despite
their different origins, share common data processing challenges. For
example, we will compare datasets from biomedical fields, such as ECG
and EEG, with astronomical data, including gravitational waves and
radio pulsars. We will investigate how techniques like VAEs and GANs
are used to detect abnormalities in biomedical imaging modalities such
as X-ray, CT, and MRI scans, and how these methods are similarly
applied in astronomical photometry to identify anomalous sources in
large-scale datasets.

5.1.1. Electrical biomedical signals and spectroscopic astronomy
Electrical biomedical signals are a diverse data set that play a

crucial role in monitoring and diagnosing various health conditions.
These signals can be broadly categorized into three main types: Elec-
trocardiogram (ECG), Electroencephalogram (EEG), and Magnetoen-
cephalography (MEG) (Rangayyan and Krishnan, 2024). ECG measures
the electrical activity of the heart and is widely used to detect heart
conditions. EEG captures the electrical activity of the brain, which is
essential for diagnosing neurological disorders like epilepsy and MEG
records the magnetic fields produced by neural activity in the brain,
providing highly detailed information about brain function. A similar
data type in astronomy is spectroscopic data. It provides us the light
intensity across different wavelengths, which is recorded as flux in each
frequency bin or pixel. It provides critical insights into the physical
properties of celestial objects, such as their composition, temperature,
velocity, and more (Xiong et al., 2010; Leung and Bovy, 2018).

In essence, while biomedical signals focus on monitoring the inter-
nal workings of the human body, spectroscopic data in astronomy gives
a window into the physical characteristics of distant celestial bodies.
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Understanding and analyzing these distinct data types are crucial for
advancing knowledge and making discoveries in their respective fields.
In the following, we provide examples of ECG/gravitational wave
and EEG/radio pulsar data are not meant to be comprehensive, but
rather illustrative of the similarities between biomedical signals and
astronomical spectroscopic data. The key objective is to showcase the
potential for applying analogous deep learning techniques across these
fields, with the aim of inspiring cross-disciplinary knowledge transfer
and the exploration of novel data analysis approaches.

ECG and Gravitational Wave data: ECG data captures the polar-
ization changes in heart cells, reflecting the electrical impulses that
drive the heartbeat. By analyzing the timing and amplitude of this
electrical activity, it is possible to differentiate between normal and
abnormal heartbeats, which is essential for diagnosing various cardiac
conditions (Ebrahimi et al., 2020; Pabitha et al., 2023; Rawi et al.,
2022; van der Valk et al., 2023). In the field of astronomy, one type
of spectroscopic data comes from Gravitational Waves (GW), which
are ripples in spacetime caused by massive astronomical events, such
as the merging of compact binary objects like black holes or neutron
stars (Rawi et al., 2022; Abbott et al., 2019). A notable example of GW
data is the detection of GW150914, one of the first gravitational waves
ever observed, which resulted from the merger of two black holes. This
groundbreaking detection was made by the LIGO and Virgo Collabo-
ration (The Ligo Scientific Collaboration and The Virgo Collaboration,
2016).

In Fig. 7, we provide a comparison between ECG and GW data,
highlighting their similarities in terms of data type and Pre-processing
requirements. Despite originating from vastly different sources — one
from the human heart and the other from cosmic events — both
data types share common characteristics that make them amenable to
similar DAD approaches. This similarity suggests that techniques used
to analyze ECG data could be effectively adapted for use with GW data,
and vice versa.

The most commonly used architectures for analyzing time-series
data, such as ECG and gravitational wave data, are 1D CNNs and Re-
current Neural Networks (RNNs). These architectures are particularly
effective when integrated into AEs and GANs for anomaly detection
tasks. In Dutta et al. (2021), the authors introduced a recurrent AE
model called MED-NET, which successfully identified ECG anomalies,
achieving an impressive accuracy of 97.93%. A similar recurrent AE
model was used in detecting GW signals by Moreno et al. (2021). Al-
though these two studies address different types of problems, they uti-
lize similar data types and machine learning architectures, highlighting
the versatility of these approaches.

In another study (Qin et al., 2023), the authors employed a Bi-
directional Long Short-Term Memory (LSTM) layer within a GAN ar-
chitecture to detect abnormalities in ECG signals. This technique could
be adapted for GW data to improve the accuracy of anomaly detection
in this area as well. Further examples in the literature illustrate the
successful application of these architectures. For instance, Refs. Jang
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Fig. 7. In (a) we show an instance of simulated gravitational wave strain (Xia et al., 2020) and two typical examples from the PhysioNet CinC 2016 heart sound dataset (Clifford
t al., 2016), with the clean signal in (b) and affected by noise in (c) are shown.
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et al. (2021), Pereira and Silveira (2019), Zhu et al. (2019) focus on
sing these methods for ECG data, while Refs. Corizzo et al. (2020),

Raikman et al. (2023), Benedetto et al. (2023) explore their application
in GW data. These studies provide valuable insights and could inspire
further advancements in both fields by leveraging the strengths of these
machine learning techniques.

EEG and Radio Pulsar data: EEG is commonly used to record elec-
trical brain activities and study sleep patterns, psychological disorders,
nd epilepsy. It is a convenient way to monitor and diagnose epileptic
eizures, as epilepsy often causes abnormal brain activities (da Silva,

1998). A similar datatype to EEG in astronomy is a radio pulsar. It is
a rapidly spinning, highly magnetized neutron star emitting powerful
electromagnetic radiation beams from its magnetic poles (Philippov
t al., 2020). Pulsar discoveries have significantly advanced our un-
erstanding of astronomy and cosmology, particularly in the areas of

exoplanet detection and testing the fundamental principles of general
relativity (Voisin et al., 2020). In the following, we provide examples
from the literature that have used similar DL models as anomaly
etectors on these similar datasets.

In Truong et al. (2019) a GAN architecture is trained with two
rimary objectives. The generator aims to create realistic-looking Short-
erm Fourier Transform (STFT) images derived from EEG signals. The
13 
discriminator’s role is to distinguish between real and generated STFT
mages accurately. Following generator training for seizure predic-
ion, the authors repurpose the discriminator by appending two fully-
onnected layers. This repurposed network transitions from differen-

tiating real and fake data to classifying brain activity as normal or
bnormal. Following a similar GAN-based strategy in Balakrishnan

et al. (2020) applied the approach to radio pulsar data, including
requency-phase and time-phase information, to successfully detect new
ulsars. Both EEG and pulsar radio data pre-processing approaches
nvolve normalization to standardize the data, dimensionality reduction
o simplify complex data structures, and segmentation into uniform
nits (super-frames or bins) for consistency. Feature extraction is key

in both cases, with EEG data transformed into Mel Spectrograms and
pulsar data into various plots (e.g., Pulse Profile, Frequency-Phase
Plot). Further examples are provided in the Refs. Shoeibi et al. (2021),
Wen and Zhang (2018) for EEG, and Liu et al. (2024), Yin et al. (2022)
for radio pulsars.

5.1.2. Biomedical imaging and photometric astronomy
Biomedical imaging relies on various data types, with X-ray radio-

graphy, Computed Tomography (CT) scans, and MRI as primary tools.
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These imaging techniques provide detailed visual information crucial
for diagnosing and monitoring various medical conditions. In contrast,
photometric astronomy uses telescopes to measure the amount and
olor of light emitted by celestial objects, revealing important details
bout their temperature, distance, and composition. While photometric
ata provides valuable insights, spectroscopic data is often preferred
n deep anomaly detection models, such as Autoencoders (AEs), for
dentifying anomalous samples. Spectroscopic data offers more detailed
nformation about the physical properties of celestial objects, making
t more effective for detecting anomalies.

In biomedical imaging, it is more common to apply machine learn-
ng architectures directly to the image data, given that this field primar-
ly deals with visual data. Unlike astronomy, where diverse data types
re commonly integrated, biomedical imaging has traditionally focused
n analyzing images alone. However, there is a growing interest in

combining imaging data with other types of patient data, such as
abular data from medical records. This integrative approach could
enefit from techniques used in astronomy, where multiple data types
re already routinely combined. By leveraging diverse data sources,

the effectiveness of anomaly detection in biomedical imaging could be
ignificantly enhanced.

There is a wide range of DAD architectures available for analyzing
biomedical images. In Chatterjee et al. (2022), the authors employ

AEs, while in Kascenas et al. (2022), they utilize denoising AEs to
etect anomalies in brain MRIs. In Nakao et al. (2021), GANs archi-

tecture is utilized to detect abnormal samples in chest X-ray images,
while Esmaeili et al. (2023) offers a detailed examination of the ap-
lication of GANs for identifying anomalous samples in seven medical
maging datasets encompassing diverse modalities and organs/tissues.
imilar examples in astronomy includes (D’Addona et al., 2021) the

authors use AEs to find unexpected sources, and Storey-Fisher et al.
(2021) where GANs are used to identify anomalous galaxy images.

5.2. Supervised deep anomaly detection

A supervised algorithm can be used for anomaly detection by train-
ng it on a labeled dataset where normal and abnormal (anomalous)
nstances are clearly identified. During training, the algorithm learns to
istinguish between the features of normal and abnormal data. Once
rained, the model can be applied to new, unseen data to classify
nstances as either normal or abnormal. However, supervised learning
ethods are inherently biased towards expected anomaly distributions

nd are limited in their ability to detect pathologies beyond those
they are specifically designed for. This constraint has important conse-
quences as it restricts the range of detectable pathologies and ignores a
wide variety of potential anomalies in the context of image data from
astronomy and (bio)medical imaging.

Supervised anomaly detection transforms into classification prob-
lems in biomedical imaging and astronomy. In this approach, training
data are labeled before the training process, and depending on the
number of labels, this classification problem can become a multi-
classification problem. For example (Varma et al., 2019) has used CNNs
on X-ray images of the foot, knee, ankle and hip to find anomalous
samples. A similar CNN network is used in Becker et al. (2021) for the

orphological classification of radio sources in astronomy. In the study
y Guida et al. (2021), three-dimensional (3D) CNNs are employed
n knee MR images for knee osteoarthritis classification. The findings
uggest that training a 3D-CNN model on 3D MR images holds more

promise in enhancing the diagnostic accuracy for knee osteoarthritis
in clinical settings compared to the prevalent use of 2D-CNNs on 2D

-ray images. On the other hand, a comparable situation arises in
astronomy, as discussed in Chegeni et al. (2023), where the authors
introduced a method called ‘Clusternets’ that relies on 3D-CNNs to
differentiate scenario involving dark energy in the field of astronomy.
The results indicate that training a 3D-CNN model on 3D simulation
snapshots shows greater potential for improving classification accuracy
14 
in distinguishing dark energy compared to the common practice of
using 2D-CNNs on 2D power spectra derived from these 3D snapshots.
Another example would be the detection of rare galaxies in the form of
a classification problem in Rezaei et al. (2022).

In astronomy and biomedical imaging, the application of CNNs
for classification typically follows a structured hierarchy. This process
involves selecting the appropriate number and types of layers and
fine-tuning architectural parameters to suit the specific problem. Con-
versely, in both domains, utilizing these CNNs often involves a touch of
creativity. For example, in the study by Xu et al. (2018), a hierarchical
2D-CNNs architecture was developed for detecting anomalies in chest
X-ray images. As shown in Fig. 8, this approach involved a two-step
process: first, a 2D-CNN named ‘CXNet-m1’ was designed to classify
chest X-ray images as normal or abnormal. Subsequently, the abnormal
images were labeled as both multi-label and single-label to train a
second classifier, ‘CXNet-m2’. The results of the paper demonstrate that
this approach is more effective than fine-tuning the architecture of
multi-labeled classification CNNs. As illustrated in Fig. 9, This approach
an potentially be applied to astronomy classification problems, such
s galaxy morphology classification. More examples can be found in
eferences for classification of Alzheimer’s disease (Nawaz et al., 2020)

and brain tumor (Rai and Chatterjee, 2021) using MRI data. On the
ther hand in astronomy, we can found references for morphological

classification of galaxies (Cavanagh et al., 2021) and supernova classi-
fication (Qu et al., 2021), which could inspire the use of these structures
to enhance both literary works.

5.3. Other deep anomaly detection approaches

In the field of anomaly detection, various alternative approaches
ave been utilized, with self-supervised and active learning being

among the most significant. In the following, we introduce these
approaches and provide examples from astronomy and (bio)medicine
that could inspire using these architectures to enhance research in both
domains.

5.3.1. Self-supervised learning
Self-supervised learning (SSL) represents an innovative approach

with significant potential to address challenges in anomaly detection
(AD) tasks. Unlike traditional supervised learning, which depends on
large amounts of labeled data, SSL operates without explicit labels.
Instead, it trains models using a pretext task where labels are gen-
rated automatically from the input data itself. This process involves

creating tasks such as predicting parts of the data or reconstructing
corrupted inputs, which allows the model to learn meaningful and
robust features of the data. These learned representations are then
ransferable to downstream tasks, including anomaly detection. For
nstance, SSL techniques often involve preliminary tasks such as context
eature engineering (Noroozi et al., 2018), where the model learns to

predict missing parts of an image based on its surrounding context;
image inpainting (Pathak et al., 2016), which involves filling in missing
egions of an image; and context prediction (Doersch et al., 2016),
here the model predicts the spatial arrangement of image patches.

These methods help the model develop a deeper understanding of the
ata structure, enabling it to better identify anomalies in various ap-
lications. By leveraging these self-generated tasks, SSL can effectively
nhance the performance of AD systems, especially in scenarios where

labeled data is scarce or expensive to obtain.
Recent studies have explored the use of SSL in AD within biomed-

ical and astronomical images. For instance, in Tian et al. (2023) the
uthors recommend an approach ‘PMSACL’ which is a unique opti-

mization technique that distinguishes a regular image category from
several artificially created abnormal image categories by ensuring that
ach category forms a compact cluster in the feature space. They

demonstrate that the PMSACL pre-training enhances the precision of
state-of-the-art unsupervised AD methods on various medical image
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Fig. 8. Hierarchical CNNs structure (Xu et al., 2018) to find anomalous samples in
chest X-ray.

analysis benchmarks, including colonoscopy and Covid-19 Chest X-ray
datasets. In the field of astronomy, for example in Hayat et al. (2021),
the authors have utilized SSL to extract meaningful representations
from sky survey images that are beneficial for a range of scientific
purposes. These representations can be employed as features to sur-
pass supervised methods that are trained solely on labeled data. The
achieved results show that the classification accuracy with this method
is equal to the supervised models while requiring 2–4 times fewer labels
for training.

5.3.2. Active learning
Active Learning (AL) is a strategy where an algorithm actively

interacts with a human or an oracle to obtain labels for data points it
finds uncertain or ambiguous. Instead of randomly selecting instances
for labeling, the algorithm identifies and queries the most informative
or uncertain data points. This targeted approach aims to improve the
learning model’s performance efficiently while minimizing the number
of data points that need to be labeled. This makes AL particularly
valuable in scenarios where labeling is expensive or time-consuming,
15 
Fig. 9. Suggested proposal to apply the hierarchical CNN structure on galaxy morphol-
ogy classification.

as it optimizes the process of acquiring essential labels and accelerates
the development of high-performing models.

In Lochner and Bassett (2021), the authors employ a method called
‘Astronomaly’ to identify rare and significant astrophysical events
within astronomy survey data. They leverage active learning to effi-
ciently distinguish between noteworthy anomalies and irrelevant data,
such as instrument artifacts or rare astronomical phenomena that might
not be of immediate interest to researchers. This approach helps focus
efforts on truly significant discoveries while minimizing the distraction
of less relevant data. Similarly, in Iglesias et al. (2011), the authors
address the challenge of identifying organs in CT scans, which tra-
ditionally requires a large volume of manually annotated 3D images.
To overcome this, they integrate active learning into their training
procedure, which smartly selects a minimal yet representative subset of
images for labeling. This approach allows for accurate anatomical seg-
mentation while reducing the need for extensive manual annotations,
thereby streamlining the process and making it more cost-effective.
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Both studies illustrate the effective use of active learning (AL) in
diverse fields — astronomy and medical imaging — to improve data
analysis and lower the costs associated with manual labeling. In as-
tronomy, AL aids in distinguishing significant astrophysical events from
noisy data, while in medical imaging, it refines the labeling process
for accurate anatomical segmentation. However, it is important to note
that SSL and AL have yet to make substantial advances in the realm
of anomaly detection within these fields. There remains significant
potential to enhance the efficiency of both supervised and unsupervised
earning models by leveraging pretext tasks, such as medical and astro-

nomical image segmentation. By incorporating SSL techniques and AL
strategies, it may be possible to improve anomaly detection outcomes
and streamline data processing in these areas.

6. Common ML challenges in astronomy and medicine

Like other solutions, machine learning algorithms present specific
hallenges that warrant careful consideration before implementation.
hese challenges encompass scalability issues, potential biases in the
ata, imbalances within datasets, the existence of non-labeled data,
nd the necessity to mitigate noise within the provided dataset. Ef-
ectively addressing these challenges requires interdisciplinary collab-
ration among domain experts, data scientists, and machine learning
pecialists. Additionally, continuous research and advancements in ma-
hine learning methodologies are crucial in refining solutions and
ackling evolving challenges within the dynamic fields of astronomy
nd medical imaging.

1. Scalability Issues

1.1. Astronomy : Astronomy deals with massive datasets generated
by ground-based and space-based surveys. Traditional computing re-
ources may struggle to handle the scale and complexity of these
atasets. As a solution, astronomers employ distributed computing

frameworks (e.g., Apache Spark) and parallel processing techniques to
rocess and analyze large volumes of observational data efficiently.
loud computing resources are often leveraged for scalable and on-
emand computational power.

1.2. Medicine: Medical imaging datasets, especially high-resolution
scans, can be enormous and computationally intensive. Similar to
astronomy, cloud computing and parallel processing are utilized to
address scalability issues. High-performance computing (HPC) clusters
are employed to handle the computational demands of processing and
analyzing large medical imaging datasets.

2. Biased Data

2.1. Astronomy: Bias in astronomical datasets can arise from obser-
vational constraints or selection biases in survey designs, potentially
leading to skewed model outcomes. Calibration processes are imple-
mented to correct for observational biases. Statistical methods and
ata Pre-processing techniques help identify and mitigate biases, en-
uring that machine learning models are trained on more representative
atasets.

2.2. Medicine: Bias in medical datasets may result from demographic
disparities in patient populations or healthcare access. Strategies in-
clude oversampling minority groups, adjusting class weights during
training, and employing techniques to ensure fair representation of
iverse patient cohorts. Ethical considerations play a role in addressing

bias to avoid perpetuating healthcare disparities.

3. Imbalanced Data

3.1. Astronomy: Certain classes of celestial objects may be underrepre-
sented in astronomical datasets, leading to imbalances. Techniques like
oversampling, undersampling, or using advanced algorithms designed
or handling imbalanced datasets are among the existing solutions.
16 
These methods ensure that machine learning models can effectively
learn from both majority and minority classes.

3.2. Medicine : Imbalances may exist in medical datasets, especially
when dealing with (rare) diseases or conditions. Similar to astronomy,
oversampling, undersampling, and the use of specialized algorithms
are employed to address imbalanced medical datasets. Algorithms de-
signed to handle skewed distributions, such as those based on ensemble
earning, can be beneficial.

4. Non-labeled Datasets

4.1. Astronomy: In astronomy, a large volume of unlabeled data ex-
ists primarily due to the vast scale and complexity of astronomical
urveys. The sheer amount of data generated by telescopes and other
nstruments exceeds the capacity of human experts to label comprehen-
ively. Additionally, the diversity of celestial objects and phenomena
equires specialized knowledge to accurately annotate the data, which
s often impractical given the resources available. As a result, much of
he data remains unlabeled, posing challenges for supervised learning
pproaches in the field.

4.2. Medicine: Obtaining comprehensive and accurate labels for data
is often a significant challenge due to the complexity and volume of
medical images, as well as the expertise required to annotate them
orrectly. To address this issue, unsupervised learning methods, such
s clustering algorithms and self-supervised learning, are increasingly
mployed to analyze and extract useful patterns from non-labeled
edical datasets.

5. Noise in Datasets

5.1. Astronomy: Astronomical datasets can be affected by various noise
sources, such as atmospheric conditions and instrumental errors. Pre-
processing techniques, including data cleaning and filtering, are crucial
to reduce noise impact. Signal processing methods, such as Fourier
analysis, are applied to enhance the signal-to-noise ratio in astronomi-
cal observations.

5.2. Medicine: Medical images may contain noise due to factors like pa-
tient movement or equipment limitations. Image denoising techniques
re employed, ranging from traditional filters to deep learning-based
pproaches. Quality control processes, including motion correction and

artifact removal, are integral to ensuring the accuracy of medical image
nalysis.

7. Enhancing CNN’s performance with RL

CNNs have several advantages in object detection and segmen-
ation tasks such as the ability to learn hierarchical features from
nput data, capture spatial hierarchies, perform end-to-end learning,
nd use transfer learning. However, they often require large amounts
f labeled data for effective training, which can be challenging to
cquire in both (bio)medical imaging and astronomy. Training deep
NNs is computationally intensive and requires powerful hardware
esources. The complex nature of deep neural networks, including
NNs, often results in a lack of interpretability. They can also be
rone to overfitting, particularly when the training dataset is limited.
here are several challenges in object detection and segmentation
lgorithms such as generalizability (see Section 3 for more details). For
xample, in (bio)medical imaging, the variations in tumor appearance,
ize, location, and imaging artifacts leads to generating numerous
esearch efforts, each dedicated to a specific problems space. One

solution to generalizability is to benefit from reinforcement learning
(RL) technique in architecture search, and automatic hyper-parameter
estimation. In this section, we delve deeper into the algorithmic aspects
f a few articles in the context of multi-object detection, and discuss
he impact of RL to improve the decision-making process in algorithm
evelopment.

Algorithm 1 demonstrates the general processing steps in using
CNNs in object detection and classification tasks. This algorithm takes a
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Algorithm 1 CNN pseudo-code for object detection
1: Input: Input Image 𝐼 , Training Data (𝑋 , 𝑌 )
2: Output: Tumor Classification
3: Initialize CNN parameters:
4: Filter size: 𝑓 , Stride: 𝑠, Padding: 𝑝
5: Number of filters: 𝑛𝑓 , Learning rate: 𝛼
6: Initialize Weights and Biases:
7: 𝑊1, 𝑏1 for Convolutional Layer 1
8: 𝑊2, 𝑏2 for Fully Connected Layer
9: Forward Propagation:
0: Convolution Layer 1: 𝑍1 = 𝑊1 ∗ 𝐼 + 𝑏1, Activation: 𝐴1 = ReLU(𝑍1)
1: Fully Connected Layer: 𝑍2 = 𝑊2 ⋅ Flatten(𝐴1) + 𝑏2, Activation:

𝐴2 = Softmax(𝑍2)
2: Compute Loss:
3: Cross-Entropy Loss: 𝐿 = − 1

𝑚
∑𝑚

𝑖=1
∑𝑐

𝑗=1 𝑌𝑖𝑗 ⋅ log(𝐴2𝑖𝑗 )
4: Backward Propagation:
5: Compute Gradients: 𝜕 𝐿

𝜕 𝑊2
, 𝜕 𝐿

𝜕 𝑏2 , 𝜕 𝐿
𝜕 𝑊1

, 𝜕 𝐿
𝜕 𝑏1

16: Update Weights and Biases:
7: 𝑊1 = 𝑊1 − 𝛼 ⋅ 𝜕 𝐿

𝜕 𝑊1
, 𝑏1 = 𝑏1 − 𝛼 ⋅ 𝜕 𝐿

𝜕 𝑏1
8: 𝑊2 = 𝑊2 − 𝛼 ⋅ 𝜕 𝐿

𝜕 𝑊2
, 𝑏2 = 𝑏2 − 𝛼 ⋅ 𝜕 𝐿

𝜕 𝑏2
9: Training Loop:
0: for each epoch do

21: Shuffle and batch the training data
22: for each batch (𝑋batch, 𝑌batch) do
23: Perform Forward Propagation
24: Compute Loss
25: Perform Backward Propagation
26: Update Weights and Biases
27: end for
28: end for
29: Classification:
30: Use the trained CNN to classify the original 𝐼

labeled image dataset and a CNN model as input. The CNN parameters
re initialized along with other hyperparameters. Images undergo Pre-
rocessing steps, and the dataset is split into training and validation
ets. Then, the algorithm iterates through each training epoch, and
he CNN processes the input images using its current parameters to
roduce predictions. The cross-entropy loss is computed based on the
redicted and true labels in the training set. The gradients of the loss
o the CNN parameters are computed through backpropagation, and
he CNN parameters are updated using gradient descent. Finally, the
rained CNN model is evaluated on the validation set to monitor its
eneralization performance.

RL brings significant benefits in machine learning tasks through
its versatile capabilities. By actively selecting the most informative
samples for annotation, RL guides CNN models to prioritize critical
areas within images, such as regions of interest like tumors, galax-
ies, etc. thereby significantly enhancing accuracy. This targeted focus
ensures that the model learns from the most relevant information,
leading to more precise and reliable outcomes. Moreover, RL’s adaptive
nature is pivotal in real-time adjustment of hyperparameters during
raining. This agility allows the model to continually adapt and op-
imize its performance as data distributions evolve, ensuring that it
emains effective and robust across varying conditions and datasets.
urthermore, RL optimizes image acquisition strategies by intelligently
electing relevant imaging modalities or parameters. By doing so, it
ot only enhances the quality and relevance of the final results but
lso contributes to reducing unnecessary data acquisition costs and
rocessing time. Additionally, RL’s interactive capabilities foster seam-
ess collaboration between human experts and automated systems.
his collaborative approach enables real-time segmentation refinement
ased on user feedback, leveraging the strengths of both human ex-
ertise and machine learning algorithms to achieve superior results.
17 
Algorithm 2 Integrating RL into CNN-based Images
1: Input: Labeled medical imaging dataset , CNN model CNN
2: Initialize: RL agent RL_Agent, CNN parameters 𝛩CNN, RL hyperpa-

rameters
3: for each training iteration do
4: 1. Active Learning with RL:
5: - Select informative samples for annotation using RL_Agent:

annot ← RL_Agent()
6: 2. Dynamic Hyperparameter Tuning:
7: - Adjust CNN hyperparameters using RL-guided strategy:

𝛩CNN ← RL_Agent(𝛩CNN)
8: 3. CNN Training:
9: - Train CNN on the labeled dataset: CNN(, 𝛩CNN)

10: 4. Automatic Segmentation Refinement:
11: - Refine CNN’s segmentation using RL:

Refined_Segmentation ← RL_Agent(CNN, Segmentation)
12: 5. Transfer Learning with RL:
13: - Apply RL for efficient transfer learning between datasets:

𝛩CNN_new ← RL_Agent(𝛩CNN,new)
14: 6. Adaptive Image Acquisition:
15: - RL-guided selection of informative images for training:

train ← RL_Agent()
16: 7. Interactive Segmentation with RL:
17: - RL-guided interaction with human annotator

for real-time refinement: Refined_Segmentation ←
RL_Agent(CNN,Human_Feedback)

18: 8. Handling Data Imbalance:
19: - Use RL to adjust sample weights during training: Weights ←

RL_Agent()
20: 9. Optimizing Evaluation Metrics:
21: - Dynamically optimize evaluation metrics using RL:

Optimized_Metrics ← RL_Agent(Metrics)
22: end for
23: Output: Trained CNN model for brain tumor segmentation

By dynamically addressing data imbalance and optimizing evaluation
metrics, RL ensures that the CNN models deliver robust and clinically
elevant performance across various medical imaging applications. This

adaptability and efficacy make RL a versatile and indispensable tool in
the imaging domain.

We discuss the use of RL in optimizing CNN models performance
by providing the pseudo-code in Algorithm 2. Similar to Algorithm
1, it gets labeled imaging dataset as input but it also imports a pre-
existing CNN model. The RL agent is initialized along with the CNN
parameters. Pre-processing steps are applied to prepare the data for
integration with the CNN. The algorithm enters a training loop and
utilizes RL to select informative samples, adjust hyperparameters, refine
segmentation, facilitate transfer learning, guide image acquisition, and
interact with a human annotator. RL is also employed to handle data
imbalance and optimize evaluation metrics. The output is a trained
CNN model with optimized parameters and potentially enhanced by
RL-guided strategies.

Algorithm 3 presents an improved algorithm that takes into account
RL. The process of using reinforcement learning for tumor detection
involves several steps. First is Initialization, which sets up the initial
conditions for the reinforcement learning algorithm. Next, comes pre-
processing and Model Initialization, where the input MRI image is
prepared by applying pre-processing steps, converting it into a feature
vector for RL state representation, and initializing the CNN for feature
extraction. Additionally, the tumor classifier is also initialized in this
step. The Main RL Training Loop is where the RL agent interacts
with the environment. Features are extracted from the modified image,
combined with the state, and an action is selected based on the 𝜖-greedy
policy. The image is modified, and the agent receives a reward from
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the tumor classifier. Q-values are updated based on the reward, and
he exploration rate is adjusted. Therefore, classification is performed

after RL training. The original image is classified using tumor classifier
to provide the final tumor classification.
Algorithm 3 Reinforcement Learning for Brain Tumor Detection
1: Input: MRI Image 𝐼 , RL Parameters
2: Output: Object Classification
3: Initialize Q-table 𝑄 with random values
4: Set learning rate 𝛼, discount factor 𝛾, exploration rate 𝜖
5: Preprocess 𝐼 (e.g., normalization, resizing)
6: Convert 𝐼 to feature vector 𝑆 for RL state representation
7: Initialize CNN for feature extraction (e.g., pre-trained on ImageNet)
8: Initialize tumor classifier
9: Train CNN and classifier on labeled data
0: while not converged do
1: Extract features 𝐹 using CNN from preprocessed 𝐼
2: Combine 𝑆 and 𝐹 to form RL state 𝑆RL
3: Select action 𝐴 using 𝜖-greedy policy based on 𝑄(𝑆RL, 𝐴)
4: Apply 𝐴 to modify 𝐼 (e.g., focus on certain regions)
5: Obtain reward 𝑅 from tumor classifier based on modified 𝐼
6: Preprocess modified 𝐼 and update state 𝑆RL
7: Update Q-value: 𝑄(𝑆RL, 𝐴) ← (1 − 𝛼) ⋅ 𝑄(𝑆RL, 𝐴) + 𝛼 ⋅ (𝑅 + 𝛾 ⋅

max𝑎′ 𝑄(𝑆RL, 𝑎′))
8: Update 𝜖 (exploration rate decay)
9: end while
0: Classification:
1: Use the trained CNN and classifier to classify the original 𝐼

8. Conclusion and future direction

This paper has highlighted the synergies between astronomy and
iomedical imaging, particularly emphasizing the utilization of arti-
icial intelligence, notably convolutional neural networks, to tackle

shared challenges. We started by building upon previous literature
discussing parallels in imaging processes between MRI and radio as-
tronomy. We then elaborated on these similarities, emphasizing the
crucial need for precise signal acquisition to prevent aliasing artifacts
and ensure accurate image reconstruction in both domains. Innovations
such as parallel imaging and compressed sensing have emerged as
promising strategies to overcome these challenges, enabling efficient
data acquisition and offering benefits in terms of reduced measure-
ment requirements and enhanced imaging efficiency. Both fields face
common challenges including the need to balance data reduction with
mage quality and the computational complexity of algorithms. Collab-

orative endeavors between MRI and radio astronomy researchers hold
potential to drive advancements in image reconstruction, and signal
processing techniques across disciplines.

Moreover, this study has underscored a shared challenge in object
detection and segmentation between (bio)medical and astronomical
fields. We have highlighted common technologies employed in both do-

ains to identify and segment objects of interest in images, introducing
representative deep-learning models. By focusing on cell segmentation
as an example, we have observed the evolution of deep learning seg-

entation models, such as U-net and its variants, within biomedical
tudies. Given the diverse sample preparation procedures, cell lines,
nd microscopy modalities, there exists a pressing need to develop
eneralized models for cell segmentation. This underscores the impor-
ance of continued interdisciplinary collaboration to address shared
hallenges and drive innovation in both astronomy and biomedical
maging.

One way to introduce generalizability is to integrate Reinforcement
Learning in the object detection or segmentation tasks. RL-enabled
bject detectors can facilitate adaptive decision-making processes, en-
bling object detectors to iteratively refine their predictions and adapt

to varying environmental conditions. By leveraging RL’s capacity to
18 
adaptively learn from diverse data sources and environments, there
is promising potential to mitigate this challenge. Through interdisci-
plinary collaboration and the application of shared methodologies, such
as RL, researchers can foster innovative solutions that transcend disci-
plinary boundaries, leading to enhanced object detection capabilities
and deeper insights across biomedical sciences and astronomy.

Our research extends to study generative models, a class of ma-
hine learning algorithms adept at creating synthetic data that mimics
eal-world observations in both fields. In medicine, they address data
carcity and privacy concerns, allowing researchers to develop new
iagnostic tools, personalize treatment plans, and even discover novel
rug candidates. For instance, generative models can create synthetic
atient data that preserves statistical properties while safeguarding
rivacy. In astrophysics, generative models grapple with the vastness
nd complexity of the cosmos. Here, they are instrumental in simulating
alaxies, the large-scale structure of the universe, and even cosmic
henomena like gravitational waves. These simulations offer valuable
nsights into galaxy formation, dark matter distribution, and the evolu-
ion of the universe itself. Despite these domain-specific applications,
oth medicine and astrophysics leverage generative models to augment
ata, create simulations of complex phenomena, and ultimately push
he boundaries of scientific discovery.

Moreover, we studied deep anomaly detection approaches in both
(bio)medical and astronomy imaging. Unsupervised deep anomaly de-
tection has gained more attention recently due to its ability to work

ithout labeled data. The two main architectures commonly used in
unsupervised deep anomaly detection are Autoencoders and Generative
Adversarial Networks. By exploring the similarities and differences in
applying deep anomaly detection approaches in these fields, we can
enhance the algorithms for both biomedical and astronomy. This paper
ompares these approaches using similar datasets in astronomy and
iomedical imaging, such as Electrocardiogram and gravitational wave
ata. Furthermore, techniques like hierarchical Convolutional Neural
etworks within the supervised learning context in biomedical imaging
an be adapted for astronomy applications, such as galaxy morphology
lassification. Alternative approaches like self-supervised learning and
ctive learning show significant potential to improve the efficiency of

both supervised and unsupervised deep anomaly detection methods.
In light of this research, there are several avenues for future ex-

ploration and collaboration between researchers in biomedical imaging
and astronomy. Integrating Reinforcement Learning (RL) into object
detection and segmentation tasks can enhance adaptability and gener-
alizability, particularly in addressing diverse sample preparations and
microscopy modalities in biomedical studies. Furthermore, extending
research into generative models offers promising prospects for over-
coming data scarcity and privacy concerns and simulating complex
phenomena in both fields. Collaborative efforts to adapt and refine deep
anomaly detection approaches, such as Autoencoders and Generative
Adversarial Networks, can lead to more robust algorithms benefiting
both biomedical and astronomical imaging tasks. By leveraging shared
methodologies and datasets, interdisciplinary collaboration is key to
unlocking innovative solutions that transcend disciplinary boundaries
and advance scientific discovery in both domains. Also, we plan to
explore the implementation and empirical evaluation of the proposed
RL-CNN integration to validate the algorithmic concepts discussed.
This will involve conducting performance tests and comparative studies
to measure the effectiveness of RL in enhancing CNN performance,
particularly in the context of tumor detection and other complex object
detection tasks. Additionally, we intend to investigate how different RL
strategies can be fine-tuned for various CNN architectures to address
challenges such as data imbalance, computational requirements, and
generalizability.
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