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Abstract

Background: Automated extraction of information from cardiac reports would ben-
efit both clinical reporting and research. Large language models (LLMs) hold promise
for such automation, but their clinical performance and practical implementation across
various computational environments remain unclear.
Objectives: To evaluate the feasibility and performance of LLM-based classification
of echocardiogram and invasive coronary angiography (ICA) reports, using real-world
clinical data across local, high-performance computing and cloud-based platforms.
Methods: The angiography and echocardiography reports of 1000 patients, admit-
ted with acute coronary syndrome, were labeled for multiple key diagnostic elements,
including left ventricular function (LVF), culprit vessel and acute occlusions. Report
classification models were developed using LLMs via i. prompt-based and ii. fine-
tuning approaches. Performance was assessed across different model types and com-
pute infrastructures, with attention to class imbalance, ambiguous label annotations
and implementation costs.
Results: LLMs demonstrated strong performance in extracting structured diagnostic
information from cardiac reports. Cloud-based models (such as GPT-4o) achieved the
highest accuracy (0.87 for culprit vessel and 1.0 for LVF) and generalizability, but also
smaller models run on a local high performance cluster (HPC) achieved reasonable
accuracy, especially for less complex tasks (0.634 for culprit vessel and 0.984 for LVF).
Classification was feasible with minimal preprocessing, enabling potential integration
into electronic health record systems or research pipelines. Class imbalance, reflective
of real-world prevalence, had a greater impact on fine-tuning approaches.
Conclusions: LLMs can reliably classify structured cardiology reports across diverse
compute infrastructures. Their accuracy and adaptability support their use in clinical
and research settings, particularly for scalable report structuring and dataset genera-
tion.
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Introduction

Invasive coronary angiography (ICA) and transthoracic echocardiography (TTE) are corner-

stone imaging modalities in cardiology, essential for diagnosis, treatment and follow-up in

patients with coronary artery disease (CAD).1,2 Both procedures result in detailed reports,

typically recorded in a semi-structured free text format within electronic health records

(EHRs). While this format enables flexible, context-rich documentation, standardization is

limited, restricting its usability for data-driven research, clinical decision support systems

and artificial intelligence (AI) applications.3,4,5

The absence of structured labels presents a critical bottleneck in AI-driven research, where

large, accurately annotated datasets are essential for the development of robust models.6

Manual annotation remains the predominant method for dataset creation, yet it is labor-

intensive and prone to human error, making it impractical for large-scale supervised learn-

ing.7 As a result, much of the valuable data generated in clinical practice remains inaccessi-

ble.8

Recent advances in natural language processing (NLP), particularly the emergence of large

language models (LLMs), offer new opportunities for automating the extraction of struc-

tured information from free-text reports.9 These models, built on transformer-based archi-

tectures with attention mechanisms, have demonstrated superior contextual understanding

and scalability compared to earlier NLP techniques.10 LLMs have already shown promise in

automating structured data extraction from free-text radiology reports.6,11

We hypothesize that LLM-based methods can automate the structured classification of ICA

and TTE reports, enabling scalable dataset creation for AI applications and secondary data

use. These methods also offer a robust foundation for extracting standardized data elements

required for clinical registries, quality improvement programs and mandatory health system

reporting, thereby reducing administrative burden, enhancing data completeness and sup-

porting data-driven oversight across diverse healthcare settings. In this study, two distinct

LLM-based approaches, prompt engineering and fine-tuning, were developed and evaluated

using free-text cardiology reports obtained from routine clinical practice. In prompt en-

gineering, task instructions, optionally with several examples, guide a pretrained model

without changing its parameters. In fine-tuning, the model’s weights are updated based
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Figure 1: a) Prompt engineering method, resulting in an optimized prompt, where no model
training takes place. b) Fine-tuning method, a pre-trained LLM is trained on a domain
specific dataset, where adjusting the weights of the network results in a fine-tuned model.
on labeled data to adjust to the target task.12,13,14 A brief schematic comparing prompt

engineering and fine-tuning is provided in Figure 1. Their classification performance and

implementation complexity were systematically compared.

Methods

Datasets

A comprehensive pseudo-anonymized database was constructed from the EHRs of patients

treated for acute coronary syndrome (ACS) at Leiden University Medical Center (LUMC),

The Netherlands, between 2010 and 2024. This database encompassed all clinical data

generated during initial treatment and subsequent follow-up of these patients. The study

protocol (nWMODIV2 2022006) was approved by the institutional review board of LUMC,

which waived the requirement for obtaining informed consent for the use of data from individ-

ual patients. All procedures were conducted in accordance with institutional guidelines and

regulations. From the source database, two study-specific datasets were created by random
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sampling: one consisting of 1000 ICA reports and the other comprising 1000 TTE reports.

All reports were written in Dutch, adhered to a semi-structured format and were composed by

board-certified cardiologists during routine clinical care. None of the reports contained per-

sonally identifiable information, apart from clinical details specific to the modality. Only the

textual content of the reports, without any accompanying metadata, was processed through

the LLMs. Data processing and model inference were performed within secure, encrypted

environments compliant with European data protection regulations, using only anonymized

reports that underwent manual review for the presence of personally identifiable data prior

to processing. Textual data was pre-processed to enhance quality and consistency prior to

model training. Automated cleaning scripts based on regular expressions, a technique for

identifying and modifying text patterns, were used to remove unnecessary spaces, redun-

dant line breaks and formatting artifacts introduced during data extraction. This process

reduced noise, corrected structural inconsistencies and standardized the text format across

all reports, which were written and transferred to different data formats (finally to the XML

standard) by different software packages used in the hospital over the years.

Data labeling

A structured annotation protocol was employed, involving two independent expert reviewers

who each annotated all 2,000 reports across two iterative rounds. Prior to the first round,

detailed annotation guidelines were established and subsequently refined after each iteration

to improve label consistency and annotation accuracy. Final labels were determined by

resolving any disagreements through consensus discussions between the annotators.

To assess the difficulty of the labeling task and establish a baseline for evaluating the

LLM performance, average manual annotation scores were calculated. These scores were

derived by comparing each annotator’s final-round labels with the agreed-upon consensus

labels.

ICA reports were labeled for attributes relevant to diagnosis and treatment decisions:

presence of acute occlusion, presence of bypass grafts, presence of significant epicardial coro-

nary artery disease (CAD), treatment strategy (PCI, referral for coronary artery bypass

grafting (CABG), or medical treatment only), and identification of culprit vessel(s), with la-

bels assigned for both the main coronary artery (Main) and specific branch/segment (Sub).

Last edited Date :



page 4 V.O. van der Valk

Label Values

ICA dataset
Occlusion Yes, no
No CAD Yes, no
Graft Yes, no

Treatment strategy PCI, CABG, medical
Main RDA, RCA, RCx, LM, Graft, IM, no

Sub
RDA, RCA, RCx, LM, Graft, IM, AL, D, MO,

PL, RDP, RV, S, no
TTE dataset
LV function Normal, mildly, moderately or severly reduced, no data

Valve dysfunction type None, stenosis, regurgitation, both, no data
Valve dysfunction grade None, mild, moderate, severe, no data

Table 1: Overview of the possible ICA and TTE labels
A “no culprit” label was used when no culprit could be identified. Multiple labels were

permitted only for the culprit-vessel category (e.g., RCA/RDA); all other categories were

single-label. TTE reports were labeled for left ventricular (LV) systolic function and valvu-

lar dysfunction, including the type and severity for each cardiac valve (aortic (AV), mitral

(MV), tricuspid (TV) and pulmonary (PV)), using guideline-consistent ordered categories:

LV function was categorized as normal, mildly, moderately, or severely reduced, and valvu-

lar stenosis/regurgitation as none, mild, moderate, or severe.15,16 When multiple gradings

were present within a report, the most severe category was selected. A ”no data” label was

assigned when relevant findings were absent from the report. A complete overview of all

label categories is provided in Table 1.

LLM assessment

Both fine-tuning and prompt engineering (see Figure 1) were tested on a commercially avail-

able LLM (GPT-4o via Azure OpenAI) and several open-source state-of-the-art (SOTA)

models available via Huggingface.co and Ollama.com that can be used on-site. Open-source

SOTA models were selected by identifying the two most popular models for text classifica-

tion or feature extraction across three categories: general-purpose, medical domain-specific

and multilingual LLMs. For on-site prompt engineering two different hardware constraints

are tested. A smaller local GPU of 16Gb, which would be an average laptop GPU and a

bigger high performance cluster (HPC) GPU of 48Gb. For on-site fine-tuning only the HPC

hardware was tested, since hardware requirements for fine-tuning are too large for small
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GPUs. Selection was done with the important constraint that the model could either be

run i) locally on a 16Gb GPU for local prompt engineering or ii) on a 48Gb GPU for HPC

prompt engineering or iii) be trained on a 48Gb GPU for fine-tuning.

Fine-tuning

For on-site fine-tuning each model was extended with a classification layer, such that the

model directly outputs class indexes. This classification layer was trained without pre-

training, while the underlying model was fine-tuned on the manually labeled ICA and TTE

datasets. To mitigate overfitting, we implemented early stopping based on the performance

on the validation set, along with weight decay as a regularization technique. Additionally,

the learning rate, a crucial hyperparameter, is fine-tuned to optimize performance while

maintaining stability. For on-site finetuning the following pre-trained models were selected

from Huggingface.co on March 2, 2025: multilingual-e5-large from Intfloat17 (multilingual

1), bert-base-multilingual-uncased-sentiment from NLPTown (multilingual 2), BiomedVLP-

BioVil-T from Microsoft18 (medical 1), MedCPT-Cross-Encoder from NCBI19 (medical 2),

bart-base from Facebook20 (general 1) and ms-marco-MiniLM-L-6-v2 from Cross-encoder

(general 2).

Fine-tuning of the commercially available GPT-4o model was performed using the Azure

OpenAI fine-tuning API. The model was adapted to the classification tasks using manually

labeled reports. The fine-tuning process is subjected to predefined limitations inherent to

the commercial API, which permits adjustment of only a single relevant hyperparameter; the

learning rate multiplier. Modification of the model architecture or implementation of training

optimizations such as early stopping or weight regularization are not possible. The optimal

learning rate was selected based on validation performance and training stability, ensuring

generalization to unseen data. Because fine-tuning was performed on OpenAI servers, the

resulting model weights are not accessible to the authors and therefore cannot be shared.

Prompt Engineering

Prompt-based inference was conducted using a few-shot prompting strategy. Each clinical

report was combined with standardized labeling instructions to create a structured input for-

mat. Prompts were category-specific, with one call per label. Structured output templates
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(JSON schemas) were used to ensure consistency and facilitate accurate parsing. Prompts

were iteratively refined on a subset of the training data, with adjustments to wording and

structure aimed at minimizing misclassification and improving labeling accuracy. Model set-

tings were configured to promote consistent outputs, with parameter settings to minimize

variability during output generation. For local prompt engineering, the following small pre-

trained models were selected from Ollama.com on March 2, 2025: Aya 23 from Cohere21

(multilingual 1), Llama3.2 from Meta (multilingual 2), MedLlama2 by Sourcell (medical 1),

Phi-4 from Microsoft (general 1) and Gemma3 from Google (general 2/multilingual). No sec-

ond medical model was selected because a decent medical runner up model was not available

at this moment. For HPC prompt engineering the following larger pre-trained models were

selected from Ollama.com on March 2, 2025: Gemma3 from Google (multilingual 1) and

Wizardlm2 from Microsoft (multilingual 2), Meditron (medical 1)22, Medllama2 by Sourcell

(medical 2), Deepseek-R1-Distill-Qwen from DeepSeek (general 1) and Phi-4 from Microsoft

(general 2). For some models larger versions exist, the largest version that can fit on either

the local GPU (16GB) or the HPC cluster GPU (48GB) was chosen.

Analysis

Both data sets were randomly divided into a training and a test set, at patient level, with

a ratio of 70:30. For the prompt engineering method, the training set was used for prompt

optimization and example selection. For the fine-tuning method, the training set was again

split, at patient level, in a training and validation set with a ratio of 85:15. The training set

was used to fine-tune the models, while the validation set is used to monitor overfitting. For

all on-site model comparisons a 5-fold cross-validation scheme was used. Model evaluation

was done by calculating metrics on the combined predictions on all validation sets, which

aggregate to the whole training set. The test set, which remains completely unseen during

prompt optimization and fine-tuning, was reserved for final performance evaluation. Models

were evaluated using the following performance metrics: accuracy, average recall and macro-

averaged F1-score. For the multi-class multi-label tasks (main and sub culprit vessel) a strict

evaluation criterion was adopted: classification outputs were only considered correct if the

entire set of predicted labels per report exactly matched the reference labels. Consequently,

partially correct classifications, such as predicting “RDA/D” when only “D” was correct,
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were seen as incorrect. To quantify variability, 95% confidence intervals were estimated

using 1000 bootstrap iterations for each metric. To assess statistically significant differences

in performance, the Bonferroni corrected p-value (pb) is calculated per label category, using

the best-performing model as the reference for all pairwise comparisons. Finally, misclassified

cases from the test set were manually reviewed to identify recurring patterns and potential

sources of model error.

Results

Study population

Both datasets comprised 1000 unique reports. In the ICA dataset, each report represented a

unique patient (n = 1000), while in the TTE dataset, the reports corresponded to 736 unique

patients, with 264 patients contributing two reports each. No reports were duplicated and

no patient appeared more than twice within the TTE dataset. The mean age of the patients

was 65.7 ± 11.9 years in the ICA cohort and 62.2 ± 11.2 years in the TTE cohort. The

sex distribution in the ICA dataset was 70.7% male (n = 707) and 29.3% female (n = 293).

In the TTE dataset, 74.6% were male (n = 746) and 25.4% were female (n = 254). The

initial clinical presentation among patients in the ICA dataset was ST-segment elevation

myocardial infarction (STEMI) in 33.1% (n = 331) , non-ST-segment elevation myocardial

infarction (NSTEMI) in 30.7% (n = 307) and unstable angina in 36.2% (n = 362). In

the TTE dataset, 66.2% (n = 487) of cases presented with STEMI, 25.7% (n= 189) with

NSTEMI, and 8.2% (n = 60) with unstable angina.

Data labeling

The ground truth label distributions across all variables in the ICA dataset were skewed,

with varying degrees of class imbalance, ranging from 88% vs 12% for the no CAD label to

33% vs 67% for the occlusion label. As expected, the proportion of patients without CAD

was low (12%), as most patients had an occlusion (67%), underwent PCI (75%) and did not

have grafts (85%). In the culprit vessel labels, the ramus descendens anterior (RDA), right

coronary artery (RCA) and ramus circumflexus (RCx) were the most frequently identified

vessels in both the main (361, 211 and 318 times respectively) and subsegment categories
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(321, 291 and 147 respectively). In contrast, the anterolateral branch (AL) was not annotated

in any case and other vessels such as the septal (S) and right ventricular (RV) branches were

only rarely identified (both 2 times). A full overview of the label distributions is shown in

Appendix

Label imbalance in the TTE dataset was even more pronounced. The most frequent

class for LV function was “mildly impaired” (52%) whereas “severely impaired” LV function

was observed in only 2% of cases. Complete data on LV function were available for all

patients. Across all valves, “no dysfunction” was the most common label (83%), followed by

“regurgitation” (overall 11%) in all but the pulmonary valve (PV). The PV had the highest

proportion of missing data (9%). Notably, no cases of isolated stenosis were recorded for the

mitral, tricuspid or pulmonary valves. For valve dysfunction grading, the most common non-

normal category was “mild” (5%) while “moderate” (<1%, 59 cases) and “severe” (<1%, 12

cases) grades were uncommon and for mitral stenosis, pulmonary stenosis and pulmonary

regurgitation, and entirely absent for tricuspid stenosis. A full overview of the TTE label

distributions is provided in Appendix

Annotator agreement

The average agreement between both annotators was high, as shown in Table 2 and 3. In

the ICA dataset, accuracy ranged from 0.917 to 0.987, average recall from 0.787 to 0.964

and F1 scores from 0.818 to 0.963. The highest scores were observed for graft presence,

while the lowest were found in subsegment-level vessel classification. In the TTE dataset,

manual annotation scores were consistently high across all labels, with accuracy ranging from

0.993 to 1.00, average recall from 0.975 to 1.00 and F1 scores from 0.920 to 1.00. Human

performance was particularly strong for binary labels in the ICA dataset and for all TTE

labels, while greater variability was observed in more complex and ambiguous tasks such as

culprit vessel annotation.

Prompt engineering model assessment

All inputs, combination of prompt and report, were below the context limit and no trun-

cation was encountered. Figure 2 shows the comparison of the 6 selected LLMs for the

classification of ICA and TTE reports. The metrics reflect the average classification perfor-
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mance across all labels per report. Results represent the aggregated outcomes from five-fold

cross-validation conducted on the training/validation dataset. Original values are 5-fold

cross-validation means on training/validation set, see Figures 8-13 in Appendix . For each

metric, the mean value and the corresponding 95% confidence interval (CI), derived from

1000 bootstrap samples, are shown. Models run on a local smaller GPU demonstrated

slightly inferior performance compared to those trained on a HPC cluster, although the

difference was modest. Notably, both the Gemma3 and the Phi4 models showed robust per-

formance in both GPU environments, with the Phi4 model run on the HPC cluster showing

best overall performance.

Figure 2: Model comparison for prompt engineering on a local machine (16Gb) and on a
HPC cluster (48Gb) for ICA and TTE report classification. For each model the average
performance (of all labels) is shown. 95% CI of metrics calculated with 1000 bootstrapped
samples is indicated with error bars.
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p[h!]

Figure 3: Model comparison for finetuning on a HPC cluster on ICA and TTE reports. For
each model the average performance (of all labels) is shown. 95% CI of metrics calculated
with 1000 bootstrapped samples is indicated with error bars.
Finetune model assessment

For on-site fine-tuning models, context limit was reached in 2% of cases, with no difference

in performance for various truncation methods. For the commercial fine-tuning model no

truncation was encountered. Figure 3 shows the comparison of the 6 selected LLMs for

the classification of ICA and TTE reports. For each model the average performance (of all

labels) is shown. 95% CI of metrics calculated with 1000 bootstrapped samples is indicated

with error bars.. The multilingual model from Intfloat showed best overall performance for

classification of both report types.

Classification results and model comparison

Table 2 and 3 show the performance of the best local prompt engineering and fine-tuning

models compared with prompt engineering and fine-tuning with the commercial model

(GPT-4o) on the held-out test set. The average human annotator performance per task is

shown as an indicator of task difficulty. Per-label counts for the whole dataset are provided

in Supplementary Fig. S1–S4, which contextualize the class imbalance underlying Tables 2

and 3. Especially for the more difficult tasks, GPT-4o showed superior performance for both

prompt engineering and fine-tuning methods and often approaches or surpasses the human
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annotator benchmark. For most labels, no statistically significant difference was observed

between prompt engineering and fine-tuning when applied to GPT-4o. In contrast, perfor-

mance differences were more variable across tasks when using the open-source SOTA models,

while prompt engineering and fine-tuning yielded comparable average performance, outcomes

varied depending on the task. Prompt engineering tended to under perform when the test set

lacked representation of categories included in the prompt. Fine-tuning on the other hand

exhibited diminished performance in severely imbalanced datasets. Complex tasks such as

culprit vessel detection, which are multi-class and multi-label tasks, are challenging for for

all on-site models, regardless of training strategy.

Misclassification analysis

All misclassified labels in the held-out test set of 300 ICA and 300 TTE reports were manually

reviewed to identify recurring patterns and potential sources of model error.

Open source models

For the ICA report classification (Table 2), the fine-tuned model most frequently produced

false negatives for ”no CAD” (11/300, 4%), while prompt-engineering yielded a higher false-

positive rate (46/300, 15%). Both models over predicted occlusions (13–18%). Graft de-

tection was generally reliable. However, the fine-tuned model systematically missed isolated

venous grafts (n=9/300, 3%), while prompt-engineering errors were more evenly distributed.

For ”Treatment strategy” classification, the fine-tuned model tended to over predict referral

for CABG (n = 5/300, 2%), whereas the prompt-engineered model more often missed true

PCI cases (n = 8/300, 3%). Culprit vessel classification showed notable limitations. The

fine-tuned model only correctly identified 2/24 multi-vessel culprit cases, this pattern was

not observed with prompt-engineering, though its overall accuracy was inferior in this cat-

egory. Among main culprit vessel, 16 (5%) errors of fine-tuned model and 26 (9%) errors

with prompt engineering were associated to graft-related misclassification. Notably, prompt

engineering failed to assign the ”no culprit” label in any case, despite its presence in 52 test

samples. In the sub-vessel category, the fine-tuned model only assigned the labels RCA,

RCx, RDA and no.

In TTE reports (Table 3), the fine-tuned model most frequently misclassified mild re-
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Label Accuracy Avg. recall F1

Main (manual) 0.943 0.920 0.963
FT (Intfloat) 0.634 [0.580-0.683] 0.392 [0.362-0.42] 0.718 [0.672-0.764]
FT (GPT-4o) 0.870 [0.830-0.907] 0.830 [0.774-0.888] 0.937 [0.914-0.958]
PE (Phi-4) 0.522 [0.467-0.580] 0.510 [0.449-0.579] 0.715 [0.671-0.757]

PE (GPT-4o) 0.761 [0.710-0.803] 0.768 [0.693-0.838] 0.881 [0.849-0.91]
Sub (manual) 0.917 0.787 0.941
FT (Intfloat) 0.533 [0.477-0.587] 0.212 [0.185-0.252] 0.607 [0.554-0.658]
FT (GPT-4o) 0.746 [0.693-0.793] 0.668 [0.576-0.764] 0.819 [0.776-0.857]
PE (Phi-4) 0.460 [0.403-0.520] 0.611 [0.528-0.697] 0.797 [0.761-0.833]

PE (GPT-4o) 0.634 [0.580-0.687] 0.795* [0.719-0.872] 0.830 [0.799-0.862]
No CAD (manual) 0.974 0.964 0.945

FT (Intfloat) 0.960* [0.937-0.980] 0.883 [0.820-0.939] 0.918* [0.867-0.959]
FT (GPT-4o) 0.964* [0.940-0.983] 0.969* [0.940-0.990] 0.936* [0.897-0.971]
PE (Phi-4) 0.974* [0.953-0.990] 0.899 [0.865-0.928] 0.782 [0.727-0.838]

PE (GPT-4o) 0.973* [0.953-0.990] 0.950* [0.904-0.985] 0.949* [0.913-0.979]
Occlusion (manual) 0.926 0.933 0.917

FT (Intfloat) 0.793 [0.750-0.837] 0.752 [0.701-0.801] 0.761 [0.710-0.810]
FT (GPT-4o) 0.920* [0.89-0.947] 0.920* [0.887-0.951] 0.912* [0.878-0.943]
PE (Phi-4) 0.761 [0.713-0.81] 0.697 [0.646-0.752] 0.709 [0.654-0.767]

PE (GPT-4o) 0.927* [0.897-0.953] 0.917* [0.881-0.949] 0.919* [0.884-0.949]
Treatment strategy (manual) 0.976 0.924 0.818

FT (Intfloat) 0.953* [0.930-0.977] 0.895* [0.825-0.955] 0.882* [0.810-0.940]
FT (GPT-4o) 0.987* [0.973-0.997] 0.970* [0.926-0.998] 0.97* [0.931-0.997]
PE (Phi-4) 0.940 [0.910-0.967] 0.835 [0.748-0.917] 0.847* [0.762-0.919]

PE (GPT-4o) 0.977* [0.957-0.993] 0.915* [0.841-0.976] 0.930* [0.868-0.977]
Graft (manual) 0.987 0.940 0.957
FT (Intfloat) 0.970* [0.950-0.987] 0.901* [0.839-0.959] 0.930* [0.881-0.970]
FT (GPT-4o) 0.996* [0.990-1.00] 0.998* [0.994-1.00] 0.992* [0.975-1.00]
PE (Phi-4) 0.993* [0.983-1.00] 0.924* [0.864-0.974] 0.947* [0.905-0.981]

PE (GPT-4o) 0.993* [0.983-1.00] 0.996* [0.990-1.00] 0.986* [0.965-1.00]

Table 2: Model comparison for ICA report classification on the test set. Four LLM models
and training methods are compared on 6 labels extracted from ICA reports. Comparison is
done with 3 metrics: accuracy, average recall and F1. The 95% CI is given in brackets. The
best metric score and any score that is not significantly different from this score (pb=0.0167),
is indicated with bold font. Manual annotation scores are averaged human annotator scores
and are shown in italic. Significant improvement or equality to the manual score is indicated
with an asterisk (*). FT = fine-tuning, PE = prompt engineering.
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Label Accuracy Avg. recall F1

LV function (manual) 0.997 0.998 0.998
FT (Intfloat) 0.984* [0.967-0.997] 0.918 [0.809-0.988] 0.947 [0.869-0.993]
FT (GPT-4o) 1.00* [1.00-1.00] 1.00* [1.00-1.00] 1.00* [1.00-1.00]
PE (Phi-4) 0.727 [0.667-0.777] 0.805 [0.753-0.849] 0.518 [0.429-0.647]

PE (GPT-4o) 0.997* [0.990-1.00] 0.998* [0.995-1.00] 0.993* [0.976-1.00]
Mitral Sten. Grade (manual) 1.00 1.00 1.00

FT (Intfloat) 0.969 [0.950-0.987] 0.555 [0.495-0.667] 0.578 [0.488-0.745]
FT (GPT-4o) 0.997* [0.990-1.00] 0.998* [0.995-1.00] 0.972* [0.897-1.00]
PE (Phi-4) 0.796 [0.750-0.837] 0.410 [0.388-0.431] 0.223 [0.215-0.229]

PE (GPT-4o) 1.00* [1.00-1.00] 1.00* [1.00-1.00] 1.00* [1.00-1.00]
Mitral Reg. grade (manual) 0.997 0.975 0.920

FT (Intfloat) 0.866 [0.827-0.903] 0.372 [0.298-0.475] 0.379 [0.295-0.504]
FT (GPT-4o) 0.990* [0.977-1.00] 0.963* [0.900-1.00] 0.896* [0.738-1.00]
PE (Phi-4) 0.893 [0.860-0.927] 0.783 [0.688-0.869] 0.707 [0.532-0.853]

PE (GPT-4o) 0.980 [0.963-0.993] 0.946* [0.878-0.989] 0.897* [0.743-0.993]
Aortic Sten. grade (manual) 1.00 1.00 1.00

FT (Intfloat) 0.907 [0.873-0.940] 0.219 [0.200-0.250] 0.208 [0.187-0.242]
FT (GPT-4o) 0.997* [0.987-1.00] 0.999* [0.997-1.00] 0.991* [0.968-1.00]
PE (Phi-4) 0.866 [0.823-0.903] 0.791 [0.721-0.850] 0.516 [0.377-0.665]

PE (GPT-4o) 0.990* [0.977-1.00] 0.856* [0.753-1.00] 0.836* [0.712-1.00]
Aortic Reg. grade (manual) 0.993 0.984 0.991

FT (Intfloat) 0.843 [0.800-0.883] 0.201 [0.200-0.201] 0.184 [0.178-0.19]
FT (GPT-4o) 0.987* [0.973-0.997] 0.975* [0.948-0.999] 0.978* [0.952-0.996]
PE (Phi-4) 0.876 [0.837-0.913] 0.795 [0.772-0.834] 0.661 [0.553-0.744]

PE (GPT-4o) 0.973 [0.953-0.990] 0.885 [0.751-0.967] 0.904 [0.742-0.980]
Tricuspid Sten. grade (manual) 0.993 0.997 0.957

FT (Intfloat) 0.963 [0.94-0.983] 0.500 [0.500-0.500] 0.491 [0.485-0.496]
FT (GPT-4o) 0.967 [0.947-0.987] 0.983 [0.972-0.993] 0.831 [0.727-0.925]
PE (Phi-4) 0.838 [0.793-0.877] 0.435 [0.415-0.454] 0.185 [0.177-0.229]

PE (GPT-4o) 0.997* [0.990-1.00] 0.998* [0.995-1.00] 0.977* [0.913-1.00]
Tricuspid Reg.grade (manual) 0.993 0.998 0.978

FT (Intfloat) 0.887 [0.850-0.923] 0.260 [0.250-0.333] 0.245 [0.230-0.317]
FT (GPT-4o) 0.963 [0.943-0.983] 0.978 [0.947-0.994] 0.905 [0.841-0.955]
PE (Phi-4) 0.853 [0.81-0.893] 0.797 [0.702-0.878] 0.491 [0.360-0.657]

PE (GPT-4o) 0.980* [0.963-0.993] 0.961 [0.912-0.997] 0.901* [0.701-0.985]
Pulmonary Sten. grade (manual) 0.997 0.998 0.991

FT (Intfloat) 0.987* [0.973-0.997] 0.950* [0.896-0.998] 0.963* [0.926-0.992]
FT (GPT-4o) 0.993* [0.983-1.00] 0.982* [0.945-1.00] 0.982* [0.950-1.00]
PE (Phi-4) 0.834 [0.790-0.877] 0.508 [0.459-0.568] 0.260 [0.191-0.384]

PE (GPT-4o) 0.996* [0.987-1.00] 0.998* [0.993-1.00] 0.990* [0.967-1.00]
Pulmonary Reg. grade (manual) 0.997 0.999 0.994

FT (Intfloat) 0.963 [0.940-0.983] 0.634 [0.597-0.665] 0.638 [0.612-0.659]
FT (GPT-4o) 0.990* [0.977-1.0] 0.939* [0.820-1.00] 0.958* [0.873-1.00]
PE (Phi-4) 0.816 [0.770-0.860] 0.740 [0.684-0.800] 0.427 [0.349-0.507]

PE (GPT-4o) 0.993* [0.983-1.00] 0.950* [0.831-1.00] 0.964* [0.876-1.00]

Table 3: Model comparison for TTE report classification on the test set. Four LLM models
and training methods are compared on 9 labels extracted from TTE reports. Comparison is
done with 3 metrics: accuracy, average recall and F1. The 95% CI is given in brackets. The
best metric score and any score that is not significantly different from this score (pb=0.0167),
is indicated with bold font. Manual annotation scores are averaged human observer scores
and are shown in italic. Significant improvement or equality to this manual score is indicated
with an asterisk (*). FT = fine-tuning, PE = prompt engineering.Last edited Date :
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gurgitation as none (AV: n = 25/300, 8%; MV: n = 14/300, 5%). In contrast, prompt-

engineering occasionally overestimated pathology, predicting dysfunction where none was

present. Stenosis grading errors followed similar patterns, with the fine-tuned model under-

calling and prompt-engineering over-calling severity. Notably, the fine-tuned model assigned

the ”no dysfunction” label to the AV in all cases.

Commercial models

For commercial models (Table 2), both prompt-engineering and fine-tuning showed the lowest

performance for culprit vessel classification. Prompt-engineering produced 24% and the fine-

tuned model 13% main vessel labeling errors. Common issues included labeling both main

and sub-branches (15% and 12%, respectively), and misclassifying graft versus native vessels.

Both models consistently failed to recognize the IM branch correctly (3/9 cases each). Errors

in classifying the presence of acute occlusions were often related to the presence of CTOs

and grafts. Misclassifications also occurred in differentiating pre-existing CTOs from new

obstructive disease. In both approaches, the most common misclassifications for the labels

graft, no CAD and occlusion were false positives. With the prompt engineering method,

these occurred in 2/300 (1%), 6/300 (2%) and 19/300 (6%) cases, respectively, whereas with

the fine-tuned model, the corresponding rates were 1/300 (<1%), 10/300 (3%), and 6/300

(2%). For ”treatment strategy” classification, the most common error in both models was

predicting medical therapy only while a referral for CABG was mentioned, particularly in

reports indicating pending diagnostics (prompt engineering: n=5/300, 2%; fine-tuned model:

n=2/300, 1%).

In TTE data (Table 3), valvular assessment was the main challenge, particularly differ-

entiating between ”none” and ”no data” due to inconsistencies between structured data and

narrative conclusions. For example, cases where mild MR was quantitatively reported but

summarized as “no dysfunction” in the narrative conclusion. Additional errors were linked

to ambiguous or non-diagnostic phrases, such as “TV: TR gradient 30 mmHg” or “AV opens

well visually, no reliable gradient”. Both models under predicted mild regurgitation, with

the fine-tuned model showing fewer errors overall. LV function classification was accurate,

with only isolated errors.
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Discussion

LLM-based methods are a very valuable tool in the automation of ICA and TTE report

classification. Depending on the accuracy required, the labeling difficulty and the avail-

able budget and computational power, different LLM-based methods can be used for the

automation of report classification.

In this study, the performance of LLMs using both prompt engineering and fine-tuning

was evaluated for the classification of TTE and ICA reports across different computational

environments: i. a local server, ii. a HPC cluster and iii. a commercial cloud-based API

(e.g., GPT-4o). The goal was to explore the practical feasibility, performance and trade-offs

for different LLM approaches in processing real-world cardiology data.

Model performance and comparative analysis Across platforms, LLMs demonstrated

robust performance in classifying key clinical findings with minimal pre-processing, under-

scoring their potential integration into cardiology workflows such as automated EHR anno-

tation, registry data generation and retrospective data structuring. Compared with manual

annotation by a single experienced reviewer, GPT-4o-based approaches demonstrated sim-

ilar performance for most tasks, except for culprit vessel identification, the most complex

task, and tricuspid regurgitation grading with the finetuning approach, where severe class

imbalance impaired model performance. Open-source models exhibited similar task-specific

performance trends but with consistently lower accuracy. For simpler tasks with balanced

classes, both modeling approaches performed comparable to the human annotator. The low-

est performance was observed in tasks involving both main and sub-culprit vessel identifica-

tion, consistent with the inherent complexity of the task. Additionally, the strict evaluation

criterion for these tasks contribute to lower performance metrics. In the context of TTE

reports, classification errors often resulted from inconsistencies between structured quantita-

tive measurements and the narrative conclusions. For example, cases describing mild mitral

regurgitation in the measurements section were occasionally summarized in the conclusion as

“no dysfunction”. Furthermore, the presence of clinically benign phrases, such as “calcified

annulus with normal function”, occasionally triggered false-positive classifications. The var-

ious approaches revealed different levels of task comprehension, likely influenced by model

architecture and scale23. For instance, the prompt-engineered open-source model frequently

Last edited Date :
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labeled any vessel with atherosclerotic plaque as a culprit lesion, without adequately consid-

ering the degree of luminal narrowing, indicating limitations in nuanced clinical reasoning.

Importantly, GPT-4o achieved high and consistent performance across both prompt-based

and fine-tuned implementations. However, fine-tuning required significantly greater com-

putational resources, a larger volume of annotated training data and incurred substantially

higher monetary costs. These trade-offs suggest that for many clinical applications, partic-

ularly in resource-constrained environments, prompt engineering with commercial models

offers a more pragmatic and scalable solution. Conversely, in complex tasks such as culprit

vessel labeling, fine-tuning appeared to meaningfully enhance performance, supporting its

use where feasible. While locally deployed open-source models did not match GPT-4o’s

performance in complex classification tasks, they remain valuable in settings with simpler

classification needs, stricter data privacy constraints, or limited budgets. These models pro-

vide a viable alternative for institutions that prefer not to rely on third-party cloud-based

services.

Prompt engineering vs. fine-tuning A notable observation in our analysis was that

smaller fine-tuned models achieved performance comparable to larger prompt-engineered

models on several classification tasks. This aligns with findings from prior computational

research, which suggest that, while fine-tuning allows for task-specific adaptation, its ben-

efits may be constrained by the underlying model capacity.24 Conversely, larger prompt-

engineered models can leverage broad pre-trained knowledge and perform well without full

retraining. These results support a balanced interpretation: a more targeted learning strat-

egy (fine-tuning) applied to a smaller model may yield comparable results to a less cus-

tomized strategy (prompt engineering) implemented with a larger model. Additionally, it

was shown that fine-tuning is more susceptible to class imbalance, which can lead to overfit-

ting if not properly mitigated. This was particularly evident in the fine-tuned open-source

model, which learned to classify all aortic valves as non-dysfunctional; a result that max-

imized performance on the imbalanced training set but failed to generalize. However, this

holds true for all use cases with highly imbalanced data. In comparison, prompt-engineered

approaches demonstrated greater resilience to label sparsity, suggesting an advantage in sce-

narios with limited or unevenly distributed annotations. From a practical perspective, this

trade-off highlights the importance of aligning methodological choices with both task com-
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plexity and available infrastructure. While fine-tuning offers the potential for precise task

optimization, it demands considerable computational resources, annotated training data and

technical expertise. In contrast, prompt engineering, particularly when applied to large-scale

foundation models, offers a more accessible and scalable alternative, especially in structured

domains such as diagnostic and procedural cardiology reporting.

The dataset used for training and evaluation reflects a typical ACS population, rep-

resentative both in patient characteristics and disease distribution.? This real-world align-

ment enhances the external validity of our findings. However, as a consequence the dataset

exhibits substantial class imbalance, mirroring the natural prevalence of clinical findings in

ACS, which poses challenges for model training, particularly for fine-tuning strategies. While

prompt-based approaches can partially mitigate these effects through tailored task formula-

tions, fine-tuned models remain more susceptible to underperformance in underrepresented

classes.

Limitations and generalizability Furthermore, overall human annotator scores were

high, but lower for more complex labels such as culprit vessel and occlusion, likely due

to the ambiguous and complex nature of these annotations. During ICA procedures, the

culprit lesion may not be unequivocally identified, particularly in cases of NSTEMI, multi-

vessel disease or diffuse atherosclerosis25. Labeling sub-branches of the culprit vessel was

even more ambiguous, due to complex anatomical relations and lesions affecting multiple

branches at the same time. These ambiguities, exacerbated by the multi-class and multi-

label nature of vessel-related classifications, make for highly complex classification tasks.

Additionally, a notable proportion of the dataset included patients with prior CABG or

CTOs, introducing further anatomical variation and interpretation challenges.

To isolate model performance from labeling effort, we fixed the labeled dataset size across

models and did not rebalance the dataset, which keeps implementation burden comparable

but leaves some label categories with limited representation. In applied settings, rare labels

may be enriched via keyword screening to prioritize these cases.

This study primarily focused on moderately structured clinical text, due to the procedu-

ral nature of analyzed reports, which typically contain more templated or semi-standardized

phrasing. Extending these methods to unstructured clinical narratives, such as clinical
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rounding notes or discharge summaries, will likely pose greater challenges due to their vari-

ability and contextual complexity. Nonetheless, reports used in this analysis were created

by numerous different cardiologists, introducing heterogeneity in structure and phrasing.

We anticipate that similar LLM-based strategies can effectively be extended to less

structured clinical text, provided that more extensive prompt engineering and carefully de-

fined output schemas are employed to handle the greater variability. Moreover, while our

datasets were sourced from a single academic institution, the underlying LLM-based ap-

proaches are inherently portable. They can be adapted to local data environments, allowing

for institution-specific customization while leveraging generalizable architectures and work-

flows. Nevertheless, our comparisons were limited to single-center datasets; extending these

methods across multiple institutions may alter performance, as the benefits of fine-tuning

could be reduced. Additionally, because we did not formally map outputs to standardized

terminologies such as SNOMED CT, cross-institution interoperability remains to be estab-

lished.

Future Directions Future research should prioritize the development of advanced prompt

optimization strategies, including automated prompt generation and hybrid frameworks that

integrate prompt engineering with minimal fine-tuning. These approaches may offer a more

efficient balance between performance and resource demands, particularly in settings with

limited annotated data. In addition, performance could be further enhanced by incorpo-

rating post-processing techniques, such as rule-based corrections or ensemble methods, that

aggregate outputs from multiple models to enhance reliability. Guideline-grounded prompt-

ing and retrieval-augmented generation (RAG) may be explored to surface the most relevant

guideline passages at inference time. When combined with schema-constrained outputs and

simple rule-based adjudication, guideline-based diagnoses could be derived from free-text

reports while maintaining transparency and ease of update.

The application of LLM-based data extraction to less structured clinical texts, such

as progress notes and discharge summaries, warrants further investigation, as these sources

contain rich contextual information but pose greater linguistic and structural challenges. An-

other interesting direction is applying LLMs to map free-text reports directly to standardized

terminologies to streamline multi-institution data aggregation and enable joint analyses with
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minimal additional conversion steps.

Given the rapid evolution of LLM architectures and hardware, with new models show-

ing both similar performance with a lower parameter count and superior performance with

similar or higher parameter counts, we anticipate continuous improvement in performance,

accessibility and applicability in clinical cardiology settings.26

Conclusion In conclusion, both fine-tuning and prompt engineering approaches to LLMs

offer valuable tools for the structured classification of cardiology reports. Prompt engi-

neering provides a lightweight, adaptable and cost-efficient strategy, particularly suitable

for low-resource settings. Fine-tuning, while resource-intensive, enables more targeted opti-

mization. While commercial LLMs generally outperform open-source models in challenging

classification tasks, locally deployed models achieved good performance for more structured

or narrowly defined applications. The choice between approaches should be guided by the

clinical use case, available infrastructure, local expertise and regulatory or privacy consid-

erations. Critically, the traditional bottleneck of manual data labeling is rapidly becoming

obsolete. With LLMs now capable of accurate, scalable information extraction from raw clin-

ical text, the development of machine learning pipelines no longer hinges on large annotated

datasets. This shift unlocks new opportunities for rapid deployment of AI in cardiology,

from real-time decision support to large-scale data curation. As the technology continues to

evolve, LLMs are set to become foundational infrastructure for cardiovascular research and

clinical practice alike.
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Figure 4: Distribution of the manually assigned single-label labels for the ICA dataset

Figure 5: Distribution of the manually assigned vessel labels
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Figure 6: Distribution of the manually assigned categorical LV function labels

Figure 7: Distribution of the manually assigned categorical valve dysfunction labels
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Figure 8: Model comparison for the finetuning method on the TTE reports. Mean and 95%
CI of 1000 bootstrap samples are shown. Results are aggregated metrics of 5 fold cross-
validation on the training set.
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Figure 9: Model comparison for the finetuning method on the ICA reports. Mean and 95%
CI of 1000 bootstrap samples are shown. Results are aggregated metrics of 5 fold cross-
validation on the training set.
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Figure 10: Model comparison for local prompt engineering on TTE reports. Metrics show
aggregated values of 5-fold cross-validation on trainings set. 95% CI of metrics calculated
with 1000 bootstrapped samples is indicated with error bars. Sten. = stenosis, reg. =
regurgitation
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Figure 11: Model comparison for local prompt engineering on ICA reports. Metrics show
aggregated values of 5-fold cross-validation on trainings set. 95% CI of metrics calculated
with 1000 bootstrapped samples is indicated with error bars.
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Figure 12: Model comparison for HPC prompt engineering on TTE reports. Metrics show
aggregated values of 5-fold cross-validation on trainings set. 95% CI of metrics calculated
with 1000 bootstrapped samples is indicated with error bars. Sten. = stenosis, reg. =
regurgitation
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Figure 13: Model comparison for HPC prompt engineering on ICA reports. Metrics show
aggregated values of 5-fold cross-validation on trainings set. 95% CI of metrics calculated
with 1000 bootstrapped samples is indicated with error bars.
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