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Abstract
Purpose Lumbar spinal stenosis (LSS) is a frequently occurring condition defined by narrowing of the spinal or nerve root 
canal due to degenerative changes. Physicians use MRI scans to determine the severity of stenosis, occasionally comple-
menting it with X-ray or CT scans during the diagnostic work-up. However, manual grading of stenosis is time-consuming 
and induces inter-reader variability as a standardized grading system is lacking. Machine Learning (ML) has the potential 
to aid physicians in this process by automating segmentation and classification of LSS. However, it is unclear what models 
currently exist to perform these tasks.
Methods A systematic review of literature was performed by searching the Cochrane Library, Embase, Emcare, PubMed, 
and Web of Science databases for studies describing an ML-based algorithm to perform segmentation or classification of the 
lumbar spine for LSS. Risk of bias was assessed through an adjusted version of the Newcastle-Ottawa Quality Assessment 
Scale that was more applicable to ML studies. Qualitative analyses were performed based on type of algorithm (conventional 
ML or Deep Learning (DL)) and task (segmentation or classification).
Results A total of 27 articles were included of which nine on segmentation, 16 on classification and 2 on both tasks. The 
majority of studies focused on algorithms for MRI analysis. There was wide variety among the outcome measures used to 
express model performance. Overall, ML algorithms are able to perform segmentation and classification tasks excellently. 
DL methods tend to demonstrate better performance than conventional ML models. For segmentation the best performing 
DL models were U-Net based. For classification U-Net and unspecified CNNs powered the models that performed the best 
for the majority of outcome metrics. The number of models with external validation was limited.
Conclusion DL models achieve excellent performance for segmentation and classification tasks for LSS, outperforming 
conventional ML algorithms. However, comparisons between studies are challenging due to the variety in outcome measures 
and test datasets. Future studies should focus on the segmentation task using DL models and utilize a standardized set of 
outcome measures and publicly available test dataset to express model performance. In addition, these models need to be 
externally validated to assess generalizability.

Keywords Artificial intelligence · Machine learning · Deep learning · Segmentation · Classification · Lumbar spinal 
stenosis

Introduction

Lumbar spinal stenosis (LSS) is a disease defined by nar-
rowing of the spinal or nerve root canal that becomes symp-
tomatic through the compression of neural structures [1]. 
Classically, LSS causes intermittent neurogenic claudica-
tion affecting approximately 11% of older adults in the US 
and is the most common cause of spinal surgery among this 
population [2–4].
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Patients are usually offered surgery if conservative treat-
ment has failed to sufficiently ameliorate symptoms. Sur-
gical candidacy is assessed using radiological imaging in 
conjunction with clinical history and physical examination 
[4, 5]. MRI has become the gold standard to determine the 
severity of stenosis, as it produces detailed images of rel-
evant soft tissues that may contribute to the stenosis [6, 7]. 
Alternatively, Computed Tomography (CT) may be used in 
assessing the bony component of stenosis, although deliv-
ering less valuable information on true compression of the 
cauda equina or spinal nerve root. Evaluation of the severity 
of stenosis can be subjective, with inter-reader variability 
among radiologists and surgeons [8, 9]. Grading systems 
to standardize MRI interpretation for the severity of ste-
nosis, such as those proposed by Lee et al. [10], Schizas 
et al. [11], and Miskin et al. [12], have demonstrated inter-
observer metrics ranging from “fair” to “excellent reli-
ability” (Cohen’s kappa 0.323–0.702, intraclass correlation 
coefficient 0.730–0.953), and, hence, have not eliminated 
variability. In addition, manually assessing MRIs using these 
grading systems is time-consuming and, thus, not feasible 
in clinical practice.

Artificial Intelligence (AI) may be a valuable tool to assist 
clinicians in grading LSS, as it has demonstrated the ability 
to assess medical images accurately and consistently in other 
disease areas [13]. Conventional machine learning (ML) or 
deep learning (DL) architectures can be trained for image 
analysis either through supervised or through unsupervised 
learning. In supervised learning, training images are labeled, 
and this technique is often used for segmentation and out-
come prediction [14]. In practice, semi-supervised and 

weakly-supervised approaches are more common, especially 
when high-quality labeled data is scarce. Semi-supervised 
learning combines a limited amount of labeled data with 
a large amount of unlabeled data, whereas weakly-super-
vised learning relies on imperfect or imprecise labels when 
accurate labeling is challenging or costly. In contrast, unsu-
pervised learning models can detect patterns in unlabeled 
data, which is valuable as image datasets with high-quality 
labeling are difficult to procure [13]. The conventional ML 
approach to image analysis usually necessitates the selection 
of relevant input features to train the algorithm to complete 
two tasks: segmentation and classification. In segmentation, 
each pixel is assigned to a class based on its extracted attrib-
utes (Fig. 1) and are then used as inputs for classification, 
where predictions are generated on the severity of LSS [15]. 
DL models are a subset of ML that can learn important fea-
tures from the raw data, obviating the need for extensive fea-
ture engineering, do not require the segmentation step before 
classification and have demonstrated stronger performance 
than conventional ML before [16, 17] (Fig. 2).

In this systematic review, we describe current conven-
tional ML and DL models for segmentation and classifica-
tion of LSS, including scoring of their performance. We 
aim to examine whether AI can be used to improve LSS 
diagnostics.

Methods

This systematic review was conducted in accordance with 
the PRISMA guidelines.

Fig. 1  Example of segmentation of spinal structures in the lumbar spine from an axial T2-weighted MRI image
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Search and selection

Relevant articles were searched in five databases (Cochrane 
Library, Embase, Emcare, PubMed, and Web of Science) 
from inception to 9 February 2023. An expert librarian 
created a comprehensive search strategy that included 
strings for studies investigating new or validating exist-
ing algorithms for segmentation or classification of LSS 
(Online Resource 1). All search results were screened by 
two reviewers (EV and JC) separately based on title and 
abstract. The remaining full texts were evaluated, and, con-
sequently, screening of references and citation tracking were 
performed. Any discrepancies were resolved by discussion 
or consulting a third reviewer (CVL).

Inclusion and exclusion criteria

Studies describing segmentation or classification algo-
rithms for LSS in adults based on conventional ML or DL 
approaches were considered for eligibility. Segmentation 
was defined as the ability to label spinal structures on a 
pixel-level. The placement of a bounding box to extract a 
region of interest (ROI) was not considered segmentation. 
For classification, studies were accepted that categorized 
patients according to severity of stenosis (either binary or 
multiple classes) or that automated measuring spine indi-
ces relevant for classification of LSS. Meeting abstracts, 
case reports, systematic reviews and meta-analyses were 
excluded. Only algorithms developed for routine X-ray, CT 
or MRI were accepted (e.g., excluding non-routine MRI 
myelography scans). In addition, segmentation studies were 
required to assess at least two anatomical structures relevant 

for LSS (e.g., IVD, spinal canal, lateral recess), since LSS is 
considered a multifactorial disorder. This was also a crite-
rion for classification studies that did not directly classify the 
degree of stenosis but rather, e.g., degree of disc degenera-
tion and hypertrophy of the ligaments. Only articles written 
in English and available in full text were included. If an 
article described a continuation or improvement of previous 
work by the same author(s), only the most complete work 
was included.

The aim is to develop a model with the ability to cor-
rectly identify and predict classes (discriminate between 
two or more conditions) with high (spatial/geometric) accu-
racy and consistent with expert knowledge. Therefore, we 
defined acceptable outcome measures as those quantifying 
accuracy (e.g., overall accuracy, F1 score, area under the 
curve (AUC)), spatial/geometric reliability/error (e.g., area, 
Hausdorff distance), and similarity coefficients quantifying 
agreement with ground truth (e.g., Cohen’s kappa, Jaccard 
index, Dice coefficient).

Risk‑of‑bias assessment

Risk of bias was assessed by three reviewers separately 
(EV, TK and DM) using an adjusted version of the New-
castle–Ottawa Quality Assessment Scale [18]. At the time 
of assessment, an AI-specific risk-of-bias tool had not been 
developed, although the authors were aware of the work in 
progress on this matter[19]. The risk-of-bias criteria were 
adopted to better fit our research aim and be more applicable 
to studies evaluating computer algorithms (Online Resource 
2). Each study could be awarded 0 to 10 points. Studies with 
a score above seven points were classified as low risk of bias, 

Fig. 2  Example of classification of central spinal stenosis. The algorithm determines the region of interest (ROI) on an axial T2-weighted MRI 
image, extracts it and decides on the grading of stenosis
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studies with 5–7 points as intermediate risk of bias and stud-
ies with fewer than 5 points as high risk of bias. Differences 
between the reviewers were resolved during a consensus 
meeting or with a fourth reviewer (CVL).

Data extraction and analysis

From all included studies, data was collected by two review-
ers (TK and DM) on: year of publication, radiological scans 
(modality, slice orientation, scanning parameters and field 
strength if applicable), algorithm (type of model, archi-
tecture, use of transfer learning, type of loss function and 
optimization, degree of automation), study comparisons, 
ground truth, data handling (sample size, pre-processing, 
augmentation, imbalance, split), validation and testing, 
outcome measures and results. A third reviewer (EV) veri-
fied the final data extraction sheet. In cases where authors 
presented results for different versions of the same model 
architecture (e.g., different loss function, varying hyperpa-
rameters) or with different thresholds (e.g., varying distance 
error tolerance), only data were collected for the average 
of the models or, if the average was not provided, the best 
performing algorithm, or where the strictest outcome criteria 
were applied. The heterogeneity among outcome measures 
precluded pooling of the results, and, therefore, a qualitative 
analysis was performed. Articles were compared in four cat-
egories: conventional ML segmentation, DL segmentation, 
conventional ML classification and DL classification. Within 
a category, results were compared that belonged to the same 
type of outcome measure (i.e., measure of accuracy, spatial/
geometric reliability/error or similarity metrics).

Results

Article selection

The initial literature search yielded a total of 661 unique 
articles. Of those, 616 were excluded and the remaining 29 
articles were selected for full-text screening of which 22 
were included. After citation tracking an additional 16 stud-
ies were screened in full text of which five were accepted. 
Ultimately, 27 studies were included for this review (Fig. 3) 
[20–46]. A comprehensive overview of the included studies 
is provided in Online Resource 3.

Nine articles assessed segmentation, 16 articles assessed 
classification and two reported on both. Year of publica-
tion ranged between 2010 and 2023 with most of the stud-
ies being published in 2020 or thereafter. Of the 20 studies 
published between 2019 and 2023, seven reported on seg-
mentation and 13 reported on classification, whereas, of the 
six studies published between 2014 and 2018, four reported 
on segmentation and three reported on classification, 

demonstrating a shift of focus towards classification chal-
lenges (Fig. 4).

Risk‑of‑bias assessment

Of the 27 studies, three were considered low-risk of bias 
[26, 27, 31], nineteen were categorized as intermediate-
risk of bias [20–22, 24, 28, 30, 32–34, 36–44, 46] and five 
were judged as high-risk of bias [23, 25, 29, 35, 45] (Online 
Resource 4). Risk of bias was higher for segmentation than 
classification studies on average, but independent of year of 
publication.

Segmentation algorithms

Segmentation of spinal structures included the IVD, spinal 
canal, thecal sac (TS), posterior element (PE)/lamina, liga-
mentum flavum, facet joints, neural foramina, and the area 
between anterior and posterior vertebrae elements (AAP). 
Two out of eleven studies employed conventional ML meth-
ods, eight used DL, and one applied both techniques. The 
extracted data are provided in Online Resource 5 and 6.

Conventional machine learning for segmentation

A variety of outcome measures were used to express model 
performance. None used accuracy, but one study described 
precision (0.79–0.83) and sensitivity (0.90–0.92) for disc and 
dural sac segmentation [25] and another study devised an 
own metric to express segmentation quality (91.25–98.21%) 
[35]. Only one study presented spatial metrics reporting 
Hausdorff distances (7.89–9.41 mm) and surface distances 
(0.83–0.84) [24]. Two studies presented similarity metrics: 
one study demonstrated Dice scores ranging 0.83–0.84 [24], 
while another reported Dice scores of 0.84–0.87 and a Jac-
card index between 0.73 and 0.78 [25]. Since Koompairojn 
et al. received a relatively high risk-of-bias score, the model 
by Ghosh et al. was considered most reliable [25]. This fully 
automatic model comprised Histogram of Oriented Gradi-
ents (HOG) feature descriptors and random forests (RF) as 
the classifier with a fixed number of trees (n = 100) based on 
T2-weighted sagittal MRI scans from 50 patients. They used 
fivefold cross validation and tested on 212 patients.

Deep learning for segmentation

Eight studies performed segmentation using MRI [20, 21, 
23, 24, 28, 29, 39, 42] and one used CT scans [45]. Five 
studies were U-Net based models [23, 24, 29, 39, 45], two 
studies were SegNet based [20, 42], one study was Genera-
tive Adversarial Network (GAN) based [28] and one study 
tested a standard convolutional neural network (CNN) [21].
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An overall accuracy of 85% was reported in one 
study [47], but a range between 50 and 99% for differ-
ent spinal structures in another [20]. Four studies pro-
vided pixel accuracy with Hou et al. demonstrating the 
highest accuracy (0.9935) [29]. Other accuracy metrics 
were only measured in a single study. Only one article 
reported a geometrical metric achieving a surface distance 
of 2.71 mm [39]. The most commonly reported perfor-
mance metrics were similarity coefficients. The Jaccard 
index was used in five reports with a best overall score of 
0.8493 [45], although higher scores were demonstrated for 
specific spinal structures [20]. When correcting for class 
frequency, an even higher score was achieved (0.9835) 

[45]. The Dice coefficient was reported in four studies with 
a maximum value of 0.9252 [39]. Due to the variety in 
reported performance metrics it was not possible to deter-
mine a single most reliable DL model for segmentation. 
However, considering (pixel) accuracy, Jaccard index and 
Dice score, the best performing models were U-Net based 
[29, 39, 45] or SegNet based [20]. All four compared their 
model’s performance to human expertise using data of at 
least 120 patients and evaluated their own model (SegNet-
TL80 [20], Spine-Seg-2 phase model [29], MANet [39] 
and DDU-Net [45]. Two were semi-automated [29, 39] 
and two were fully automated [20, 45].

Fig. 3  Flowchart of the article search and selection process. * Two studies reported on both segmentation and classification and, therefore, 
appear in both segmentation and classification boxes
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Classification algorithms

A total of eighteen articles assessing classification algo-
rithms for LSS were published between 2010 and 2023 [22, 
26–28, 30–38, 40, 41, 43, 44, 46]. Two out of eighteen stud-
ies described conventional ML algorithms, fifteen used DL 
and one compared both techniques. The extracted data are 
provided in Online Resource 7 and 8.

Conventional machine learning for classification

Of the three studies, Koompairojn et al. demonstrated an 
overall accuracy of 92.66–96.82% for different spinal fea-
tures [35]. Altun et al. achieved the highest accuracy (0.762) 
with a Gabor-RF model using one axial image for each of 
three IVD levels (L3-4 to L5-S1) [22]. Huber et al. evalu-
ated performance through sensitivity, specificity and AUC, 
and obtained superior results with a decision tree algorithm 
that used 240 texture analysis features from the dural sac or 
spinal canal as input (sensitivity: 94.32–94.33%, specificity: 
96.53–98.04%, AUC: 0.940–0.962) [30]. The ground truth 
was established using a reference standard for the cross-sec-
tional area, defined as above 130  mm2 (non-severe stenosis) 
or below (severe stenosis). A total of 343 images from 82 
patients (max. 5 axial slices per patient, one per IVD level) 
were used with tenfold cross validation. This model was 
considered semi-automated since it required manually seg-
mented MRI images.

Deep learning for classification

Sixteen studies described DL models for classification 
[22, 26–28, 31–34, 36–38, 40, 41, 43, 44, 46]. Six studies 
employed an unspecified CNN [26, 27, 31–33, 40], five 
studies were VGG-based [22, 34, 37, 38, 46], two studies 

were U-Net based [36, 43], two studies were ResNet-based 
[41, 44], and one study used a GAN [28]. Models either 
classified specific spinal features with binary (stenosis or 
not) or multiclass labels (e.g., normal, mild, moderate, 
severe stenosis), performed measurements between spi-
nal structures, or classified the image as a whole (binary 
label).

Out of six studies reporting on accuracy, Lehnen et al. 
achieved the highest score (98.09%) [36]. Class average 
accuracy was reported in four studies, with the highest range 
of values achieved by Jamaludin et al. (0.701–0.947) [32]. 
AUC was reported the highest by Lu et al. (0.961–0.983) 
among five studies [41]. Sensitivity and specificity were 
presented in 9 studies: the highest overall sensitivity was 
achieved by Altun et al. (0.921) [22], although two stud-
ies reported higher values for central canal stenosis specifi-
cally (0.922 and 0.946) [27, 44]. Lehnen et al. reported the 
highest specificity (0.9865) [36]. Negative (NPV) and posi-
tive predictive value (PPV) were only reported in three and 
five studies, respectively. Lehnen et al. achieved an NPV of 
0.9906, whereas PPV was highest in the study by Lewand-
rowski et  al. [38], although Kim et  al. achieved values 
between 0.790 and 0.845 depending on the use of neutral, 
flexion or extension radiographs [34]. F1 score was highest 
in the study by Su et al., although this was only reported 
by one other study [44]. Among spatial metrics only the 
mean absolute error (MAE) for the diameter of the dural sac 
was reported in two studies with the smallest error obtained 
by Pang et al. (0.72 mm) [40, 43]. For similarity metrics 
Cohen’s kappa was reported in four studies but highest in 
the study by Ishimoto et al. (0.75) [31]. Gwet’s AC1 sta-
tistic, reported in two studies, was highest in the study by 
Hallinan et al. (0.68–0.96) [27]. In addition, Lin’s correla-
tion coefficient was presented in three studies with the best 
performance reported by Jamaludin et al. (0.88–0.89) [32].

Fig. 4  Number of publications per year focusing on ML/DL algorithms for segmentation or classification of the lumbar spine for LSS. Publica-
tions that assessed both appear twice in this graph
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Similar to the results for segmentation models, there was 
a wide variation in the performance metrics for classifica-
tion. Moreover, some models achieved high scores for one 
metric, but lower for other outcome measures. As a result, 
nine different studies achieved the best score depending 
on the performance metric. Of the twelve metrics, the best 
result for four parameters was achieved using U-Net based 
models [36, 43], for four others unspecified CNN algorithms 
worked best [27, 31, 32], for two ResNet derived models 
obtained the best results [41, 44] and for another two metrics 
VGG-like models performed the best [22, 37]. Two studies 
used multiple axial and sagittal images (axial: 15–28 slices, 
sagittal: 15 slices [27, 44], three studies used only one image 
for each IVD level [22, 31, 43], and 4 studies did not specify 
the number of slices per patient or per IVD level [32, 36, 37, 
41]. Hence, it was not possible to identify one DL algorithm 
as the most reliable model for the classification task.

Discussion

Through this systematic review, an overview is presented of 
the currently developed conventional ML and DL techniques 
for segmentation and classification tasks of LSS. It has been 
demonstrated that there is a wide spectrum of models for 
these aims, mostly based on MRI scans. In addition, there is 
a preponderance of DL models among the studies that were 
published more recently. Although the paucity of compara-
ble performance metrics posed a challenge for comparisons, 
DL models, especially U-Net based, yielded better results 
than conventional ML algorithms for the segmentation task. 
For classification purposes, DL networks were superior to 
conventional ML solutions, specifically U-Net and ‘stand-
ard’ CNN algorithms performed the best for most of the 
performance metrics, obviating the need for a preceding 
segmentation step. Overall, the models demonstrated results 
nearing human performance which holds promise to support 
physicians in the diagnosis of LSS.

LSS can occur centrally around the thecal sac, in the 
lateral recess or at the neural foramen. Therefore, the ideal 
classification model would include all these structures. 
Three out of the nine best performing DL classification 
algorithms labelled the central canal, lateral recess and 
neural foramen (or lateral recess and neural foramen com-
bined as ‘nerve root’) for stenosis [27, 36, 44] and one 
model labelled the whole image [22]. In general, central 
and lateral recess stenosis are best assessed using axial 
MRI images, whereas the neural foramina can be most 
optimally viewed on sagittal scans. Since the studies by 
Hallinan et al. and Lehnen et al. included both planes, 
they can be considered the most comprehensive models 
for classification of LSS [27, 36], and, as a result, hold 
the most clinical value. However, both models have only 

been externally validated to a limited extent. Hallinan 
et al. tested their model on an external dataset of 100 
patients from Saudi Arabia following training and test-
ing with patient data from a hospital in Singapore. Leh-
nen et al. validated the commercially available CoLumbo 
model originating from Bulgaria with imaging from their 
institution in Germany. Yet, the generalizability of these 
models could be further substantiated by additional vali-
dation studies.

The heterogeneity among the performance metrics 
reported precluded a quantitative analysis of the results for 
both segmentation and classification algorithms. There was 
no subset of metrics that was consistently reported in every 
study, creating a challenge for appropriate comparisons 
between the studies. To overcome this problem in future 
studies, reporting on ML algorithms needs to be standard-
ized, and recommendations have been made to guide authors 
in this process [48, 49]. Additionally, more specific guide-
lines are being developed which may include a combination 
of performance metrics that should be reported for every ML 
model [19]. For segmentation algorithms, we propose that 
accuracy and the spatial error in mm should be reported at a 
minimum. For classification models, authors should report 
accuracy, the confusion matrix and area under the receiver 
operating characteristic curve [50]. Furthermore, a publicly 
available test dataset should be used to improve compara-
bility between studies and assess generalizability. Ideally, 
such a dataset would contain multi-vendor MRI images from 
different medical centers across the world with high-quality 
labelling. To our knowledge, only one publicly available 
dataset with corresponding ground truth data is currently 
available containing axial and sagittal MRI images from 
515 patients obtained across several international institu-
tion [51]. It was used by four studies from this review [20, 
29, 42, 43], however, this dataset only contains segmentation 
ground truth data for one axial scan of the last three IVDs 
[52]. Radiologists’ readings reporting on the presence of 
central or foraminal stenosis are available [53], but, ideally, 
classification labels should be derived from a consensus 
amongst spine-dedicated radiologists and surgeons. Further-
more, the scanning parameters are homogenous which does 
not reflect the heterogeneity of scans in clinical practice, 
and no demographic information is provided. Other datasets 
are available but with limited size and without appropriate 
ground truth data [54]. Furthermore, authors should clearly 
state the sample sizes and inter- and intra-observer variabil-
ity when comparing with human performance. Notably, most 
studies in this review did not provide details on data or code 
sharing which defies transparency and developments in AI 
research [49].

This systematic review is limited by the databases that 
were searched since relevant articles may have been pub-
lished in non-medical journals. Furthermore, the lack of 
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consistency in reported outcome metrics precluded quan-
titative analyses.

Future studies should focus on DL models for classifi-
cation tasks since they outperform conventional ML meth-
ods and obviate the need for segmentation. Furthermore, 
future studies should validate previously published models 
in addition to developing new ones. Of the 27 articles in 
this review, only seven discussed external validation [26, 27, 
31, 34, 36, 38, 44]. It is essential that published algorithms 
are tested on external datasets for assessment of generaliz-
ability using a standardized set of performance metrics and 
a publicly available test dataset with high-quality ground 
truth data. Additionally, authors should consider the imple-
mentability of their classification algorithms, as the ultimate 
goal is to create a useful model for daily practice. Several 
models required manual pre-processing of the input data, 
and, therefore, will not be viable for the high volume of 
imaging in clinical practice.

This systematic review provides an overview of current 
conventional ML and DL methods for LSS segmentation 
and classification. We have elucidated the wide range of 
developed models and the tendency of DL methods to per-
form better than conventional ML models obviating the need 
for a segmentation step before classification. It is essential 
that guidelines are developed for reporting of performance 
metrics and that researchers focus on validation of (current) 
models on external datasets. Primarily for classification, DL 
models have great potential to improve diagnostics and aid 
clinicians in LSS identification.
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