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Abstract.

Objective. This study investigates key factors influencing deep learning-based dose

prediction models for head and neck cancer radiation therapy (RT). The goal is to

evaluate model accuracy, robustness, and computational efficiency, and to identify key

components necessary for optimal performance.

Approach. We systematically analyze the impact of input and dose grid resolution,

input type, loss function, model architecture, and noise on model performance. Two

datasets are used: a public dataset (OpenKBP) and an in-house clinical dataset

(LUMC). Model performance is primarily evaluated using two metrics: dose score

and dose-volume histogram (DVH) score.

Main results. High-resolution inputs improve prediction accuracy (dose score and DVH

score) by 8.6–13.5% compared to low resolution. Using a combination of CT, planning

target volumes (PTVs), and organs-at-risk (OARs) as input significantly enhances

accuracy, with improvements of 57.4–86.8% over using CT alone. Integrating mean

absolute error (MAE) loss with value-based and criteria-based DVH loss functions

further boosts DVH score by 7.2–7.5% compared to MAE loss alone. In the robustness

analysis, most models show minimal degradation under Poisson noise (0–0.3 Gy) but

are more susceptible to adversarial noise (0.2–7.8 Gy). Notably, certain models, such

as SwinUNETR, demonstrate superior robustness against adversarial perturbations.

Significance. These findings highlight the importance of optimizing deep learning

models and provide valuable guidance for achieving more accurate and reliable

radiotherapy dose prediction.
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1. Introduction

Radiation therapy (RT) is one of the primary treatment modalities for head and neck

cancers, aiming to deliver high doses of radiation to the planning target volume (PTV)

while minimizing exposure to surrounding organs at risk (OARs). Due to the irregular

shape of PTV, the multiple dose levels of PTV (such as primary tumors and lymph

nodes) and the close proximity of OARs, head and neck cancer is considered one of the

most complex clinical treatment areas (Morgan & Sher 2020).

Modern RT techniques, such as Intensity-Modulated Radiotherapy (IMRT) and

Volumetric Modulated Arc Therapy (VMAT), rely on an inverse planning process. This

process, which involves iterative adjustment of treatment objectives for the tumor and

OARs, can be time-consuming and heavily dependent on the planner’s expertise, leading

to significant variability in plan quality (Nelms et al. 2012).

To enhance the consistency, quality, and efficiency of RT plans, Knowledge-Based

Planning (KBP) has been introduced to automate the process of RT plan generation.

The KBP approach leverages knowledge from prior high-quality, clinically accepted

plans to predict optimal RT plans for new patients. Traditional KBP models use

anatomical and geometric features to predict the Dose-Volume Histogram (DVH) and

the dose distribution (Babier et al. 2018, Jiao et al. 2019, Bai et al. 2020). However,

with the rise of deep learning in recent years, deep learning-based dose prediction

methods no longer require manually designed features as input. Instead, they can learn

directly from raw image data, marking a new stage in the development of KBP (Momin

et al. 2021). Typically, the dose distribution predicted by deep learning-based methods

is then mimicked to create a clinically deliverable plan (Bakx et al. 2021).

Segmentation models based on the encoder-decoder architecture have become

dominant in medical imaging segmentation tasks (Milletari et al. 2016, Li et al. 2018,

Isensee et al. 2021, Hatamizadeh et al. 2021, Cao et al. 2022). These models take

inputs, such as CT or MRI images, and output segmentation masks with matching

dimensions, a feature that also makes them suitable for dose prediction tasks. This

compatibility has led many researchers to adopt the encoder-decoder structure for

dose prediction. For example, Kearney et al. (2018) introduced DoseNet, a fully

convolutional volumetric network, to predict the dose distribution for prostate cancer.

Nguyen et al. (2019) proposed a hierarchically densely connected U-Net (HDUNet),

which combines U-Net and DenseNet to predict the dose distribution for the head and

neck. In 2020, the American Association of Physicists in Medicine (AAPM) launched

the Open Knowledge-Based Planning Challenge (OpenKBP), significantly advancing the

field of radiation dose prediction by providing a standardized open source dataset for

head and neck cancer (OpenKBP dataset) along with standardized evaluation metrics

(Babier et al. 2021). This initiative has spurred the development of various innovative

methods, broadly categorized into two main approaches: (1) U-Net-based methods and

(2) Transformer-based methods. In the first category, numerous studies have leveraged

U-Net and its variants to predict dose distributions. Gronberg et al. (2021) proposed a
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three-dimensional (3D) densely connected U-Net with dilated convolutions to capture

complex spatial relationships in the data. Liu et al. (2021) presented a 3D cascaded

U-Net model (C3D) with a knowledge distillation technique, achieving first place in

the OpenKBP Challenge. Additionally, Wang et al. (2022) proposed a beam-wise dose

decomposition 3D cascaded network, while Chandran et al. (2023) developed MemU-

net, which integrates MemNet memory blocks within a U-Net framework to improve

network efficiency and prediction accuracy. Recently, Lin et al. (2024) introduced the

LENAS framework, an approach that incorporates Neural Architecture Search (NAS)

and knowledge distillation to optimize the search for effective components in U-Net.

In the second category, transformer architectures have recently emerged as a promising

alternative in head and neck dose prediction, capitalizing on their ability to capture

long-range dependencies. Hu et al. (2023) introduced the TrDosePred framework,

pioneering the use of Transformer architectures for this task. Following this, Gheshlaghi

et al. (2024) proposed DOSE-PYFER, a cascaded Transformer-based model specifically

designed to predict the dose distribution. However, most of these studies focus mainly

on proposing a new model structure to improve accuracy.

In addition to innovations in model architecture, only a few studies have explored

other factors that influence the accuracy of dose prediction. For example, Nguyen

et al. (2020) studied the impact of the loss function, suggesting that incorporating

a domain-specific DVH loss can further enhance the model performance. Gu et al.

(2023) investigated the impact of model input on performance, finding that CT and

PTV are sufficient to predict dose distribution. However, these investigations are often

isolated and based on private datasets, which limits the generalizability of their findings.

Consequently, a comprehensive analysis of the factors that influence deep learning-based

dose prediction across various datasets is still needed.

To facilitate clinical translation, research should go beyond accuracy to rigorously

evaluate both robustness and computational efficiency. Robustness is crucial for

managing various forms of noise, including inherent image noise and adversarial

disturbances. In particular, adversarial noise, potentially introduced by malicious

attacks, such as ransomware, poses a significant threat to hospital and patient

safety (Finlayson et al. 2019). However, computational efficiency, which encompasses

hardware requirements and runtime, is equally critical to ensure that models can be

feasibly deployed within clinical settings. Although accuracy often takes precedence in

most studies, there is a noticeable gap in assessing how models handle noise and perform

efficiently. Bridging this gap is essential to develop dose prediction models that are not

only accurate but also robust and practically viable in a clinical context.

Figure 1 provides an overview of the deep learning-based dose prediction pipeline

and highlights the key factors analyzed in this study. In this paper, we make two primary

contributions:

• Comprehensive Analysis of Influential Factors: We conduct a systematic

investigation into various factors that influence deep learning-based dose prediction

for head and neck tumors. These factors include input resolution, dose grid
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Figure 1: Pipeline of deep learning-based dose prediction and focus of this paper.

resolution, input type, loss function, and model structure. By analyzing these

factors using both a public dataset and an in-house clinical dataset, we provide

a holistic understanding of how each factor impacts the performance of dose

prediction.

• Evaluation of Model Robustness and Efficiency: In addition to focusing

on the accuracy of the prediction, we evaluate the robustness of different model

structures against Poisson noise and adversarial noise. Furthermore, we assess the

computational efficiency of these models, including GPU memory consumption and

runtime. This dual focus on robustness and efficiency addresses practical concerns

that are critical for clinical applications.

2. Materials and method

2.1. Patient dataset

In this study, we used two datasets. The first is the OpenKBP dataset, which contains

data from 340 head and neck cancer patients: 200 for training, 40 for validation, and

100 for testing (Babier et al. 2021). The second is an in-house dataset (referred to

as LUMC) of 104 patients treated for oropharyngeal and hypopharyngeal cancer at

Leiden University Medical Center between 2017 and 2024. The study was approved by

the Medical Ethics Committee of Leiden, The Hague, and Delft (G21.142, October 15,

2021). Patient consent was waived due to the retrospective nature of the study.

The two datasets are very similar in composition. Each patient’s data includes a

planning CT, PTV contours, OAR contours, and the corresponding 3D dose distribution.

There are several differences. For OpenKBP, the dose distribution was generated from

a 9-beam equidistant coplanar IMRT set-up with 6 MV fields. For LUMC, the dose

distribution was generated from dual-arc full rotation VMAT beams. The PTVs in

OpenKBP include three dose levels: PTV56, PTV63, and PTV70, representing 56 Gy,

63 Gy, and 70 Gy, respectively. In contrast, LUMC’s PTVs include two dose levels:

PTV54.25 and PTV70, representing 54.25 Gy and 70 Gy. In addition, the OpenKBP
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Table 1: Comparison between the OpenKBP and LUMC dataset

Dataset Plan Type PTVs OARs Dose Grid Resolution

OpenKBP IMRT PTV70, PTV63, PTV56 Brainstem, Spinal cord, Right parotid,

Left parotid, Esophagus, Larynx, and

Mandible

(3.9, 3.9, 2.5)

LUMC VMAT PTV70, PTV54.25 Brainstem, Spinal cord, Right parotid,

Left parotid, Esophagus, and Larynx

(2, 2, 2)

dataset has a lower dose grid resolution compared to the LUMC dataset. For detailed

comparisons, see table 1.

2.2. Data preprocessing and training strategy

We used the same data preprocessing and training strategies for both the OpenKBP

and LUMC datasets. First, during data pre-processing, we followed Liu et al. (2021) to

clip the intensity of the CT images to the range [−1024, 1500] Hounsfield Units (HU).

We then normalized the values by dividing by 1000 HU. For the dose distribution, we

performed normalization by dividing by 70 Gy. For dataset splitting, we adhered to the

original settings for the OpenKBP dataset. For the LUMC dataset, we used three-fold

cross-validation.

During training, we used online data augmentation to avoid overfitting, including

random translation, random flipping, and random rotation along the cranio-caudal axis.

We used the AdamW optimizer with an initial learning rate of 3 × 10−4. All models

presented in this study were trained for a maximum of 1000 epochs, with an early

stopping employed to prevent overfitting.

2.3. Evaluation metrics

2.3.1. Accuracy metric Following the OpenKBP-2020 AAPM Grand Challenge, we

evaluate the accuracy of the model using the Dose score and the DVH score (Babier

et al. 2021). The Dose score (in Gy) is measured by the mean absolute error (MAE)

between the actual and predicted doses. The DVH score (in Gy), specific to radiation

therapy, includes criteria for both PTVs and OARs. For PTVs, the DVH score covers

three criteria: D1%, D95%, andD99%, indicating the minimum doses received by 1%, 95%,

and 99% of the volume, respectively. For OARs, the DVH score involves calculating

Dmean (the mean dose received by volume) and D0.1cc (the near maximum dose received

by 0.1 cc of volume). The Dose score and the DVH score are defined as follows:

Dose score =
1

N

∑
n

∣∣∣D̂n −Dn

∣∣∣ , (1)

where D̂n and Dn denote the predicted dose and the ground truth dose for the n-th

voxel, respectively, and N is the total number of voxels.
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DVH score =
1

3P + 2O

(
P∑

p=1

(∣∣∣D̂p
1% −Dp

1%

∣∣∣+ ∣∣∣D̂p
95% −Dp

95%

∣∣∣+ ∣∣∣D̂p
99% −Dp

99%

∣∣∣)
+

O∑
o=1

(∣∣∣D̂o
mean −Do

mean

∣∣∣+ ∣∣∣D̂o
0.1cc −Do

0.1cc

∣∣∣)) (2)

where P is the total number of PTVs and O is the total number of OARs.

In addition to using the aggregate Dose Score and DVH Score as the main

accuracy metrics in this study, we also use individual clinical dose evaluation metrics

for comparison with the clinical plan, including V95% (the percentage of a volume that

receives at least 95% of the prescribed dose), Dmean and D0.03cc (the near maximum

dose received by 0.03 cc of volume). It is important to note that the OpenKBP dataset

does not include a clinically approved plan; therefore, clinical dose evaluation metrics

are only calculated for the LUMC dataset.

2.3.2. Robustness metric To evaluate the robustness of the model, we measure the

change in accuracy of the model before and after introducing noise. To note, the noise

is added during the model inference stage without retraining the model. Robustness

is quantified using ∆Dose score and ∆DVH score, which represent the differences in

the accuracy metrics between noise-free conditions and those under noisy conditions.

Higher values of ∆Dose score and ∆DVH score indicate poorer robustness, reflecting

higher sensitivity to noise. They are defined as follows:

∆Dose score = Dose score∗ −Dose score, (3)

∆DVH score = DVH score∗ −DVH score. (4)

Here, the asterisk (∗) denotes the scores calculated under noisy conditions, while the

unmarked scores represent those obtained under noise-free (normal) conditions.

2.3.3. Computational efficiency metric To evaluate the computational efficiency of the

model, we prioritize two key metrics: GPU memory usage and GPU runtime, rather than

focusing on the number of model parameters and floating point operations (FLOPs).

This choice is made because GPU memory usage and runtime are more relevant for

clinical deployment scenarios, as they accurately represent the hardware resources

needed and the actual computation time. Lower GPU memory usage and shorter

runtime indicate a more computationally efficient model. To note, our evaluation focuses

specifically on the model inference, without including data loading or preprocessing, to

better reflect the model’s computational efficiency. All tests were performed on an

NVIDIA A100 40GB GPU, and we report the average usage of GPU memory and

runtime to predict a 3D dose distribution.
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2.4. Input and dose grid resolution

Typically, the input resolution is set to match the dose grid resolution. This means that

we determine the input resolution by defining the dose grid resolution. However, due to

the large size of the 3D dose distribution, many studies employ interpolation algorithms

to down-sample the dose distribution to use as ground truth (Babier et al. 2021). As a

result, the model predicts a low-resolution dose distribution, which should be upsampled

to the original resolution for clinical use. Although this approach reduces hardware

requirements and speeds up training, it introduces the risk of potential interpolation-

related errors.

To evaluate the influence of dose grid resolution on dose prediction, we use a cubic-

spline interpolation algorithm to resample the dose distribution in different resolutions.

Since the resolution of the OpenKBP dataset is low by default, we conducted this

experiment using only the LUMC dataset, which is of higher resolution. We evaluated

dose grid resolutions at three levels: 2 × 2 × 2 mm3 (high and original resolution),

3× 3× 3 mm3 (medium resolution), and 4× 4× 4 mm3 (low resolution).

2.5. Input type

Selecting the right input is essential for deep learning-based dose prediction models.

Before developing an RT plan, we typically have anatomical information such as the

patient’s planning CT, PTV contours, and OARs contours. This information identifies

critical areas to treat and high-risk organs to avoid. Using these data as input enables

the neural network to learn complex spatial relationships and dose distribution patterns.

To assess how different types of input affect dose prediction accuracy, we chose four

types of input: (1) CT only, (2) PTVs and OARs, (3) CT combined with PTVs, and

(4) CT combined with PTVs and OARs.

2.6. Loss function

The loss function of neural networks plays a crucial role during training because it

quantifies the difference between the predicted output and the ground truth. By

minimizing the loss function, the model continuously adjusts its parameters, thereby

enhancing its prediction accuracy. Most prior work uses the mean squared error (MSE)

or MAE loss (Kearney et al. 2018, Nguyen et al. 2019, Liu et al. 2021, Chandran

et al. 2023, Gheshlaghi et al. 2024). Nguyen et al. (2020) proposed making the DVH

a differentiable target and introduced a value-based DVH loss function. However, this

approach requires a high computational overhead. Wang et al. (2022) proposed two

more efficient DVH-based loss functions, including a value-based DVH loss function

(LvDV H) and a criteria-based DVH loss function (LcDV H), defined as follows:

LvDV H =
P+O∑
s=1

1

Ns

Ns∑
n=1

∣∣∣R(D̂ ·Ws)n −R(D ·Ws)n

∣∣∣ , (5)
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where Ns is the number of voxels in the s-th ROI (Ws), and R(·) denotes the sorting

operation,

LcDV H =
1

3P + 2O

(
P∑

p=1

(∣∣∣D̂p
1% −Dp

1%

∣∣∣+ ∣∣∣D̂p
95% −Dp

95%

∣∣∣+ ∣∣∣D̂p
99% −Dp

99%

∣∣∣)
+

O∑
o=1

(∣∣∣D̂o
mean −Do

mean

∣∣∣+ ∣∣∣D̂o
0.1cc −Do

0.1cc

∣∣∣)) ,

(6)

where these DVH criteria are calculated by the sorted dose values. We interpret LvDV H

as penalizing the discrepancy between the predicted and ground-truth DVH curves,

while LcDV H focuses on penalizing differences specifically at critical points of the DVH

curve.

To evaluate the influence of different loss functions on the dose prediction task, we

conducted three sets of experiments: (1) using LMAE alone, (2) using LMAE + LvDV H ,

and (3) using LMAE + LvDV H + LcDV H . For (2), the loss weight parameters are set to

1 and 1, and for (3), they are set to 1, 0.5, and 0.5.

2.7. Model structure

For model structure selection, we focus on 3D neural networks proposed in the existing

literature, as 2D neural networks often overlook spatial information between slices.

There are several representative works in the literature based on UNet for dose

prediction, such as DoseNet (Kearney et al. 2018), HDUNet (Nguyen et al. 2019), C3D

(the champion of the OpenKBP challenge, (Liu et al. 2021)), and U-NAS (Lin et al.

2024). In recent years, transformer-based architectures have also been investigated, such

as SwinUNETR (Hatamizadeh et al. 2021) and Dose-PYFER (Gheshlaghi et al. 2024),

which we also include. We selected these networks because of their superior performance

in dose prediction tasks, making them strong candidates for this study. It is important

to note that C3D and Dose-PYFER have cascaded structures, while U-NAS is available

in both single and cascaded setups.

2.8. Noise

To evaluate the robustness of the model structure, we introduce noise, including Poisson

noise and adversarial noise, into the input CT image.

2.8.1. Poisson noise Poisson noise frequently appears in CT images due to the nature

of the photon detection process (Thanh et al. 2019). In CT imaging, the emitted X-

ray photons are detected after passing through the body. However, the number of

detected photons follows a Poisson distribution, which leads to statistical fluctuations

in the image. The probability mass function (PMF) of a Poisson distribution is given

by P (k;λ) = λke−λ/k!, where λ represents the average rate (i.e., the mean number of
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detected photons), and k is a discrete random variable representing the actual number

of photons detected. In this study, we set the value of λ = 20 based on visual inspection.

2.8.2. Adversarial noise Research indicates that deep learning models are susceptible

to adversarial noise (Madry et al. 2018). By adding a small, carefully designed

perturbation to the original image, which may not be perceptible to humans, the model

can produce outputs with a certain degree of error, leading to a significant decline in its

accuracy. In this study, we focus on two commonly used methods to generate adversarial

noise.

Projected Gradient Descent (PGD) (Kurakin et al. 2018) is an iterative method

that generates an adversarial example by taking multiple small steps. For a single

step, given input data x with its true dose distribution D, the adversarial example x is

generated by perturbing the input in the direction that maximizes the loss with respect

to D. The perturbation is updated by projecting it onto a specified ϵ-ball (a small region

around the original data controlled by the parameter ϵ) while ensuring it maximizes the

loss function:

x(t+1) = Clipx,ϵ

(
x(t) + α · sign(∇xJ(θ, x

(t), D))
)
, (7)

where t is the iteration index, α is the step size, J(θ, x(t), D) is the loss function, and

Clipx,ϵ projects x back into the ϵ-neighborhood of x.

Momentum Iterative FGSM (Mi-FGSM) (Dong et al. 2018) improves on FGSM

(Goodfellow et al. 2015) by introducing momentum in gradient updates, helping to

escape local optima more effectively. The update procedure becomes:

g(t+1) = µ · g(t) + ∇xJ(θ, x
(t), D)

∥∇xJ(θ, x
(t), D)∥1

, (8)

x(t+1) = Clipx,ϵ

(
x(t) + α · sign(g(t+1))

)
, (9)

where g(t) represents the accumulated gradient momentum up to iteration t, µ is the

momentum parameter that controls the influence of previous gradients, and ∥·∥1 denotes
the L1 norm, which sums the absolute values of the gradient components. In this study,

we set ϵ = 16 HU based on visual inspection.

3. Results

3.1. Input and dose grid resolution

For the experiment evaluating the impact of different input and dose grid resolutions

on dose prediction, we used the C3D model, the winning solution of the OpenKBP

Challenge. The model input consisted of CT, PTVs, and OARs, and we employed the

MAE loss function. Table 2 reports the accuracy on the LUMC dataset. The results

indicate that using high and original resolution input (2 × 2 × 2 mm3) yielded the

lowest Dose score and DVH score. Therefore, we selected this resolution for subsequent

experiments on the LUMC dataset.
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Table 2: Accuracy comparison of different input and dose grid resolution

Resolution
LUMC

Dose score (Gy) ↓ DVH score (Gy) ↓

4× 4× 4 mm3 (low resolution) 1.39± 0.28 1.85± 0.45

3× 3× 3 mm3 (medium resolution) 1.37± 0.26 1.67± 0.49

2× 2× 2 mm3 (high and original resolution) 1.27± 0.26 1.60± 0.55

Table 3: Accuracy comparison of different input types

Network input
OpenKBP LUMC

Dose score (Gy) ↓ DVH score (Gy) ↓ Dose score (Gy) ↓ DVH score (Gy) ↓

CT 5.91± 2.20 8.82± 3.80 3.10± 0.87 12.09± 3.84

PTVs + OARs 2.68± 1.06 1.77± 1.23 1.31± 0.26 1.69± 0.65

CT + PTVs 2.73± 1.15 1.86± 1.14 1.28± 0.25 1.63± 0.49

CT + PTVs + OARs 2.52± 1.00 1.52± 1.13 1.27± 0.26 1.60± 0.55

Table 4: Accuracy comparison of different loss functions

Loss
OpenKBP LUMC

Dose score (Gy) ↓ DVH score (Gy) ↓ Dose score (Gy) ↓ DVH score (Gy) ↓

LMAE 2.52± 1.00 1.52± 1.13 1.27± 0.26 1.60± 0.55

LMAE + LvDV H 2.60± 1.08 1.48± 1.11 1.30± 0.26 1.59± 0.55

LMAE + LvDV H + LcDV H 2.59± 1.09 1.41± 1.10 1.29± 0.27 1.48± 0.50

3.2. Input type

For the experiment that evaluated the impact of different input types on dose prediction,

we used the C3D model and the MAE loss function. Table 3 reports the accuracy on

the OpenKBP and LUMC datasets. The results show that the incorporation of CT,

PTVs, and OARs resulted in the lowest Dose score and DVH score for both datasets.

In contrast, using CT alone resulted in the worst scores.

3.3. Loss function

For the experiment that assessed the impact of different loss functions on dose prediction,

we used the C3D model with input consisting of CT, PTVs and OARs. As shown in

table 4, for the OpenKBP dataset, the LMAE loss achieved the lowest Dose score, while

the LMAE+LvDV H+LcDV H loss achieved the lowest DVH score along with a competitive

Dose score. A similar trend was observed in the LUMC dataset. This pattern suggests

that while the LMAE loss alone provided the best Dose score, LMAE + LvDV H + LcDV H

offered the best DVH score and a more balanced overall improvement (that is, better

Dose and DVH scores compared to LMAE + LvDV H). Given the high clinical relevance

of the DVH score, we selected LMAE + LvDV H + LcDV H for subsequent experiments.
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Table 5: Accuracy comparison of different model structures

Model Structure
OpenKBP LUMC

Dose score (Gy) ↓ DVH score (Gy) ↓ Dose score (Gy) ↓ DVH score (Gy) ↓

S
in
gl
e

DoseNet (Kearney et al. 2018) 3.06± 1.22 1.67± 1.17 1.49± 0.27 1.56± 0.55

HDUNet (Nguyen et al. 2019) 2.70± 1.05 1.46± 1.10 1.34± 0.26 1.57± 0.59

SwinUNETR (Hatamizadeh et al. 2021) 2.86± 1.16 1.50± 1.25 1.40± 0.26 1.54± 0.54

U-NAS (Lin et al. 2024) 2.72± 1.17 1.45± 1.22 1.32± 0.26 1.51± 0.53

C
as
ca
d
e C3D (Liu et al. 2021) 2.59± 1.09 1.41± 1.10 1.29± 0.27 1.48± 0.50

DOSE-PYFER (Gheshlaghi et al. 2024) 2.75± 1.18 1.49± 1.23 1.32± 0.24 1.54± 0.53

U-NAS (Lin et al. 2024) 2.65± 1.05 1.37± 1.12 1.31± 0.27 1.45± 0.51

Figure 2: Boxplots with clinical dose evaluation metrics for targets on the LUMC

dataset. For PTV54.25, the clinical goal is V95% ≥ 98%. For PTV70, the clinical goals

are V95% ≥ 98%, Dmean ≤ 102% (of the prescribed dose), and D0.03cc ≤ 107% (of the

prescribed dose). Statistical significance was tested using a two-tailed Wilcoxon signed-

rank test. **: p ≤ 0.01, *: 0.01 < p ≤ 0.05, ns = not significant.

3.4. Model structure

In this section, we used the input consisting of CT, PTVs, and OARs, and the loss

function was LMAE + LvDV H + LcDV H . Table 5 shows that in the single model setup,

U-NAS performed well on both datasets. In the cascade model setup, C3D achieved

the best dose scores in both datasets, while U-NAS achieved the best DVH scores. In

the LUMC dataset, the accuracy differences between all models are not great, being

less than or equal to 0.2 Gy. However, for some of the clinical dose evaluation metrics

shown in figures 2 and 3, there remain significant differences between predictions and

the clinical plan (mainly with respect to V95% of PTV54.25, Dmean of PTV70, D0.03cc of

Spinal Cord, and Dmean of the contralateral submandibular gland).

Under Poisson noise (table 6), all models demonstrated strong robustness, with

most models having ∆Dose and ∆DVH scores below 0.1 Gy. Figure 4 also illustrates

this point: even in extreme conditions with λ = 20, although the quality of the CT
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Figure 3: Boxplots with clinical dose evaluation metrics for OARs on the LUMC dataset.

Ipsi = ipsilateral, Contra = contralateral, Submand = submandibular gland, SG =

supraglottis. Statistical significance was tested using a two-tailed Wilcoxon signed-rank

test. **: p ≤ 0.01, *: 0.01 < p ≤ 0.05, ns = not significant.

Table 6: Robustness comparison of different model structures against Poisson noise

(λ = 20)

Model Structure
OpenKBP LUMC

∆Dose score (Gy) ↓ ∆DVH score (Gy) ↓ ∆Dose score (Gy) ↓ ∆DVH score (Gy) ↓

S
in
gl
e

DoseNet (Kearney et al. 2018) 0.01± 0.02 0.01± 0.10 0.03± 0.01 0.02± 0.05

HDUNet (Nguyen et al. 2019) 0.28± 0.27 0.10± 0.32 0.08± 0.06 0.03± 0.21

SwinUNETR (Hatamizadeh et al. 2021) 0.04± 0.10 0.09± 0.18 0.12± 0.05 0.16± 0.17

U-NAS (Lin et al. 2024) 0.00± 0.03 0.00± 0.03 0.00± 0.01 0.01± 0.03

C
as
ca
d
e C3D (Liu et al. 2021) 0.00± 0.04 0.00± 0.06 0.02± 0.02 0.00± 0.08

DOSE-PYFER (Gheshlaghi et al. 2024) 0.00± 0.07 0.00± 0.07 0.01± 0.01 0.00± 0.06

U-NAS (Lin et al. 2024) 0.00± 0.04 0.00± 0.04 0.01± 0.01 0.00± 0.02

Table 7: Robustness comparison of different model structures against PGD attack

(ϵ = 16 HU)

Model Structure
OpenKBP LUMC

∆Dose score (Gy) ↓ ∆DVH score (Gy) ↓ ∆Dose score (Gy) ↓ ∆DVH score (Gy) ↓

S
in
gl
e

DoseNet (Kearney et al. 2018) 3.63± 1.85 6.41± 1.87 0.66± 0.23 0.64± 0.42

HDUNet (Nguyen et al. 2019) 0.20± 0.30 0.23± 0.43 0.22± 0.14 0.18± 0.26

SwinUNETR (Hatamizadeh et al. 2021) 0.06± 0.19 0.17± 0.37 0.18± 0.12 0.01± 0.17

U-NAS (Lin et al. 2024) 0.35± 0.43 0.31± 0.54 0.67± 0.20 0.46± 0.29

C
as
ca
d
e C3D (Liu et al. 2021) 0.14± 0.27 0.24± 0.40 0.08± 0.07 0.13± 0.20

DOSE-PYFER (Gheshlaghi et al. 2024) 0.29± 0.41 0.55± 0.65 0.11± 0.09 0.12± 0.21

U-NAS (Lin et al. 2024) 0.35± 0.39 0.31± 0.49 0.30± 0.14 0.31± 0.26

images had severely degraded, the dose prediction remained almost unchanged.

The robustness of different model structures was further evaluated under adversarial
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Figure 4: Impact of different Poisson noise levels (λ) on U-NAS (cascade) dose

prediction, using a randomly selected slice from the LUMC dataset. The first row

shows CT images with increasing noise levels. The second and third rows depict U-NAS

(cascade) dose predictions and the differences map from the original dose prediction

(noise-free), respectively. The color bars represent dose values (0 to 80 Gy) and

differences map from the original prediction (-1 to 1 Gy).

Table 8: Robustness comparison of different model structures against Mi-FGSM attack

(ϵ = 16 HU)

Model Structure
OpenKBP LUMC

∆Dose score (Gy) ↓ ∆DVH score (Gy) ↓ ∆Dose score (Gy) ↓ ∆DVH score (Gy) ↓

S
in
gl
e

DoseNet (Kearney et al. 2018) 4.42± 1.72 7.77± 1.87 0.78± 0.23 0.50± 0.26

HDUNet (Nguyen et al. 2019) 0.63± 0.24 0.90± 0.35 0.48± 0.10 0.43± 0.20

SwinUNETR (Hatamizadeh et al. 2021) 0.24± 0.13 0.52± 0.24 0.20± 0.07 0.22± 0.18

U-NAS (Lin et al. 2024) 0.93± 0.56 0.93± 0.51 0.70± 0.27 0.41± 0.38

C
as
ca
d
e C3D (Liu et al. 2021) 0.51± 0.52 0.63± 0.61 0.23± 0.07 0.28± 0.31

DOSE-PYFER (Gheshlaghi et al. 2024) 0.63± 0.53 1.11± 0.69 0.31± 0.17 0.40± 0.37

U-NAS (Lin et al. 2024) 0.99± 0.73 1.28± 0.66 0.32± 0.09 0.31± 0.20

noise by PGD and Mi-FGSM attacks (table 7, table 8). The tables reveal that

SwinUNETR consistently demonstrated superior resilience across both the OpenKBP

and LUMC datasets when subjected to these adversarial noises. Notably, U-NAS

(cascade), which had performed well under Poisson noise, struggled considerably

under adversarial noise, especially on the OpenKBP dataset. Figure 5 visually aligns

with these findings. As the attack strength increases, both U-NAS (cascade) and

SwinUNETR show increasing degradation from the original dose predictions. However,

SwinUNETR maintains greater stability, with less pronounced deviations compared to

U-NAS (cascade), particularly as the attack strength becomes stronger.

Table 9 compares the computational efficiency of various model structures. DoseNet

was the most computationally efficient among the single models, having the lowest GPU

memory usage and runtime. Among the cascade models, U-NAS was the most efficient

compared to others. SwinUNETR, among all models, demanded the most resources
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Table 9: Computational efficiency comparison of different model structures

Model Structure
OpenKBP LUMC

GPU memory (MB) GPU runtime (ms) GPU memory (MB) GPU runtime (ms)

S
in
gl
e

DoseNet (Kearney et al. 2018) 297 11 708 31

HDUNet (Nguyen et al. 2019) 2589 109 9437 179

SwinUNETR (Hatamizadeh et al. 2021) 3593 126 11359 440

U-NAS (Lin et al. 2024) 1412 58 4778 142

C
as
ca
d
e C3D (Liu et al. 2021) 2254 77 8036 241

DOSE-PYFER (Gheshlaghi et al. 2024) 2309 186 6798 512

U-NAS (Lin et al. 2024) 1550 115 5150 356

Figure 5: Impact of different attack strengths (ϵ) of the MI-FGSM attack on U-

NAS (cascade) and SwinUNETR, using a randomly selected slice from the OpenKBP

dataset. Panel (a) showcases the results on U-NAS (cascade) : the first row displays the

original and perturbed CT images, the second and third rows depict the corresponding

dose predictions and the differences map from the original dose prediction (noise-free),

respectively. Panel (b) presents similar sequence results for SwinUNETR. The color

bars represent dose values (0 to 80 Gy) and differences map from the original prediction

(-4 to 4 Gy).

and had the longest runtimes. The results also indicated that the LUMC dataset, which

contains higher resolution images, led to higher GPU memory usage and longer runtimes
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Figure 6: Comparison of the DVH curves of PTV70 under high (original), medium, and

low resolutions.

compared to the OpenKBP dataset. Note that all models achieved GPU runtimes of

less than 1 second in both datasets.

4. Discussion

In this paper, we explore the factors that affect the performance of deep learning-based

dose prediction using the publicly available OpenKBP dataset and in-house LUMC

dataset. From a dataset perspective, the OpenKBP dataset has certain limitations.

The data originates from The Cancer Imaging Archive (TCIA), has been re-annotated

and processed; the resolution of the CT image and dose grid is lower than clinical

standard. In addition, it does not include a clinically approved RT plan. However, the

LUMC dataset compensates for these shortcomings well. Furthermore, the IMRT-based

OpenKBP and VMAT-based LUMC datasets well represent current treatment planning

techniques in the field of radiation therapy. Our findings indicate that most conclusions

are applicable to both datasets, suggesting that the results discussed in this paper have

considerable generalizability.

To ensure a fair comparison, all models were either re-implemented based on their

original publications or adapted from publicly available GitHub repositories (e.g., C3D,

DOSE-PYFER, U-NAS). For models without released code, we re-implemented the

architectures using the MONAI‡ framework and closely followed the original publication.

Although there may be implementation differences, we standardized the training settings

across all models as described in Section 2.2 (e.g., same optimizer, learning rate,

and maximum training epoch). These settings were chosen because we found them

to be robust across different model architectures and generally allowed the models

to reach performance levels comparable to those reported in the original papers.

We acknowledge that further hyperparameter tuning could improve individual model

performance. However, our goal was to benchmark under a unified and reproducible

‡ https://www.monai.io
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training setup. All code and configurations used in this study are publicly available at

https://github.com/RuochenGao/HaN-DosePrediction.

As shown in figure 6, the differences observed in the dose fall-off region of the DVH

plot are due to interpolation effects. The primary goal of RT planning is to deliver

a high radiation dose to the tumor while minimizing exposure to surrounding healthy

tissues, creating a sharp dose gradient visible as a steep decline in the DVH curve.

However, interpolation algorithms can smooth out this gradient between high-dose and

low-dose regions, introducing deviations from the actual dose distribution. Therefore,

we recommend using high-resolution input and dose grid to preserve the integrity of the

gradient.

From table 3, we can see that the model performs poorly when using only CT

images. This is because CT scans do not provide the neural network with explicit

information about the tumor’s location, shape, and size, and the neural network must

therefore learn to extract this information from the CT data directly, without the use

of supervision. This significantly increases the difficulty of the overall learning task

for dose prediction, as tumors in the head and neck region exhibit irregular shapes

and sizes. In contrast, when using only PTVs + OARs, we observe that the model

performed well. This indicates that the spatial and anatomical relationships between

targets and OARs contain the most critical information for the dose prediction task.

While CT (HU values) play a key role in traditional dose calculation engines by enabling

photon attenuation modeling, deep learning models appear to rely more heavily on

explicit geometric representations provided by PTV and OAR contours. However, the

combination of CT + PTVs + OARs achieved the highest accuracy, and therefore we

still recommend using this combination.

The selection of a loss function is closely related to the desired output. In RT

planning, clinicians are more concerned with ensuring adequate dose coverage for PTVs

and minimizing the mean and maximum dose to OARs, which is related to the DVH

score in our study. Previous work has demonstrated the benefits of incorporating a

value-based DVH loss (Nguyen et al. 2020). As demonstrated in table 4, we found that

combining MAE, value-based DVH loss, and criteria-based DVH loss functions improves

the DVH score even further. Moreover, the criteria-based DVH loss can be tailored to

meet specific clinical requirements in different scenarios. Thus, we recommend using

the combined loss function LMAE + LvDV H + LcDV H to achieve optimal results.

From table 5, we observe that models with a cascade architecture often

outperformed single models, achieving lower Dose and DVH scores, indicating improved

accuracy in dose prediction. This suggests that the progressive refinement inherent in

cascade architectures enables more precise adjustments during the prediction process,

resulting in better accuracy in capturing complex patterns within CT scans, combined

with PTVs and OARs. However, as shown in table 9, the GPU runtimes for cascade

models were generally longer than those for single models, indicating a trade-off in

computational efficiency. Since the inference time remained below 1 second, this

extended runtime may not pose a significant issue. We believe that for the complex
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task of dose prediction, a cascade architecture may be necessary to achieve optimal

performance. Furthermore, it should be noted that U-NAS (cascade) achieved the best

results on the DVH score. However, as shown in figure 2, U-NAS (cascade) shows

significant differences (p ≤ 0.01) compared to the clinical plan in terms of V95% for

PTV54.25 and PTV70. In contrast, Dose-PYFER performs better on these metrics,

showing no significant differences from the clinical plan (p > 0.05). This discrepancy

arises because the DVH score is an aggregated metric composed of several DVH metrics.

As such, it does not necessarily reflect good performance in all individual DVH metrics.

Furthermore, U-NAS focuses on finding the optimal neural network structure based on

the current loss function, which does not include metrics such as V95%.

In the experiments on model robustness, we found that for Poisson noise, which

commonly occurs in CT scans, all models exhibited strong robustness (table 6). As

shown in figure 4, where the quality of CT image had been significantly degraded at

λ = 20, the dose prediction showed almost no change. However, when facing adversarial

noise, where imperceptible noise is added to the original CT image (shown in figure 5),

the accuracy of the model can be affected (table 7, table 8). This is mainly because

adversarial noise is generated based on the model’s gradient, maximizing the model’s

prediction error. However, we observed that SwinUNETR demonstrated stronger

robustness against adversarial noise. This may be due to SwinUNETR divides the input

data into non-overlapping patches and processes these patches individually. This patch-

based approach can act as a form of regularization, reducing the impact of adversarial

noise by ensuring that localized perturbations in each patch do not significantly affect

the overall representation. However, SwinUNETR does not perform as well as other

models, such as C3D and U-NAS, in terms of the accuracy metric. Furthermore, it has

the highest GPU memory consumption among the evaluated models. Therefore, for

practical clinical deployment, it is essential to choose an appropriate model structure

that balances accuracy, robustness, and computational efficiency.

One aspect not explored in this study is the incorporation of prior knowledge

information such as beam configuration. As the beam setup is fixed in our dataset,

the influence of beam configuration was not investigated in this study. However, recent

studies, such as Gao et al. (2023), have shown that including beam-related information

(e.g., beam angles and beam plates) can improve dose prediction accuracy, particularly

in more diverse clinical scenarios. Although this was beyond the scope of the current

work, incorporating this prior knowledge is a promising direction for future research to

improve model generalizability.

Another limitation is that we add noise to CT images to verify the robustness

of the model structure. However, in clinical practice, the uncertainty introduced by

inter-physician variability in the contouring of tumors and OARs (Guzene et al. 2023)

represents another critical element affecting model robustness. Future work will focus on

investigating the impact of this uncertainty on dose prediction. We suggest that in dose

prediction tasks, it is essential not only to focus on the accuracy of the model but also

to consider the robustness of the model, including its ability to counter noise and handle

Page 17 of 21 AUTHOR SUBMITTED MANUSCRIPT - PMB-118416.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Submit to Phys. Med. Biol. 18

uncertainty. These aspects have significant practical value in clinical applications.

Finally, our study focuses on photon-based radiotherapy (IMRT and VMAT), while

proton therapy is also currently used for head and neck cancer treatment. Proton

therapy introduces additional challenges in dose prediction due to its higher sensitivity

to variations in CT HU values and its sharper dose gradients. While our findings suggest

that photon-based deep learning models benefit in a relatively small amount from CT as

an input (table 3), this input may be more relevant for proton therapy dose prediction.

In the future, a dedicated evaluation using proton therapy datasets will be needed to

determine if our findings can be generalized to proton radiotherapy.

5. Conclusion

This study presents a comprehensive analysis of key factors that influence deep

learning-based dose prediction models for head and neck cancer radiotherapy. By

systematically examining input and dose grid resolution, input type, loss function, and

model architecture using both public and in-house clinical datasets, we demonstrate

their significant effects on model accuracy, robustness, and computational efficiency.

Our findings show that high-resolution inputs, specifically CT images with PTVs

and OARs, combined with a hybrid loss function that incorporates MAE and value-

based and criteria-based DVH components, substantially improve prediction accuracy.

Robustness testing reveals that while most models exhibit greater resistance to Poisson

noise than adversarial noise, certain models, such as SwinUNETR, demonstrate superior

robustness against adversarial perturbations. These insights provide valuable guidance

for optimizing deep learning-based dose prediction models, contributing to more precise

and reliable radiotherapy planning.
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Appendix A. Boxplots of absolute differences in clinical dose evaluation

metrics
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Figure A1: Boxplots of absolute differences in clinical dose evaluation metrics for targets

on the LUMC dataset, comparing different models with the clinical plan.

Figure A2: Boxplots of absolute differences in clinical dose evaluation metrics for

OARs on the LUMC dataset, comparing different models with the clinical plan.

Ipsi = ipsilateral, Contra = contralateral, Submand = submandibular gland, SG =

supraglottis.
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