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1.1. RADIOTHERAPY

According to GLOBOCAN estimates from the International Agency for Research on Can-

cer (IARC) of the World Health Organization (WHO), at least 20 million people were

diagnosed with cancer across 185 countries in 2022, leading to over 9.7 million deaths

[1]. By 2050, the incidence of cancer is projected to increase by 77%. Lung cancer is the

most prevalent, accounting for 12.4% of all cases, followed by breast cancer at 11.6%

and colorectal cancer at 9.6%. The primary treatment options for cancer are surgery,

chemotherapy, radiotherapy, or a combination of these approaches. The choice of treat-

ment greatly depends on the type and location of the tumour, its stage and growth rate,

and whether metastases are present. More than 50% of cancer patients receive radio-

therapy during the course of their treatment, whether for curative or palliative purposes

[2]. Available radiotherapy modalities include brachytherapy, where radioactive sources

are placed within or around the tumour inside the patient, and external beam radiation

therapy (EBRT), which delivers radiation to the cancer site using an accelerator that pro-

duces photons, electrons, neutrons, protons or heavy ions.

The goal of radiotherapy is to destroy or shrink the tumour to increase the patient’s

chances of survival and preserve quality of life. This is accomplished by maximizing the

radiation dose to the tumour while minimizing the exposure of surrounding healthy tis-

sues. The majority of patients are treated with conventional megavoltage (MV) X-ray

beams, which exhibit an exponentially decreasing energy deposit after a dose build-up

close to the skin. This technique results in co-irradiation of tissues proximal and distal

to the target volume, which can limit local tumour control due to constraints imposed

by normal tissue toxicity. In contrast, proton beams exhibit lower entrance doses and

concentrate dose deposition at the end of their range, with little to no dose beyond the

Bragg peak as shown in figure 1.1. As a result, dose delivery can be better tailored to the

tumour allowing a more conformal dose distribution and reducing unnecessary expo-

sure of surrounding anatomical structures particularly those distal to the target volume.

Thus, proton therapy potentially offers substantial improvement in the therapeutic win-

dow as compared to conventional radiotherapy techniques by allowing greater escala-

tion of tumour doses and reduction of normal tissue complications.

Because of its physical advantages, there has been a steady increase in the use of pro-

ton therapy in treating cancer indications such as brain, head and neck, lung, and breast

tumours as well as paediatric malignancies [4, 5]. There is also a rise in the number of

proton centres around the world, with 121 currently in operation and 28 more under

construction as of June 2024 [6]. As the number of cancer patients treated with proton

therapy continues to increase, there is also a demand for high-level evidence support-
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Figure 1.1: Depth dose distribution of X-rays (red) vs protons (blue). Spread-out Bragg
peak (SOBP) beam is created by superposition of several pristine Bragg peaks [3].

ing its use. In line with this, preclinical studies are being conducted aiming to address

open questions regarding proton radiobiology, long term side effects, regional tissue ra-

diosensitivities, immunomodulatory effects, and new treatment strategies such as very

high dose rate irradiations (FLASH) [7, 8] and spatial fractionation [9, 10]. Such research

studies both in vitro and in vivo are critical in determining and demonstrating the clin-

ical potential of proton therapy (or any radiotherapy modality in general) beyond just

differences in the dose distribution.

1.2. PRECLINICAL RESEARCH

Preclinical studies play a crucial role in cancer research because they serve as an exper-

imental system for investigating the biological, chemical, and physical aspects of radi-
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ation response. Insights gained from preclinical research help to formulate hypotheses

about observations in patients, which can then be tested in clinical studies to determine

their relevance and potentially improve treatment outcomes.

For example, experiments on in vitro and in vivo models (findings summarized by

Paganetti et al. [11, 12]) have shown that the relative biological effectiveness1 (RBE) of

protons is variable and tends to be progressively higher towards the distal end of the

Bragg peak [13, 14]. This is contrary to the simplistic assumption of a constant RBE of 1.1

(relative to 60Co) in routine clinical practice. In reality, RBE depends on the depth, show-

casing an increase of as high as 79% in the RBE-weighted dose using experimental RBEs

compared to the RBE-weighted dose calculated using the constant clinical RBE [15]. A

higher RBE at the distal dose falloff can result in unexpected toxicity to healthy tissues

behind the tumour, which raises questions on whether a fixed RBE of 1.1 is an oversim-

plification given its clinical implications [16]. Considerable variation has also been ob-

served in the experimental RBE as it was found to be influenced by a number of factors

such as the energy, dose per fraction, tissue and cell types, and the specific biological

endpoint being studied [12, 17]. These uncertainties in the RBE highlight the need for

caution in RBE-based treatment planning in the clinic and underscore the necessity for

more extensive validation in preclinical models. Furthermore, similar to protons, heavy

ions also benefit from the physical characteristics of the beam due to the Bragg peak but

exhibit an even higher RBE for cell killing. Additional preclinical research into the differ-

ential response of ions to photons and protons will help guide future clinical studies for

optimizing heavy charged particle therapy.

Since any radiotherapy treatment inevitably results in some dose delivered to healthy

tissues, normal tissue toxicity remains a limiting factor and a key focus of preclinical re-

search. In normal tissue studies, animal models serve as frameworks to observe acute

and late effects of radiation damage especially on critical dose-limiting organs. For in-

stance, irradiations of the heart in murine models have demonstrated radiation-induced

cardiac injury such as decreased microvascular density [18, 19, 20] and increased fibro-

sis in the myocardium and pericardium [20, 21]. In vivo experiments on heart and lung

irradiation with rats showed that pulmonary function loss does not depend only on the

dose in the lungs but is also aggravated by co-irradiation of the heart [22]. In parallel,

irradiation of the lungs has been shown to contribute to the development of cardiac side

effects [23]. These findings have been instrumental in refining management of radiation

treatments for thoracic, oesophageal, and breast cancer patients, who are at risk of devel-

1Relative biological effectiveness (RBE) is the ratio of the dose of a reference radiation (DR ) to the dose of a test
radiation (DT ) required to produce the same biological effect. Commonly, photons (e.g. 60Co) are used as the
reference radiation.
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oping radiation-induced lung injury (RILI) and radiation-induced heart disease (RIHD).

They also suggest that there is an interplay between these two organs and both influ-

ence damage in the other. To gain more insights into the individual effects of heart and

lung irradiation, to identify organ regions that contribute the most to the development

of side effects, and to further clarify the correlation between their responses, animal ex-

periments with more targeted radiation delivery need to be performed (e.g. portion of

the heart is irradiated while limiting the dose to the lungs, or vice versa). Such exper-

iments have now become more feasible with the recent technological advancements

in preclinical image-guided irradiation platforms. Proton beams, which exhibit greater

conformality, can also be used for more localized irradiations, as has been done with

stem cell-rich ducts in the parotid glands [24] and hippocampus in the brain [25]. Re-

sults from these studies demonstrated regional sensitivities in organs and suggest that

sparing these regions may reduce radiation-induced side effects—xerostomia and neu-

rocognitive dysfunction, respectively. These outcomes highlight the need for more com-

prehensive preclinical studies using more focused dose distributions so that we can gain

more understanding and make informed decisions on which tissues or regions to spare

and how to optimize dose escalation during radiation treatments.

While normal tissue toxicity is a major concern in radiotherapy, the ultimate goal is

to achieve local tumour control. Tumour response studies for proton therapy and proton

minibeam radiotherapy have been done with breast [26] and brain tumour-bearing ani-

mals [27, 28], respectively. These studies used syngeneic models, where inbred animal

cancer cell lines are transplanted into immunocompetent animals. This makes them

also suitable for immunological studies. However, it is important to exercise caution

as the tumour cells are not of human origin and therefore express different histology,

which may present difficulties in interpretation and translation to humans [29]. On the

other hand, xenograft models have been employed in preclinical studies of conventional

[30] and ultra-high dose rate [31] proton therapy as well as combination treatments

with chemotherapy [32] and targeted radionuclide therapy [33]. Xenograft models show

greater fidelity to human tumours as they are established from human cancer cell lines

or patient tumour biopsies [34]. However, they are implanted in immunodeficient ani-

mals and successful engraftment is not always possible for all tumour types [35, 36].

Tumour models can be implanted orthotopically (at the site of origin) or ectopically

(at a different location, typically subcutaneous). Orthotopic tumours better reflect clini-

cal conditions as they are engrafted at the site of origin, which offers better resemblance

to the native tumour microenvironment, than the more commonly utilized subcuta-

neous ones [37, 38]. As more sophisticated orthotopic tumour models continue to be-
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come available, we now need to rely less on simplistic subcutaneous tumour models and

move on to in vivo systems that better mimic clinically relevant environments. This pro-

vides unique new opportunities for more in-depth studies to answer a variety of radio-

biological questions on tumour response, which potentially offer more predictive value

for the direction of patient studies. However, a lot of work is yet to be done to establish

the validity of these preclinical tumour models.

Ongoing oncological studies are also being conducted on new radiotherapy modali-

ties that are being developed. Preclinical evidence has already indicated that using ultra-

high dose rates (≥ 40 Gy/s) in FLASH therapy [39, 40] and spatial dose modulation in

minibeam radiotherapy [41, 42] can promote increased healthy tissue sparing without

impacting tumour response. This differential response potentially offers reduced side

effects and consequently, improved treatment outcomes. Although the protection from

radiation-induced toxicity has been demonstrated in in vivo models [28, 43, 44, 45], the

underlying biological mechanisms mediating the sparing effect in these emerging radio-

therapy modalities remain unclear. Contradicting results have also been reported, such

as the development of bone necrosis in cats treated with FLASH [46]. Therefore, exten-

sive animal experiments are still needed to fully realize the potential and limitations of

these therapies, to identify and optimize the parameters that trigger protective effects,

and to support their clinical implementation.

1.3. OVERVIEW OF PRECLINICAL IRRADIATION PLATFORMS

As mentioned in the previous section, there is a need for capabilities in delivering highly

controlled dose distributions to small target volumes in order to facilitate next gener-

ation radiation biology experiments. Early preclinical experiments were limited in this

regard as they were usually performed using cabinet X-ray irradiators, which generally

come with a fixed source, non-adjustable collimators, and without on-board imaging

system. This type of irradiation platform can only deliver large beam sizes, limiting it to

non-conformal, whole-body exposure of animals. Owing to technological developments

in the past 15 years, there has now been a transition from cabinet irradiators to more

sophisticated platforms with a rotating gantry or rotating couch to allow multiple field

delivery, micro-cone beam computed tomography (µ-CBCT) for image-guidance and

planning, as well as a dedicated treatment planning system (TPS) for dose calculations.

Table 1.1 summarizes the specifications of some notable small animal X-ray irradiation

platforms.

Two devices have since been commercialized: the Small Animal Radiation Research

Platform (SARRP), developed by Johns Hopkins University in collaboration with Xstrahl
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Inc. (Suwanee, GA) [47], and the Small Animal Radiation Therapy (SmART+), developed

by Princess Margaret Cancer Center and marketed by Precision X-ray, Inc. (Madison,

CT) [48]. Currently, there are over two hundred of these machines in use worldwide.

The SmART+ features a C-arm gantry with the X-ray tube mounted opposite an amor-

phous silicon flat panel detector, which rotates 360◦ around a stationary specimen dur-

ing imaging and treatment. On the other hand, acquisition of CT data and arc delivery

can be accomplished by gantry and/or animal couch rotation for SARRP. These systems

also offer optical imaging such as bioluminescence tomography (BLT) and biolumines-

cence imaging (BLI) as complementary imaging modalities. Aside from aiding in target

localization, these allow longitudinal monitoring of changes in tumour volume, gene ex-

pression, and treatment response [49].

More recently, facilities have started to integrate these commercially available X-ray

imager/irradiator platforms to experimental proton beamlines to take advantage of their

onboard CBCT imaging system and robotic translation stages for image-guided proton

irradiation of animals. The use of particle beams is also aimed at improving conformal-

ity of the dose distribution to target volumes in animals and for differential response

comparison with photons. Several modifications have been implemented to adapt the

proton beamline for use with animals. The lead shielding encasing the X-ray system is

usually removed to make way for the proton beamline. Collimators with diameters ≤ 5

mm were added to allow creation of very small fields. Energy degraders were also in-

corporated to tune down the energy of the protons to levels appropriate for irradiating

shallower regions (< 40 MeV). Table 1.2 summarizes facilities with SARRP or SmART+

combined with proton beamlines for preclinical research.
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1.4. PRECLINICAL IRRADIATION WORKFLOW

The general workflow for image-guided radiation experiments on small animals closely

resembles the clinical treatment course in humans as shown in figure 1.2. First, the an-

imal is placed at the irradiation position and 3D volumetric images (µ-CBCT) are ac-

quired. The imaging data is used to identify and delineate volumes of interest such as

the target and organs-at-risk (OAR). Based on these organ contours, an irradiation plan is

created, in which the beam configuration is decided, and dose objective and constraints

to relevant tissues are set. The dose distribution associated with the plan is calculated,

and once an optimized plan has been reached, this plan is delivered to the animal. In

contrast to the clinic, wherein the treatment planning happens several days prior to the

start of treatment, the entire preclinical workflow is ideally performed in a single session,

lasting between 20-90 minutes depending on the complexity of the plan [64]. Through-

out this process, the animal is kept under anaesthesia, which imposes time constraints

since prolonged exposure to anaesthesia may affect the outcome of experiments and the

animal’s well-being [65, 66].

In the following subsections, current challenges in the irradiation planning process

in animals will be discussed. For clarity, it is important to note that the terminologies

“contour”, “delineation”, “segmentation”, and "annotation" will be used interchange-

ably throughout this thesis.

Figure 1.2: Preclinical irradiation workflow
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1.4.1. ORGAN CONTOURING

Given that animals are imaged at the treatment position and irradiated shortly there-

after, irradiation planning must be completed in the shortest time possible to minimize

exposure to anaesthesia. Similar to the clinic, organ contouring is one of the major bot-

tlenecks that hinders a fast workflow for online dose delivery in animals. In practice, de-

lineation of organs in an animal is mostly performed manually by a biologist. For radio-

biological studies wherein a large number of animals may be irradiated, this approach is

very time consuming, laborious, and prone to errors due to poor soft tissue contrast in

animals especially in the brain and abdomen [67, 68]. Delineating a single organ can take

10 minutes or more [69, 70], potentially extending the process to over an hour per ani-

mal, depending on the number of organs to be delineated. Additionally, the quality of the

contours, which can have an impact on irradiation quality, can vary from one biologist

to the other based on their level of experience. For studies on normal tissue response,

wherein around 100 animals are irradiated in a single experiment [71], organ contours

of a few representative animals (excluded from the experiment) are usually created be-

forehand. The average organ contours of these animals are then applied to delineate

the entire population. This approach can be deemed acceptable since animals used in

in vivo experiments are mostly clones of each other, having the same age, sex, weight,

food, and activity regimen, and they are also subjected to the same environmental con-

ditions. Therefore, drastic variations in anatomical structures are unlikely compared to

humans. However, for studies where morphological variation is critical such as animals

implanted with orthotopic tumours, individualized contours specific to the animal are

needed to obtain better predictive value of preclinical studies. For such cases, automat-

ing the delineation of organs is essential. Not only is the time spent in the contouring

process minimized, but the overall human workload is greatly reduced. Auto-contouring

tools have also shown to provide more consistent, reliable, and reproducible organ delin-

eations [68, 72]. By reducing the variability in the contours, suboptimal plans that lead

to dose errors within the animal population are avoided, and more accurate radiation

delivery can be achieved. This can potentially lead to the reduction of the number of

animals required to obtain statistically significant results in in vivo studies.

Over the years, efforts have been dedicated to developing automated tools for de-

lineating anatomical structures in animals, aiming to both shorten the contouring time

and improve consistency. In atlas-based segmentation, a reference model known as an

atlas—featuring pre-segmented organ contours from previously acquired images—is em-

ployed [73]. The atlas contours are propagated onto the target CT image through de-

formable registration to facilitate the segmentation. Notable examples of whole-body
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atlases of mouse anatomy include the MOBY phantom [74] and the Digimouse atlas [75].

These atlases, based on a single reference animal, are referred to as “classic single atlas”

models. However, this approach is reported to produce inferior segmentation accuracy

as it exhibits strong bias towards the selected atlas. To mitigate this issue, the “multi-

atlas” approach, which incorporates multiple atlases from different animals, has been

proposed. Compared to the single atlas, multi-atlas-based segmentation produced more

accurate contours and is more robust against posture and anatomic variations [76, 77].

Despite being faster than manual contouring, as evidenced by the multi-atlas-based im-

age segmentation (MABIS) algorithm, which took 12 minutes to delineate six organs in a

mouse [78], the process could benefit from further optimization to enhance efficiency.

More recently, unparalleled advances in the field of machine learning have opened

opportunities in automatically performing tasks such as medical image segmentation,

image registration, and computer-aided detection and diagnosis. The general idea is that

the algorithm utilizes relationships and dependencies between input features and out-

put labels inferred from prior training in order to make predictions in new data. Essen-

tially, the algorithm is learning how to create a mapping from a given input to a particular

output based on what it has learned from the labelled training data. Demonstrating rapid

execution times and improved contour consistency, the focus of auto-segmentation in

the clinic has now shifted towards deep learning (DL) with convolutional neural net-

works [79, 80, 81]. This approach is also gaining traction in mouse organ segmentation as

demonstrated by recent DL-based contouring of normal tissues [69, 72, 82], orthotopic

lung tumours [83], and skeletal muscle tissue in mice [84]. While thorough validation of

DL-based contouring models is being done in the clinic, that is not the case for preclini-

cal models. For example, Schoppe et al. [72] evaluated their model’s performance on an

independent dataset but of the same type as the training data (i.e. CT scans excluded

from the training set but sharing the same properties, such as mouse strain and imaging

protocol). However, in reality, especially in facilities where researchers carry out a variety

of experiments, it is unlikely that the same type of mouse and imaging protocols will be

used all the time. Therefore, the performance of preclinical DL models must also be eval-

uated on external cases to determine their robustness and generalizability. Comparing

2D and 3D models could also provide valuable insights. While 2D models are typically

faster, they rely solely on transverse slices, which can result in loss of craniocaudal in-

formation and potentially lead to erroneous results. In contrast, 3D models preserve the

Z information, offering a fuller view of the anatomy during training but at the cost of

increased computational demands and processing time.
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1.4.2. DOSE CALCULATION

Dose computations also impose a bottleneck in the preclinical workflow. Monte Carlo

(MC) simulation is considered the gold standard for dose calculations as it provides the

most accurate results [85]. Since individual particles (primary and secondary) are trans-

ported and radiation interactions are modelled in detail, MC simulations can approxi-

mate the dose very well especially in highly heterogeneous regions, but that makes them

very computationally expensive and thereby slow. Moreover, the spatial resolution of µ-

CBCT images is typically in the order of 100 µm [86], requiring simulation of millions of

particles to achieve sufficient precision. This limits its use in routine preclinical practice,

where fast dose calculation is crucial while the animal is sedated.

Several methods have already been developed in the clinic to accelerate proton dose

calculations. The standard dose engine in most treatment planning systems (TPS) is the

pencil beam algorithm (PBA), which can provide reasonably accurate dose distributions

in fairly homogeneous media within clinically acceptable timeframes [87, 88]. PBAs are

considerably faster than general purpose MC codes, but their performance in the vicin-

ity of highly heterogeneous regions deteriorates particularly when densities of adjacent

materials greatly differ such as in the lungs and head and neck [89]. Since MC codes are

inherently better at handling heterogeneities, several approaches have been developed

in recent years to increase their efficiency by optimizing them to run on massively par-

allel CPU (central processing unit) [90] and GPU (graphics processing unit) [91, 92, 93]

architectures. Alternative proton dose engines, such as those based on deterministic [94]

and deep learning methods [95], have also been proposed to speed up dose calculations

without sacrificing too much in terms of accuracy (i.e. they can achieve near-MC accu-

racies).

While computational tools are actively being developed for the clinic, corresponding

solutions for preclinical applications remain considerably behind. Commercially avail-

able TPS for animals exist such as MuriPlan (Xstrahl Inc., Suwanee, Georgia, USA), SmART-

ATP, and SmART-XPS (SmART Scientific Solutions BV, Maastricht, the Netherlands) for

photons, while only µ-RayStation (RaySearch Laboratories, Stockholm, Sweden) pro-

vides a platform that supports both photons and protons. For kilovoltage (kV) X-ray

beams, deep learning techniques have been recently utilized to denoise low statistics

MC dose distributions [96, 97]. Since the DL algorithm will predict the equivalent high

statistics dose distribution, fewer particles are needed in the MC simulation, thereby sav-

ing time. For protons, Vanstalle et al. [98] proposed an analytical model, building upon

Bortfeld et al.’s [99] formulation of the Bragg curve. However, their methodology was

only validated in a water phantom and not on more complex geometries with a lot of
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inhomogeneities like a CT of an animal. Clausen et al. [100] tried to utilize the clinical

treatment planning system RayStation to calculate doses for target sizes typical for in

vivo studies. However, its validity is questionable as the smallest allowable dose grid is 1

× 1 × 1 mm3, which is too coarse for small animals with anatomical structures smaller

than a millimetre. Studies demonstrating fast and accurate proton dose calculations for

plan generation in animals are scarce, despite the pressing need for such methods due to

constraints introduced by animal sedation. Moreover, fast proton dose engines designed

for humans have not been validated yet for use in animals, which could potentially alle-

viate long computation times.

1.4.3. CT HOUNSFIELD UNIT (HU) CALIBRATION

For spread-out Bragg peak (SOBP) experiments, in which protons stop inside the animal,

the accuracy of the dose distribution largely depends on the predicted proton range.

Range shifts can lead to underdosage in the target or overdosage in OARs, which de-

grades treatment quality. CT calibration in irradiation planning is one of the main con-

tributing factors to range uncertainties [101]. When performing dose calculations, the CT

data measured in Hounsfield units (HU) must be translated first to quantities required by

the dose engine. The basic input for pencil beam algorithms is the stopping power ratio

(SPR), while the mass density (ρ) and elemental composition are required for MC-based

dose engines. Despite differences in the underlying physics of interaction between X-

rays and protons, X-ray CT remains the standard imaging procedure for proton therapy,

from which the quantities relevant for dose calculation are indirectly derived.

In most radiotherapy clinics, Hounsfield look-up tables (HLUT) are used for the cali-

bration. These tables are obtained from single-energy CT (SECT) measurements on tissue-

equivalent materials of known composition or stoichiometric method to derive values

for human tissues [102, 103]. The major issue with SECT calibration is the lack of unique

relationship between the CT numbers and the SPR. There is no one-to-one correspon-

dence due to the difference in physics of X-rays and protons. This entails that tissues

with identical CT numbers can have different SPRs, potentially resulting in inaccuracies.

It has been reported that SECT calibration method can introduce range uncertainties be-

tween 3.0% to 3.5% in patients [104, 105, 106]. Literature have suggested that dual-energy

CT (DECT) has the potential to extract tissue characteristics more accurately than SECT

[107, 108, 109], possibly reducing the range uncertainty margins. By obtaining CT im-

ages at two different X-ray spectral distributions, additional information aside from the

ρe (i.e. Ze f f ) can be extracted. Ze f f is used to determine the mean excitation energy (I )

[110], which is a quantity needed for the calculation of the SPR together with ρe . DECT
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experiments on animal tissue samples have demonstrated a potential reduction in un-

certainty to within 1% [108, 109, 111]. Despite these promising results, DECT is not yet

standard practice in the clinic.

SECT and DECT methods have also been investigated in the preclinical context for

kV X-ray beams. Notably, Schyns et al. [112] tested various energy combinations to deter-

mine the optimal parameters for DECT imaging in animals, whereas Vaniqui et al. [113]

evaluated the impact of SECT and DECT approaches on the photon dose distribution.

However, the merit of SECT and DECT calibration methods for proton dose calculation

in animals is yet to be evaluated. Given that the effect of local deviations in the proton

range is expected to be aggravated in animals due their small size, DECT could poten-

tially enhance dose calculation accuracy. However, the very small voxel size in µ-CBCT

images (∼100 µm) necessitates high imaging doses to minimize noise and error in the

calibration. According to Schyns et al. [112], a dose of at least 30 cGy per image, totalling

60 cGy per animal, is required to achieve a decent calibration. This prompts the question

of whether the potential accuracy gain from DECT justifies the additional imaging dose.

1.5. AIM AND OVERVIEW OF THE THESIS

As discussed in the above, the current preclinical workflow is hindered by technical chal-

lenges such as the time-consuming and subjective nature of organ contouring, lack of

fast dose calculation platforms, and uncertainties arising from the CT calibration. The

overall aim of this thesis is to then establish methods to address these problems, thereby

improving the efficiency and accuracy of the preclinical workflow in order to facilitate

next generation image-guided radiobiology experiments with proton beams.

In Chapter 2, “Deep learning-based segmentation of the thorax in mouse micro-CT

scans”, different 2D and 3D deep learning algorithms are investigated to develop a reli-

able auto-contouring platform for organs-at-risk in the mouse thorax. The performance

of the trained models is evaluated for an independent dataset (i.e. CT images of the same

mice but not included in the training) as well as an external dataset (i.e. CT images of

mice of different strain and age taken using a different imaging protocol) to showcase

their robustness and generalizability to out-of-distribution data. The interobserver vari-

ability was also analyzed to establish a human baseline. Lastly, the time gain in contour-

ing from the deep learning models is presented.

In Chapter 3, “Benchmarking of fast proton dose engines (MCsquare and YODA) for

small animal irradiations”, the suitability of two fast proton dose engines MCsquare and

YODA to accelerate irradiation planning in small animals is evaluated. Dose calculations

are performed in homogeneous and heterogeneous phantoms as well as in realistic an-
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imal geometries (head, thoracic, and abdominal regions). The achievable speed and ac-

curacy from these codes are compared to full Monte Carlo simulations.

In Chapter 4, “A simulation framework for preclinical proton irradiation workflow”,

a simulation framework of the preclinical proton irradiation workflow is developed. This

framework can be used to optimize beam properties, imaging protocols, and experimen-

tal designs prior to performing actual experiments. A key element of the framework is the

µ-CBCT version of the fastCAT CBCT simulator [114], which has been developed to al-

low generation of realistic CT images of animals without actually using a live one. Beam

transport simulations of a dedicated preclinical proton facility have also been performed

to create a realistic beam model for treatment planning in an animal. Using this frame-

work, SECT and DECT images needed to perform CT HU-to-SPR calibration has been

generated. The accuracy of the calibration methods is evaluated through simulated pro-

ton radiographs and SOBP dose distributions in a mouse phantom.

Chapter 5 summarizes the main findings of the work described in this thesis. The

impact, future implementation, shortcomings of this work, and remaining challenges in

routine preclinical practice are also discussed.
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30 2. AUTOCONTOURING IN SMALL ANIMALS

ABSTRACT

For image-guided small animal irradiations, the whole workflow of imaging, organ con-

touring, irradiation planning, and delivery is typically performed in a single session re-

quiring continuous administration of anaesthetic agents. Automating contouring leads

to a faster workflow, which limits exposure to anaesthesia and thereby, reducing its im-

pact on experimental results and on animal wellbeing. Here, we trained the 2D and 3D

U-Net architectures of no-new-Net (nnU-Net) for autocontouring of the thorax in mouse

micro-CT images. We trained the models only on native CTs and evaluated their perfor-

mance using an independent testing dataset (i.e., native CTs not included in the training

and validation). Unlike previous studies, we also tested the model performance on an

external dataset (i.e., contrast-enhanced CTs) to see how well they predict on CTs com-

pletely different from what they were trained on. We also assessed the interobserver vari-

ability using the generalized conformity index (CIgen) among three observers, providing

a stronger human baseline for evaluating automated contours than previous studies.

Lastly, we showed the benefit on the contouring time compared to manual contour-

ing. The results show that 3D models of nnU-Net achieve superior segmentation ac-

curacy and are more robust to unseen data than 2D models. For all target organs, the

mean surface distance (MSD) and the Hausdorff distance (95p HD) of the best perform-

ing model for this task (nnU-Net 3d_fullres) are within 0.16 mm and 0.60 mm, respec-

tively. These values are below the minimum required contouring accuracy of 1 mm for

small animal irradiations, and improve significantly upon state-of-the-art 2D U-Net-

based AIMOS method. Moreover, the conformity indices of the 3d_fullres model also

compare favourably to the interobserver variability for all target organs, whereas the 2D

models perform poorly in this regard. Importantly, the 3d_fullres model offers 98% re-

duction in contouring time.
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2.1. INTRODUCTION

Preclinical in vivo studies using small animal models serve as an essential experimen-

tal system to evaluate potential benefits and radiobiological implications of treatment

strategies before clinical implementation. They play an integral role in modelling the

disease, disease treatment, and response to treatment under clinically relevant radia-

tion exposure conditions that can potentially translate to improvements in therapeutic

outcomes. Over the years, extensive research has been done to develop small animal

imaging and irradiation platforms for X-ray therapy [1, 2, 3, 4, 5]. Commercial irradia-

tion units such as the Small Animal Radiation Research Platform (SARRP, Xstrahl Ltd.,

Camberley, UK) and X-RAD SmART+ (PXI North Branford, CT, USA) are also available,

providing image-guided irradiations representative of clinical scenarios [1, 6]. Recently,

research groups have also started to adopt these technologies for proton preclinical re-

search by integrating them with a proton beamline to perform image-guided proton ir-

radiations [7, 8, 9].

The preclinical irradiation workflow involves the following stages: (1) animal set-

up, (2) image acquisition, (3) organ contouring, (4) irradiation planning, and (5) radi-

ation delivery. The process begins with administration of anaesthesia to immobilize the

animal and is followed by placement in the irradiation position. Then, 3D volumetric

scans of the animal are acquired using micro computed tomography (micro-CT) or other

imaging modalities. These images are used to identify the shape and location of tar-

get volumes and delineate their boundaries. Then, an irradiation plan is created, and

dose distributions are calculated. Once the irradiation objectives and dose constraints

are met, the plan is delivered to the animal. For image-guided small animal irradiation,

this entire process is preferably carried out consecutively in a single treatment session,

which typically lasts for 20–90 min, during which the animal is continuously maintained

under anaesthesia [10]. However, prolonged exposure of rodents to anaesthetic agents

has been shown to influence physiological parameters which can potentially affect the

outcome of experiments [11, 12]. Therefore, a fast irradiation workflow is warranted.

One of the most time-consuming tasks in preclinical image-guided irradiation work-

flow is organ contouring. Traditionally, the organ contours are created manually by a

biologist. This approach is not ideal and can be very tedious since in a single study a

large group of animals may be irradiated. As an example, in studies of normal tissue

damage well over 100 animals were irradiated in a single session [13]. In this study, or-

gan contours of only five animals were made upon which irradiation plans for the entire

population were based. Automating organ contouring not only reduces the overall work-

load for preclinical irradiations, but also allows plans to be created tailored to individual
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animals. This can lead to a better predictive value of preclinical studies and in effect, the

number of animals required to meet the objectives of the study may also be reduced.

Moreover, individualized contours are essential for animals implanted with orthotopic

tumours, which exhibit greater morphological variation compared to the normal tissues.

Over the years, several methods have been developed to automate and speed up

the contouring process. One of the most widely used autocontouring techniques for

biomedical applications is the atlas method [14]. Several whole-body atlases of mouse

anatomy have been constructed, such as the MOBY phantom [15] and the Digimouse

atlas [16], which were based on a single reference animal. However, some studies have

pointed out that this approach (“classic single atlas") produces inferior segmentation

accuracy as it exhibits strong bias towards the selected atlas, and it cannot capture real-

istic body deformations caused by posture, weight, fat amount, and body length varia-

tions [17]. To address this problem, deformable atlases, which can adapt arbitrary poses

and adjust organ anatomy based on changes in body weight, length, and fat amount,

have been proposed [18, 19]. Another potential solution to compensate for individual

variations is the use of multiple atlases constructed from different subjects. The multi-

atlas-based image segmentation (MABIS) algorithm developed by van der Heyden et al.

[20] was able to complete the contouring process in a relatively short time (∼12 mins)

and generated accurate segmentations for organs with sharp boundaries, but manual

corrections were needed for less sharp ones.

Although atlas-based segmentation methods are generally faster than manual con-

touring, the effective runtime of the segmentation task is still considerable, and it may

be further reduced using deep learning techniques. In particular, convolutional neural

networks (CNN) have shown encouraging results in human organ segmentation. Several

studies have demonstrated that deep learning-based segmentation yielded more con-

sistent and more accurate results than atlas-based methods for clinical images [21, 22].

It also outperformed the atlas-based methods in terms of speed [23]. CNNs have also

found applications in preclinical image segmentation. Van der Heyden et al. [24] used

a two-step 3D U-Net model to automatically delineate the skeletal muscle in the lower

limb of mice, which was shown to be 150 times faster than manual segmentation. For

multi-organ segmentation, Wang et al. [25] developed a 3D two-stage deeply supervised

network (TS-DSN) for delineation of major organs in the torso of a mouse with an infer-

ence time of less than 2 s. More recently, Schoppe et al. [26] developed a deep learning

pipeline based on a 2D U-Net-like network called AIMOS (AI-based Mouse Organ Seg-

mentation), which achieved an inference time of 830 ms. Both models showed superior

segmentation accuracy compared to existing studies on atlas-based methods. Moreover,
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AIMOS outperformed TS-DSN except for heart segmentation.

In this work, we trained and validated the 2D and 3D U-Net architectures of no-new-

Net (nnU-Net) for segmentation of organs in the mouse thorax and compared their per-

formance to the state-of-the-art AIMOS method. We used only native CT scans for the

training and validation phase, and we evaluated the trained models’ accuracy using an

independent testing dataset (i.e. native CTs not included in the training and validation).

Unlike previous works, we also tested the trained models against an external dataset (i.e.

contrast-enhanced CTs), which does not share the same properties such as the mouse

strain and image acquisition parameters as the training data. The external dataset was

used to investigate the robustness of the neural networks to datasets that are completely

different from what they were trained on. Moreover, we thoroughly compared the accu-

racy of the automated contours relative to human performance by evaluating the gener-

alized conformity index among three observers. Lastly, we assessed by how much these

neural networks can shorten the contouring time compared to manual contouring in

order to improve the efficiency of the irradiation workflow. For this segmentation task,

we used a publicly available mouse micro-CT dataset [27], and we provide new anno-

tations by two observers for the entire native CT and a subset of the contrast-enhanced

CT datasets. These include spinal cord and separate left and right lung segmentations

not provided in the original annotations. We make these annotations publicly available

at https://doi.org/10.5281/zenodo.5121272.

2.2. METHODS

2.2.1. DATASET

The micro-CT images used in this work were taken from a public database which in-

cludes native and contrast-enhanced 3D whole body scans of mice [27]. Supplementary

Table S2.1 provides a summary of their properties. The native CT dataset is comprised of

140 images from 20 female BALB/c nu/nu mice, with each animal imaged at seven time

points spread over a 72-h period. The entire native CT dataset was utilized, wherein 105

images were allotted to train and validate the models, while the remaining 35 were used

as the test set. To create completely independent training and testing datasets, the native

CT scans were divided at the animal level: CT images of 15 animals (105 scans) were used

for training and validation, and 5 animals (35 scans) were used for testing. In addition,

thirty-five scans from the contrast-enhanced CT (CECT) dataset were taken to serve as a

second independent test set to further evaluate the trained model’s generalizability and

robustness. This dataset includes CTs of 10 female BALB/cAnNRj-Foxn1nu mice, which

https://doi.org/10.5281/zenodo.5121272
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were also imaged at various time points over a 240-h period. However, only eight animals

were considered as two of them did not appear to have contrast enhancement.

In this study, we focused on organs in the thoracic region: heart, spinal cord, right

lung and left lung. Both test sets were annotated by three observers. The first observer

and two second observers were all trained to follow the same labelling protocol and were

supervised by a biologist with more than 5 years of animal contouring experience. All of

them used the contouring module of the small animal radiotherapy treatment planning

system, SmART-ATP (version 2.0, SmART Scientific Solutions BV, Maastricht, the Nether-

lands). Delineations by a third observer were taken from the annotations provided to-

gether with the CT images [27]. These were resampled to the same voxel resolution of

0.14 × 0.14 × 0.14 mm3 using nearest neighbor interpolation.

2.2.2. DEEP LEARNING MODELS

The U-Net is one of the most popular architectures for image segmentation. It is a fully

convolutional network (FCN) that has a U-shape, with symmetric encoder (contraction)

and decoder (expansion) paths. The encoder performs a series of convolution and pool-

ing operations to extract feature representations from the image that the decoder aims

to project onto the pixel space through up-sampling in order to restore the original im-

age size. The U-Net was initially proposed for 2D biomedical image segmentation and

has been shown to work well even with small training datasets [28]. This is advantageous

for preclinical studies where there are restrictions on the number of animals that can be

imaged to build the training data. In this work, we investigated the no-new-Net (nnU-

Net) deep learning pipeline [29], which offers 2D and 3D U-Net-like architectures, and

compared its performance to the 2D U-Net-based AIMOS method [26].

NO-NEW-NET (NNU-NET )

The no-new-Net is an out-of-the-box tool for automated image segmentation and has

been widely used for clinical data. It is a self-adapting algorithm that follows certain

heuristic rules to decide on the training configuration such as the selection of the batch

size, patch size, and network topology depending on the dataset provided by the user

[29]. It is a fully automated deep learning pipeline, which offers both 2D and 3D U-Net

architectures that closely follow the original U-Net design.

In this work, we trained all the available models in nnU-Net from scratch: 2D U-

Net (2d), 3D full resolution U-Net (3d_fullres), 3D low resolution U-Net (3d_lowres), and

3D cascade U-Net (3d_cascade). The network architectures for the 2D and 3D models

generated by nnU-Net for this dataset are illustrated in Supplementary Fig. S2.1. nnU-

Net generates a 2D U-Net model with a network depth (i.e., number of encoder-decoder
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levels) of six. It is configured to accept a patch size of 320 × 224 as input and starts with

32 initial feature channels at the highest layer. The input is downsampled six times in the

x and five times in the y direction, resulting in an image size of 5 × 7 at the bottleneck

with 480 feature channels. The 2D U-Net model only operates on transverse slices and

implements a batch size of 44 during training. nnU-Net also offers three different 3D

models with a network depth of five. The 3D full resolution U-Net model runs on the full

resolution data and has been shown to be the best performing configuration among all

the nnU-Net models in the segmentation challenges where they have participated [29].

It also starts with the same number of initial feature channels but with a patch size of

128 × 96 × 192 and a batch size of 2. Downsampling is performed five times in x and z

and four times in y, which reduces the feature maps at the bottleneck to 4 × 6 × 6 with

feature channels capped to 320. The 3D low resolution U-Net and 3D cascade U-Net also

follow this configuration. However, the 3D cascade U-Net is trained in two stages. The

first stage involves training a 3D U-Net on downsampled versions of the training images

(3d_lowres). The 3d_lowres model was trained on patches of the dataset at a resolution

of 0.19 × 0.19 × 0.19 mm3, and the resulting segmentations are then upsampled to the

original voxel spacing of 0.14 × 0.14 × 0.14 mm3. These segmentations served as the

input for the second stage, and training is performed at full resolution. All five folds of

the 3d_lowres model must be completed before the second stage of 3D cascade U-Net

can be initiated.

AI-BASED MOUSE ORGAN SEGMENTATION (AIMOS)

Recently, Schoppe et al. [26] developed a fully-automated deep learning pipeline ded-

icated for organ contouring of mice micro-CT images called AIMOS. It is currently the

overall best performing algorithm for mouse segmentation. AIMOS provides pre-processing,

network training, and post-processing modules, requiring very little intervention from

the user. It offers several 2D U-Net-like architectures that only differ in the number of

encoder-decoder stages. For this study, the default architecture, UNet-768, was chosen,

which employs six encoder-decoder stages with initial 32 feature channels at the highest

layer and 768 feature channels at the bottleneck. The network was trained using all slices

with a batch size of 32.

2.2.3. NETWORK TRAINING AND INFERENCE

All neural networks were trained only on native CTs delineated by observer 1. Five-fold

cross-validation was performed wherein at each fold, three animals were randomly se-

lected and set aside for validation, while the rest was used for training. The same split

configuration was used for all networks. The final predictions were determined through
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an ensemble voting by taking the average of the predicted probabilities from the five

models resulting from training on the individual folds. All experiments for nnU-Net were

carried out using an NVIDIA V100 with 12 GB of GPU memory while AIMOS was trained

using an NVIDIA Quadro RTX 6000 with 24 GB of GPU memory. The training of the nnU-

Net 3d_fullres model with 1000 epochs took approximately 2 days on our computing

system. The inference time for both codes was evaluated on the same system (NVIDIA

Quadro RTX 6000) to facilitate comparison. For this, we chose to report the average time

the models take to preprocess an image, to make an inference and the total runtime.

The runtime was measured starting from data preparation up to exportation of the au-

tomated contours.

2.2.4. EVALUATION METRICS AND STATISTICAL ANALYSIS

The quality of the segmentations generated by each model was evaluated in terms of

the Dice similarity coefficient (DSC), mean surface distance (MSD) and 95th percentile

Hausdorff distance (95p HD) [30, 31]. The DSC measures the degree of overlap between

the reference and predicted contours; it increases with overlap and a value of 1 indicates

a perfect overlap. MSD and 95p HD give the average and maximum distance measured

between closest points on the surface of the contours, respectively. Therefore, smaller

values for MSD and 95p HD indicate better correspondence to the ground truth.

To determine whether the difference in the DSC, MSD and 95p HD between the mod-

els is significant, a statistical analysis was conducted using a two-tailed Wilcoxon signed

rank test with a significance level of α = 0.05. The nnU-Net 3d_fullres model was cho-

sen as the base model for comparison because it has been shown to be one of the best

performing models in many medical image segmentation tasks [29]. A p-value < 0.05 is

considered statistically significant.

2.2.5. INTEROBSERVER VARIABILITY (IOV )

The degree of agreement between observer’s delineations was estimated using the gen-

eralized conformity index (CIgen). It is defined as the ratio of the sum of the intersect-

ing volumes between all pairs of observers and the sum of union of volumes between

the same pairs [32]. The CIgen is the general form of the Jaccard coefficient [30] appli-

cable for comparison of more than two delineated volumes. This reduces to the Jaccard

coefficient for the two-observer case. Higher values of CIgen indicate greater similarity

between the volumes.

Since the annotations from observer 3 do not include the spinal cord, delineations

from only two observers were considered for this organ. There is also no separation of
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the left and right lungs for observer 3 so the lungs were combined to form the total lung

volume for the other two observers to facilitate comparison. The IOV was then compared

to the performance of the models against a consensus segmentation among observers

for which we will refer to as the reference contour for the rest of the paper. For the spinal

cord, only pixels delineated by both observers were included in the consensus, whereas

pixels delineated by 2 out of 3 observers were considered for the heart and lungs.
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2.3. RESULTS

2.3.1. NATIVE CT ( TEST SET 1)
Figure 2.1 shows the comparison between the automated and manual contours of ob-

server 1 (i.e., observer who annotated the training data) for an example from test set

1. In general, all neural networks showed correct segmentations for the target organs.

The boundaries of the predicted contours appear somewhat smoother than the ground

truth. Both the AIMOS and nnU-Net 2d models showed cases wherein parts of the left

lung were mislabelled as the right lung or vice versa. The mislabelled pixels can be easily

corrected manually as they usually occur in clusters and do not exceed 2% of the total

organ volume. Moreover, the nnU-Net 2d model misclassified pixels far from the thorax,

which are mostly air cavities labelled either as right lung or left lung. For most cases, only

a few pixels were mislabelled by this model, but 2 out of 35 samples exhibited numerous

incorrectly labelled pixels.

The boxplots of the DSC, MSD and 95p HD for the heart, spinal cord, right lung and

left lung when compared against the contours of observer 1 are shown in Supplemen-

tary Fig. S2.2, and the mean, median, and standard deviation of each metric are given

in Table 2.1. The right and left lungs recorded the highest mean DSC at 0.97 ± 0.01 fol-

lowed by the heart and spinal cord at 0.95 ± 0.01 and 0.91 ± 0.02, respectively. Using

a two-tailed Wilcoxon signed rank test with nnU-Net 3d_fullres as the baseline model

for comparison, it was found that the DSC, MSD and 95p HD of nnU-Net 3d_cascade

were not significantly different from nnU-Net 3d_fullres for all organs considered. Mean-

while, significant differences (p < 0.05) on the DSC and MSD values were observed for

the other models. They showed slightly inferior performance on these metrics compared

to the nnU-Net 3d_fullres model. Nevertheless, all models achieved a mean MSD less

than the in-plane voxel size of 0.14 mm, while the mean 95p HD were all below 0.60 mm

for all organs except the right lung segmentation of nnU-Net 2d. Larger surface distances

were observed for this model, resulting from false classifications far from the thoracic re-

gion (anaesthesia nozzle). Performing connected component analysis reduced the mean

MSD and 95p HD to values similar to what was observed for other structures.
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Figure 2.1: An example segmentation in the axial, coronal and sagittal views for test set 1.
The first row shows the manual contours of observer 1, while the succeeding rows are the
automated contours generated by each model. Contours in red, green, blue and yellow
correspond to the heart, spinal cord, right lung and left lung, respectively.
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2.3.2. CONTRAST-ENHANCED CT ( TEST SET 2)
Since the overall best performing models for the native CT dataset are the 3d_fullres

and 3d_cascade models, and no significant difference was observed between them, the

3d_fullres model was chosen as the representative 3D model to evaluate the contrast-

enhanced CT dataset. The results were compared to both nnU-Net 2d and AIMOS. Figure

2.2 shows a visual comparison of the manual contours of observer 1 and the automated

contours generated by networks trained on the native CT data. The segmentation per-

formance of the models versus observer 1 in terms of the DSC, MSD and 95p HD are

summarized in Table 2.2, and the corresponding boxplots are shown in Supplementary

Fig. S2.3. For all structures, the nnU-Net 3d_fullres model produced accurate segmen-

tations albeit with a drop in performance as compared to the native CTs. Except for the

spinal cord, the 3d_fullres model achieved a mean DSC > 0.90. The mean MSDs were

also smaller than the in-plane voxel size of 0.14 mm except for the heart, while all organs

had a mean 95p HD below 0.60 mm.

Consistently, the AIMOS and nnU-Net 2d models exhibited greater variations in the

DSC, MSD and 95p HD compared to the 3d_fullres model. Both 2D models failed to gen-

erate predictions for the heart and left lung in 1 out of 35 samples. This particular case

was excluded in the calculation of the performance metrics presented in Table 2.2. On

most of the samples, the 2D models had difficulties in segmenting the heart, right lung

and left lung. Several slices were partially or completely unlabelled for these organs and

in some cases, half of the volume had no prediction at all. The lower DSC and larger

MSD and 95p HD clearly indicate that the 2D models underperformed on this dataset.

Notably, the 2D models scored a mean 95p HD > 1 mm for all target organs except for the

spinal cord segmentation of AIMOS. This can be attributed to mislabelling pixels in the

liver as heart, while pixels associated to air cavities outside the thoracic region such as

air pockets in the abdomen were mislabelled as part of the lungs. Segments of the spinal

cord were also missing in some cases, but it happened less frequently. Both 2D models

also failed to distinguish the left and right lungs as shown in Fig. 2.3, which did not occur

for the 3D model.
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Figure 2.2: An example segmentation in the axial, coronal, and sagittal views for test set
2. The first row shows the manual contours of observer 1, while the succeeding rows
are the automated contours generated by each model. Contours in red, green, blue and
yellow correspond to the heart, spinal cord, right lung and left lung, respectively.
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Ground truth AIMOS

Ground truth nnU-Net 2d(a)

(b)

Figure 2.3: Predictions of (a) nnU-Net 2d and (b) AIMOS on contrast-enhanced CTs
showing misclassification of the right and left lungs. Corresponding ground truths are
given on the left. Contours in red, green, blue and yellow correspond to the heart, spinal
cord, right lung and left lung, respectively.
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2.3.3. BEST, INTERMEDIATE, AND WORST SEGMENTATIONS

The best, intermediate, and worst segmentation results of the nnU-Net 3d_fullres model

for both datasets are shown in Fig. 2.4. The samples were chosen based on the aver-

age DSC of the organs. For the native CT dataset, all three contours showed good agree-

ment with the ground truth. For the contrast-enhanced CT dataset, the quality of the best

and intermediate results are similar to the native CT. However, the left lung is underseg-

mented for the worst case. The model had difficulty annotating the lungs because the

contrast with soft tissue is not as good as the native CTs. This particular case is actually

an extreme outlier and majority of the automated contours for the contrast-enhaced CT

dataset did not exhibit such errors. Unlike the native CT dataset, the worst case for the

contrast-enhanced CTs required minor manual corrections. Nevertheless, the contours

generated by the nnU-Net 3d_fullres model for this case are much better than AIMOS. In

fact, AIMOS achieved DSC values of 0.15 (heart), 0.57 (spinal cord), 0.08 (right lung), and

0.001 (left lung), whereas nnU-Net 3d_fullres obtained DSC values of 0.88 (heart), 0.79

(spinal cord), 0.93 (right lung), and 0.82 (left lung).

It can be seen that the proposed model handles organ edges better than humans,

particularly for the heart and lungs. The ragged edge details in the ground truth are partly

due to the fact that the contours were created in the coronal plane. That choice was made

as the organs are more visible and easier to distinguish in that plane. Unfortunately, the

software does not allow editing of the contours on planes other than the one initially

used to create them.

2.3.4. INTEROBSERVER VARIABILITY (IOV )
Table 2.3 gives the mean CIgen of the heart, total lungs and spinal cord computed be-

tween the automated and reference contours for both test sets and Supplementary Fig.

S2.4 shows the corresponding boxplots. The performance of nnU-Net 3d_fullres, 2d,

and AIMOS was evaluated against the reference established based on the interobserver

variability. For the native CT dataset, all models showed comparable results and ob-

tained higher conformity indices than the human observers for all target organs. For the

contrast-enhanced CT dataset, only the 3d_fullres model achieved greater conformity

than the IOV on all organs, whereas AIMOS indicated better conformity than the human

baseline only for the spinal cord delineation. For both datasets, the CIgen is notably lower

for the spinal cord, which is due to manual delineation variation in the superior and in-

ferior extent. The small cross-section of a mouse spinal cord also made this structure

difficult to delineate, resulting in disagreements along the organ boundary.
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Table 2.4: Comparison of the average preprocessing and inference times,
and total runtimes in seconds.

Algorithm Model Preprocessing Inference Runtime

nnU-Net

3d_fullres 5 27 40
3d_lowres 14 13 50
3d_cascade
(2nd stage only)

17 28 52

2d 5 7 21

AIMOS UNet-768 6 2 20

2.3.5. CONTOURING TIME

Table 2.4 shows the preprocessing and inference time per scan and the total runtime

for each model. The variation in the values presented is in the order of a few seconds.

As expected, the 2D models had the best inference speeds and total runtimes. Although

AIMOS is faster than nnU-Net 2d at inference, both models take similar amount of time

to generate the contours. Among the 3D models, the 3d_lowres model had the shortest

inference time, and it is faster by a factor of two than the 3d_fullres model. Due to the

additional step of downsampling the images in preprocessing, the 3d_lowres model’s

runtime is longer than the 3d_fullres model. The 3d_cascade model is the slowest as it

executes the 3d_lowres model first and uses its prediction as the input for inference at

full resolution in the second stage. For comparison, a trained biologist from our institute

takes roughly 40 min to create the manual contours per animal whereas all models took

less than 1 min.

2.4. DISCUSSION

Typically, image-guided preclinical irradiations require that animals are imaged shortly

before irradiation. This entails that the irradiation workflow must be executed in the

shortest time possible as animals are continuously exposed to anaesthesia throughout

the entire process. One aspect in which time can be effectively reduced is organ con-

touring. To date, among state-of-the-art methods for autocontouring of mouse organs,

deep learning-based algorithms show superior results and outperform atlas-based seg-

mentation techniques [25, 26]. In this study, we further explore deep learning models,

in particular 3D U-Net-like neural networks, and compare their performance to the 2D

U-Net-based AIMOS, which is the current best performing algorithm for mouse organ

segmentation. We trained and validated all the networks for heart, spinal cord, right lung
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and left lung segmentation in mice micro-CT images. We used the same micro-CT data

as the AIMOS paper. However, we did not train and evaluate the networks separately on

both the native and contrast-enhanced CT images. Instead, the training was performed

only on the native CT images, while the performance was evaluated on data drawn from

the same distribution (i.e., native CT images not used in training and validation) and on

out-of-distribution data (i.e., contrast-enhanced CT images). The use of a different strain

and age of mouse, imaging with different exposure conditions, and addition of contrast

material as in the contrast-enhanced CT dataset represent a large distribution shift from

the training data. Evaluation on such dataset gives a worst case estimate of the perfor-

mance when the models are deployed in routine practice. For most micro-CTs typically

taken at preclinical irradiation facilities, the performance is expected to be closer to that

of the native CT dataset.

The DSC, MSD and 95p HD were chosen to evaluate the segmentation accuracy of

the trained networks. As expected, all neural networks provided accurate segmentations

of the target organs when evaluated on micro-CTs drawn from the same distribution as

the training data. The DSC and MSD scores of the 2D and 3D models were comparable,

and the 95p HDs for all models were well below 1 mm, with two extreme outliers for right

lung segmentation of nnU-Net 2d. However, this problem was easily corrected by apply-

ing connected component analysis since the pixels are sufficiently far from the region of

interest. For preclinical irradiations, a contouring accuracy of about 1 mm is reasonable

considering organ movement in the thorax. Moreover, most irradiators use a discrete set

of collimators, with differences in size of 1 mm or more [2, 33]. This contouring margin

is also large enough to account for the penumbra (20%-80%), which was reported to be

around 0.5 mm for x-rays [3] and 0.8 mm for proton beams [7] under standard setup

conditions.

Overall, the nnU-Net 3d_fullres and 3d_cascade models showed superior segmen-

tation performance for native CTs. Since no significant difference is observed between

them, and since the 3d_fullres model is faster in terms of training and inference, it was

deemed the best performing model for this segmentation task. Consistent for all organs,

the 3d_fullres model gives a small but significant accuracy benefit compared to AIMOS.

For the contrast-enhanced CTs, however, the benefit of the proposed 3D model is very

large compared to AIMOS. For instance, AIMOS exhibited unacceptably large Hausdorff

distances, resulting mainly from erroneous classifications on other regions of the scan.

Such errors, similar to the outliers observed for nnU-Net 2d on native CT scans, can be

attributed to the loss of craniocaudal information in 2D networks. Since 2D networks

are trained on individual slices, Z position information is not preserved in the training,
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which makes them more prone to mislabelling closely resembling pixels far from the

region of interest. In effect, 2D networks like AIMOS require more labor-intensive cor-

rections, which render them less useful in practice. Even for the most difficult case in the

contrast-enhanced CT dataset, the 3d_fullres model demonstrated a more stable perfor-

mance than AIMOS. Therefore, for data on which the model has not been trained on,

which is common when rolling this out in the field, the proposed model is much more

robust and better generalizable. This is an advantage for preclinical facilities where var-

ious animal studies are conducted, which typically have different experimental designs.

In such facilities, it is difficult to build a training dataset that spans all types of images

that the model would face, due to restrictions on the use of animals for imaging experi-

ments.

When evaluated on the contrast-enhanced CT images, the nnU-Net 3d_fullres model

trained on the native CTs perform equally well with AIMOS trained on the contrast-

enhanced CTs. As reported in the literature, AIMOS achieved a median DSC of 0.92 (heart)

and 0.95 (total lungs), and median 95p HD of 0.50 mm (heart) and 0.20 mm (total lungs)

[26]. These values are comparable to the median DSC of 0.92 (heart) and 0.96 (total

lungs), and median 95p HD of 0.54 mm (heart) and 0.28 mm (total lungs) achieved by

our model. However, when AIMOS is not retrained on the contrast-enhanced scans, its

performance on those data is considerably worse. This further confirms the superiority

of the nnU-Net 3d_fullres model. Aside from employing a 3D neural network, another

advantage of nnU-Net is it automatically determines the training configuration such as

network depth, batch size, patch size, learning rate, and class sampling strategy tailored

to the dataset provided by the user and thus removing the burden of manual tuning. It

also employs more extensive data augmentation techniques than AIMOS.

To further establish the usefulness of the models for autocontouring in routine prac-

tice, they must maintain good agreement with expert contours. For that, we compared

the conformity indices of the nnU-Net 3d_fullres, 2d, and AIMOS models to a consen-

sus segmentation and evaluated their performance against the interobserver variability

(IOV) for the heart, total lungs, and spinal cord. Although all three models showed supe-

rior results to the IOV for the native CT dataset, only the 3d_fullres model showed higher

conformity indices on all target organs for the contrast-enhanced CT dataset. These re-

sults indicate the possibility that the 3d_fullres model is better than humans. However,

further research is needed to establish this claim. A possible follow up can be a blind

scoring study where participants are asked to select their preferred segmentation be-

tween manual and automated contours.

Lastly, to determine the impact of integrating these autocontouring tools in the pre-
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clinical workflow, we also measured the inference time and total runtimes of the models.

Using our computing system, AIMOS achieved the fastest inference time at 2 s, whereas

nnU-Net 3d_fullres model took 27 s to generate predictions. The average runtime per an-

imal for the proposed 3D model is 40 s. This runtime includes preprocessing and loading

of the micro-CT images, making inference, and exporting the final contours to the de-

sired format. Although we expect this runtime can be substantially shortened with bet-

ter implementation, it is already a significant improvement from the manual contouring

time of about 40 min per animal for this particular segmentation task.

This work has demonstrated that nnU-Net deep learning pipeline can be used and

integrated into the preclinical workflow to provide fast and accurate contouring. While

more advanced network architectures may be of interest of study, our results with nnU-

Net, which employs a generic U-Net architecture, showed that the whole training pro-

cess is equally important to achieve good performance across datasets. In the future, we

intend to assess this method to other treatment sites and imaging modalities. In preclin-

ical studies, MRI scans of the brain and head-and-neck are of particular interest since

micro-CTs have poor contrast in these regions.

2.5. CONCLUSIONS

In summary, we reported the segmentation performance, generalizability, and efficiency

of nnU-Net and AIMOS for autocontouring of the heart, spinal cord, right lung and left

lung in mice micro-CT images. The best performing model for this segmentation task

is the nnU-Net 3d_fullres model, which is capable of generating high quality segmen-

tations across diverse datasets while maintaining good levels of agreement with expert

contours. It also offers significant improvement in countouring time. Its implementa-

tion in routine practice as an autocontouring tool can potentially expedite the preclinical

workflow and reduce the overall workload.

DATA AVAILABILITY

Annotations of the heart, spinal cord, right and left lungs used for training and testing are

publicly available at https://doi.org/10.5281/zenodo.5121272. The pre-trained

nnU-Net 3d_fullres model is accessible at https://doi.org/10.5281/zenodo.57868
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Median Shape @ Target Spacing 284 × 210
Patch Size 320 × 224
Batch Size 44

3D full resolution U-Net
Target spacing 0.14 × 0.14 × 0.14
Median Shape @ Target Spacing 284 × 210 × 405
Patch Size 128 × 96 × 192
Batch Size 2

3D low resolution U-Net
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Patch Size 128 × 96 × 192
Batch Size 2
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(a)
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Figure S2.1: (a) 2D and (b) 3D U-Net architectures generated by nnU-Net for this dataset.
The orange and blue boxes correspond to a convolution (conv)-instance normalization
(IN)-leaky ReLU (lReLU) unit in 2D and 3D, respectively. The numbers beside each en-
coder level correspond to the channel × image size in x, y, (z) at that stage. Gray arrows
indicate strided convolutions while red arrows denote convolution transposed. The final
layer uses a 1 × 1 (× 1) convolution and a softmax activation function. The table in the
upper right gives the properties of the foreground classes used for preprocessing the im-
ages (under Dataset). The target spacing, median shape at target spacing, patch size and
batch size for the nnU-Net 2d, 3d_fullres, and 3d_lowres models are also given.
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Figure S2.2: Boxplots of the evaluation metrics for test set 1 (native CTs). The first, sec-
ond, and last columns correspond to the DSC, MSD and 95p HD, respectively. The num-
ber above the 95p HD boxplot of the nnU-Net 2d model for the right lung indicates the
number of images with a value higher than the maximum y-value in the plot. Tight 95p
boxplots for the spinal cord, right and left lungs were observed due to very little variation
over the dataset. Legend: box = interquartile range, line = median, whiskers = minimum
and maximum, and diamond = outliers.
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DSC MSD (mm) 95p HD (mm)(a) (b) (c)

Figure S2.3: Boxplots of the evaluation metrics for test set 2 (contrast-enhanced CTs).
The plots on the left, middle, and right correspond to the DSC, MSD and 95p HD, re-
spectively. The numbers above the DSC boxplots indicate the number of images with a
value lower than the minimum y-value. Legend: box = interquartile range, line = median,
whiskers = minimum and maximum, and diamond = outliers.

Native CT Contrast-enhanced CT

Figure S2.4: Boxplots of the conformity index between the models and the reference
contours for test set 1 (left) and test set 2 (right). The conformity index among human
observer delineations (green) was the baseline for comparison. The numbers above the
boxplots indicate the number of images with a value lower than the minimum y-value.
Legend: box = interquartile range, line = median, whiskers = minimum and maximum,
and diamond = outliers.
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ABSTRACT

Objective: For image-guided proton irradiations, small animals are imaged at the treat-

ment position and irradiated shortly after. This requires that irradiation planning and

dose calculations be fast, as animals are maintained under anaesthesia throughout the

process. One of the main bottlenecks in this workflow is dose calculation, with Monte

Carlo (MC) simulation being the gold standard. However, MC simulations take consider-

able time to achieve dose distributions at an acceptable uncertainty level. The purpose

of this work is to assess the suitability of fast dose engines MCsquare and YODA for pro-

ton dose calculation in small animals to enable a more efficient preclinical workflow.

Approach: We benchmarked MCsquare and YODA against the general-purpose MC code

TOPAS. Pristine Bragg peaks were calculated in water at energies typically used for pro-

ton irradiation of mice. Benchmarking in a heterogeneous phantom was also performed

to evaluate the accuracy of the codes in the presence of sharp density changes in the

beam path. Dose distributions of proton irradiation plans for head, thorax, and abdom-

inal cases in a mouse were also compared. Lastly, the average runtimes were measured

to determine the time gain from these codes.

Main Results: MCsquare and YODA showed excellent agreement with TOPAS in homo-

geneous water, yielding range shifts < 0.1 mm, gamma pass ratios (3%/0.1mm) > 99.9%,

and pencil beam runtimes of 25 s and 0.9 s, respectively. Although YODA is more com-

putationally efficient, its accuracy is sensitive to the split scheme needed to handle lat-

eral heterogeneities. For the heterogeneous phantom, YODA achieved a 95.1% pass rate

with a 1+24+24+24+24 split scheme, compared to 99.9% for MCsquare. The accuracy of

the split scheme is also dependent on the position of the heterogeneity relative to the

beam, and it increasingly becomes worse as the Bragg peak lies nearer to the heterogene-

ity. For the proton plans, YODA performed well in relatively homogeneous regions like

the head and abdomen (lateral field) with pass rates (3%/0.2mm) of 99.8% and 96.8%,

respectively. However, it showed reduced performance on more complex regions like

the abdomen (anterior field) and thorax, yielding gamma passing rates of 93.2% and

83.3%, respectively. MCsquare was better at handling such cases resulting in gamma

pass rates > 97% for all regions. Although YODA is substantially faster, it requires pre-

tuning of split schemes for different anatomical regions and beam configurations. This

pre-tuning eliminates the need for real-time optimization during irradiation and ensures

a smoother implementation in practice. To leverage YODA’s speed and MCsquare’s ac-

curacy, using YODA for plan optimization and MCsquare for final dose calculations in

small animals is recommended.
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Significance: Fast dose calculation times for plan generation in animals have been demon-

strated, which solves one of the major bottlenecks in the preclinical workflow. This is a

crucial step towards realizing efficient image-guided proton irradiation in small animals.

Keywords: Monte Carlo, deterministic dose engine, treatment planning, small animal,

preclinical
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3.1. INTRODUCTION

There has been a steady increase in the use of proton therapy in managing certain cancer

indications. Protons can deliver a much more conformal dose distribution and thus can

spare more normal tissues compared to photons. To fully exploit the benefits of proton

therapy, radiobiological studies using small animals must be conducted to understand

the underlying mechanisms behind normal tissue and tumour response, to further elu-

cidate the differential effects between photons and protons, and to test and develop new

irradiation techniques such as ultra-high dose rate (FLASH) [1, 2] and spatially fraction-

ated (minibeam radiation therapy) [3, 4] dose delivery.

In an effort to deliver more well-defined dose distributions for in vivo experiments,

high resolution micro-cone beam CT (µ-CBCT) scanners are now being integrated into

proton beamlines [5, 6, 7, 8] . This progress in radiation delivery opens up possibilities to

deliver more complicated dose distributions in small animals such as spread-out Bragg

peaks (SOBP). Proton dose distributions can then be shaped to preferentially target or-

gan subvolumes or orthotopic tumour models, while presumably preserving more of the

surrounding healthy tissues compared to kilovoltage (kV) X-rays and shoot-through pro-

ton beams. Such complex beam configurations, in which the actual stopping point of

protons is crucial, require accurate characterization of the dose distribution.

Monte Carlo (MC) simulation is the gold standard for dose calculations [9, 10]. Since

individual particles are transported, and the interaction processes and secondary par-

ticles can be simulated in detail, it yields the most accurate results, but it is very com-

putationally expensive, which limits its use in daily preclinical practice. The long com-

putation time of MC simulations is far from ideal for image-guided irradiation of ani-

mals since the entire irradiation workflow (i.e. imaging, contouring, planning and dose

calculation, irradiation) is typically performed in a single session, wherein animals are

continuously kept under anaesthesia. As prolonged exposure to anaesthesia may impact

the outcome of the experiment and animal well-being, there is an increasingly pressing

need for faster proton dose calculation alternatives.

Several different approaches have already been developed to speed up dose compu-

tations in the clinic. The majority of clinical treatment planning systems (TPS) employ

pencil beam algorithms (PBA) for treatment plan optimization and dose calculations.

They are fast and can produce reasonably accurate dose distributions in fairly homoge-

neous media [11, 12, 13]. However, their performance deteriorates at material interfaces

with large density differences. To circumvent this issue, efforts were made to accelerate

MC dose calculations, which are inherently better at handling heterogeneities, by cap-

italizing on the parallelization capabilities of central processing units (CPUs) [14] and



3.1. INTRODUCTION

3

65

graphics processing units (GPUs) [15, 16, 17]. Nowadays, clinical treatment planning sys-

tems like RayStation also feature GPU-based MC dose engines, which have been deemed

fast enough for plan optimization, final dose calculation, and robust evaluation in daily

clinical practice [18, 19]. Deterministic [20] and deep learning-based [21] proton dose

engines that can achieve near MC prediction accuracy within a matter of seconds have

also been proposed to overcome bottlenecks for online adaptive proton therapy.

While there are rapid developments of computational tools within the clinical set-

ting, preclinical solutions are somewhat lagging behind. There are commercially avail-

able TPS for animals on the market such as MuriPlan (Xstrahl Inc., Suwanee, Georgia,

USA),µ-RayStation (RaySearch Laboratories, Stockholm, Sweden), SmART-ATP, and SmART-

XPS (SmART Scientific Solutions BV, Maastricht, the Netherlands). SmART-ATP, SmART-

XPS, and µ-RayStation feature MC dose engines, while MuriPlan supports both MC and

superposition-convolution algorithm for photons. Additionally,µ-RayStation offers both

pencil beam algorithm and MC dose engine for protons. For preclinical radiotherapy

with kV X-ray beams and microbeams, deep learning has also been explored to accel-

erate dose calculations in small animals by denoising of low statistics MC dose distribu-

tions [22, 23]. Such neural networks can predict dose maps with similar accuracy as those

calculated with large number of simulated particles without suffering from long com-

putation times. For proton irradiations, Vanstalle et al. [24] proposed an analytical mod-

elling of the dose in animals based on Bortfeld et al.’s [25] formulation of the Bragg curve,

using experimental values for a more accurate prediction of the proton range. However,

the validation of their methodology was only performed in a water phantom and not

on more complex geometries like CT images of animals. Similarly, Clausen et al. [26] in-

vestigated the feasibility of using the GPU-based clinical TPS RayStation for animals by

calculating doses on a Gammex phantom with target sizes typical for in vivo studies.

However, its suitability for preclinical dose calculation purposes remains questionable

as the smallest allowed dose grid is 1 × 1 × 1 mm3. Such voxel resolution is too coarse

and does not allow accurate dose calculations in small animals with submillimetre-sized

anatomical structures.

In this work, we borrow solutions developed for the clinic and validate their appli-

cability for proton dose calculations in small animals. In particular, we looked into the

open-source fast Monte Carlo code MCsquare [14] and the deterministic dose engine

YODA [20, 27]. Both codes were benchmarked against a full Monte Carlo simulation in

TOPAS [28] for homogeneous and heterogeneous phantoms as well as CT geometries of

animals at energies relevant for small animal irradiations. The main objective is to assess

the achievable accuracy and potential time gain for these codes.
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3.2. MATERIALS AND METHODS

3.2.1. MANY-CORE MONTE CARLO (MCSQUARE)

MCsquare is a fast Monte Carlo algorithm for proton therapy optimized to run on mas-

sively parallel CPU architectures [14]. It simulates the transport of primary protons and

secondary ions, but does not explicitly track secondary electrons, instead depositing

their contribution to the dose locally. Note that a 30 MeV proton beam, which is typi-

cal for small animal irradiations, can transfer a maximum energy of 67 keV to secondary

electrons. This corresponds to an electron range of 115 µm in tissue. Moreover, neutrons

are neglected in the simulation as their contribution to the local dose deposit is less than

0.5% [29, 30].

Energy loss at each step is calculated from user-defined stopping power tables, while

multiple Coulomb scattering is calculated using the formalism of Rossi and Greisen [31].

Nuclear interactions are sampled from ICRU 63 differential cross sections [32]. The de-

fault physics parameters for the MCsquare “accurate” configuration [14], including trans-

port of secondary protons, deuterons, alphas, and nuclear interactions, were used for all

dose calculations in this work.

3.2.2. YET ANOTHER DOSE ALGORITHM ( YODA)

YODA is a physics-based, deterministic proton dose engine, which approximates the so-

lution of the linear Boltzmann equation (LBE) [20, 27]. Using the continuous slowing

down, energy straggling, and Fokker-Planck approximations, the LBE is reduced to two

partial differential equations: (1) one-dimensional Fokker Planck (FP) equation and (2)

the Fermi-Eyges (FE) equation. The product of the numerical solution to the FP equation

and the analytical solution to the FE equation gives the proton phase space density, from

which the dose is derived. Note that nuclear interactions are taken into account in YODA

through fluence reduction of the primary protons. The energy deposit by secondary par-

ticles resulting from these interactions can be configured to be fully, partially, or not de-

posited locally. In our case, the fraction of energy released in nuclear interactions that

is locally absorbed was calculated based on Berger’s [33] fitted data as a function of en-

ergy, while the rest is disregarded. Additionally, the dose contribution from secondary

electrons is treated as a local deposit.

3.2.3. BEAM SPLITTING IN YODA

Similar to pencil beam algorithms, YODA does not inherently account for lateral den-

sity heterogeneities. During the calculation, YODA relies solely on the density informa-
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tion along the central axis of the beam, disregarding any other off-axis inhomogeneities

present in the beam path. This results in the dose being calculated as though the beam

traverses a laterally homogeneous material, leading to discrepancies in the proton range

and deposited dose. To better model the effects of density variations on the dose, we fol-

low the approach of Burlacu et al. [27], leveraging the radial symmetry of the Gaussian

beam by dividing the original beam into smaller beamlets arranged in N + 1 concen-

tric rings around the centre of the original beam. The innermost ring contains a single

beamlet at the centre, while each of the subsequent rings, positioned at progressively

increasing radii, features beamlets with uniform weight and spatial spread within each

ring. The radial distance of the rings (i.e. ring radii) as well as the spatial spreads and

weights of the beamlets were optimized such that the combined fluence of the beamlets

closely approximates the original beam. For the optimization to yield more useful split

schemes, the ring radii were bound such that the rings are evenly distributed in [0, f σs ],

where σs is the original spatial spread of the beam. This is to ensure that the rings are

not placed too close to each other. Contrary to the implementation of Burlacu et al. [27],

where f = 2, we varied the factor f in the upper bound between 1.8 and 3.0, depend-

ing on the chosen split scheme. Additionally, we noticed that adjusting the constraints

on the initial spatial spreads from the original range of [0.3σs , 0.8σs ] to [0.06σs , 0.6σs ]

resulted in improved split schemes.

Figure 3.1 illustrates some examples of split schemes implemented in this work for

a spot with a beam size of 0.56 mm. It details the actual arrangement of the beamlets

within their respective rings, their individual spreads, and shows the fluence difference

between the original beam and the summed beamlets. The simplest scheme consists of

25 beamlets, distributed across the rings in a 1+6+6+12 configuration. We also explored

increasing the number of beamlets, particularly in the inner rings, to improve the mod-

elling of heterogeneities near the central ray. We also considered adding more rings to

increase the spot density and further refine the distribution.
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(a) Split scheme: 1+6+6+12

(b) Split scheme: 1+12+12+24

(c) Split scheme: 1+24+24+24+24

Figure 3.1: Examples of beam splitting schemes implemented in YODA: (a) 1+6+6+12, (b)
1+12+12+24, and (c) 1+24+24+24+24. The left column shows the arrangement of the beamlets in
the beam’s eye view. Points of the same colour represent beamlets placed in the same ring. The
optimized spatial spreads of the beamlets are indicated by the circles. The right column gives the
difference between the fluence of the original beam and the fluence of the summed beamlets.
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3.2.4. INPUT DATA

The dose calculations were performed in voxelized geometries/DICOM CT images. The

same Hounsfield units (HU) to mass density and HU to material calibration tables were

used for all three codes. To avoid discrepancies in the predicted range, the standard stop-

ping power tables in MCsquare for each material defined in the calibration were replaced

with stopping power tables extracted from TOPAS for the same physics list used in the

ground truth simulations. On the other hand, YODA requires separate stopping power

tables of the 12 elements normally occurring in human tissues (i.e. H, C, N, O, Na, Mg,

P, S, Cl, Ar, K, Ca). These were also extracted from TOPAS for the same physics list and

the Bragg additivity rule was subsequently used to calculate the stopping power of each

material.

3.2.5. BEAM MODELLING

Any treatment planning system requires a parameterization of the proton phase space.

To build the source model, beam transport simulations in the Geant4-based BDSIM

toolkit [34] were performed for the IMage guided Proton/pArticle infrastructure for pre-

Clinical sTudies (IMPACT) beamline, which is currently being constructed at UMCG-

PARTREC. The beam definition for the simulation were taken from emittance measure-

ments close to the cyclotron exit. The phase space distribution of a 66.5 MeV proton

beam was scored at the exit foil. The phase space file, which contains information on in-

dividual particles (i.e. position in XYZ, momentum in XY, and kinetic energy), was used

as the source for the simulation of the final part of the beamline in TOPAS as shown in

figure 3.2.

The end of the beamline consisted of the ionization chamber modelled as mylar (10

µm) and aluminium foils (2 µm), polystyrene plates as the range shifter (varying thick-

ness), and a 1-mm diameter 45-mm long brass collimator. The beam parameters were

extracted at a distance of 20 mm from the exit of the collimator (i.e. the surface of the

phantom) for different range shifter thicknesses in increments of 3 mm and were used

to build a beam data library for the succeeding dose computations in this work. This

step was needed as YODA does not offer modelling capabilities of other beamline com-

ponents and the calculation starts at the surface of the object. Also, although the range

shifter can be included in the MCsquare simulation, there is no option to model the col-

limator which comes after.

The spot size, divergence, and energy spread were modelled as a Gaussian in all

codes used in this work. However, in reality, the spot size and divergence are not per-

fectly Gaussian due to the influence of the collimator, and the energy spread becomes
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Beam direction

Variable
range
shifter

Figure 3.2: Schematic diagram of the final part of the IMPACT beamline simulated in
TOPAS. The beam phase space for different range shifter configurations was scored at
the surface of the phantom and was used to create the proton beam model for this study.

less Gaussian as the degrader thickness increases. To approximate these quantities, the

Gaussian distribution was derived from the phase space file using the full width half

maximum (FWHM), with the Gaussian sigma calculated as σ = FWHM/2.35. The values

in x- and y- directions were averaged as YODA presently assumes beam symmetry in

both directions. Table 3.1 provides the fitted beam parameters for different range shifter

thicknesses. Given that the size of the beam hardly changes due to the collimation, the

spot size was assumed to be constant atσx/y = 0.56 mm, whereas the divergence and en-

ergy spread for intermediate values were interpolated. To maintain consistency across

all three simulation codes, the beam definition at the start of the simulations was based

on this beam data library.
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Table 3.1: Spot size (σx/y ), divergence (σx′/y ′ ), energy (E), and energy spread (σE ) of the
beam for different range shifter (RS) configurations. Values in bold were used to build
the beam data library (BDL) in OpenTPS. The spot size (σx/y ) was assumed to have a
fixed value of 0.56 mm in the BDL.

RS
(mm)

σx

(mm)
σy

(mm)
σx/y

(mm)
σx′

(mrad)
σy ′

(mrad)
σx′/y ′

(mrad)
E

(MeV)
σE

(MeV)

15 0.55 0.55 0.55 9.64 9.63 9.64 48.7 0.54
18 0.56 0.56 0.56 10.01 9.73 9.87 44.6 0.63
21 0.56 0.56 0.56 10.23 9.94 10.09 40.1 0.73
24 0.56 0.56 0.56 10.39 10.29 10.34 35.3 0.87
27 0.57 0.57 0.57 10.61 10.45 10.53 29.3 1.05
30 0.57 0.56 0.57 11.05 10.86 10.96 23.1 1.33
33 0.57 0.56 0.57 11.69 11.74 11.72 14.6 1.84

3.2.6. BENCHMARK

In order to validate MCsquare and YODA in a preclinical context, where voxel sizes and

anatomical structures are extremely small, their results were compared to those obtained

using the Geant4-based TOPAS toolkit version 3.9 [28]. The following physics list were

implemented: g4em-standard_opt4, g4h-phy_QGSP_BIC_HP, g4em-extra, g4decay, g4h-

elastic_HP, g4stopping, g4ion-binarycascade. Range cuts of 10µm for electrons and positrons

and 1 mm for gamma rays were imposed. The dose was scored using the DoseToMedium

scorer. The proton source distribution was sampled according to the spot size, diver-

gence, and energy spread as described in the beam data library. Benchmarking was per-

formed for different phantom geometries of increasing complexity and on different anatom-

ical regions in a digital mouse phantom [35].

VALIDATION IN SIMPLE PHANTOM GEOMETRIES

Validation was initially conducted in a 20 × 20 × 20 mm3 homogeneous water phan-

tom with voxel size of 0.1 × 0.1 × 0.1 mm3. To verify the proton range, the integrated

depth dose (IDD) curves in water (HU:0) were obtained for a pencil beam with energies

typically used in small animal irradiations. Three regions were considered: brain (22.65

MeV), thorax (30.24 MeV), and abdomen (40.33 MeV). The proton energies were deter-

mined from a test plan on a mouse phantom delivering beams to the centre of these

regions.

To evaluate the impact of heterogeneities on the dose calculation, 3-mm thick lung

(ρ = 0.26 g/cm3) and bone (ρ = 1.92 g/cm3) slabs were inserted adjacent to each other in

a water phantom, wherein the lung/bone interface is parallel to the beam axis as shown
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in figure 3.3. A single proton pencil beam was incident on the centre of the phantom,

where the boundary between the two materials is located. To assess the robustness of

the YODA split schemes, we examined three different scenarios by varying the position

of the heterogeneity relative to the beam. In the first scenario, a 40.33 MeV proton beam

is incident to the phantom with the heterogeneity positioned way upstream of the Bragg

peaks at a depth of 5.5 mm as shown in figure 3.3(a). In the second scenario, using the

same beam energy, the heterogeneity was moved to a depth of 10.5 mm, such that the

Bragg peak of protons passing through the bone material lies directly behind the het-

erogeneity (figure 3.3(b)). Lastly, we kept the heterogeneity in the same position as in the

first scenario but lowered the beam energy to 32.5 MeV, effectively replicating the second

scenario’s conditions at a shallower depth in the phantom.

During the optimization of the split schemes, the ring radii, spatial spreads, and

weights of the beamlets were fine-tuned to achieve the highest gamma passing rates in

the first heterogeneous phantom case. The same optimized parameters were applied to

YODA calculations for the other two heterogeneous phantom cases and the full animal

irradiation plans.

3 mm

WATER

B
O
N
E

L
U
N
G

Beam 
direction

WATER

B
O
N
E

L
U
N
G

20 mm

depth = 5.5 mm depth = 10.5 mm

Beam 
direction

3 mm

20 mm

(a) (b)

Figure 3.3: Heterogeneous phantom with 3 mm thick lung (ρ = 0.26 g/cm3) and bone (ρ
= 1.92 g/cm3) slabs placed adjacent to each other. To test the effect of the position of the
heterogeneity with respect to the beam, lung and bone slabs were placed at depths: (a)
5.5 mm for cases 1 and 3 and (b) 10.5 mm for case 2.

EVALUATION ON ANIMAL IRRADIATION PLANS

The dose distribution in an animal geometry was investigated by creating proton irra-

diation plans in OpenTPS [36], which employs MCsquare as its dose engine. For bench-

marking purposes, the same plan optimized for MCsquare was used to calculate doses
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in TOPAS and YODA. The MOBY digital phantom [35] was used for dose calculations

in three anatomical regions: head, thorax, and abdomen. Artificial spherical tumours

with diameters 2 mm, 3 mm, and 4 mm were added in the brain, lungs, and pancreas,

respectively. These tumours served as the planning target volume (PTV), wherein a pre-

scribed dose of 20 Gy was set. The minimum and maximum doses were constrained to

±3% of the prescribed dose for the fluence optimization. The scoring grid was set to be

the same size as the CT grid. For the abdomen, we present two cases wherein the beam

is approaching from the: (1) the side (lateral field) and (2) the front (anterior field) of the

mouse. The first case is relatively homogeneous, with only soft tissues leading up to the

PTV, whereas the second case is more complicated, with air in the beam direction due to

the hollow sections of the intestine. It is important to note that the choices made during

the plan creation were meant to demonstrate cases with different inhomogeneities and

material transitions in the beam path. These choices may not be optimal for an actual

irradiation.

It is also important to note that OpenTPS did not allow placement of spots at very

shallow depths (i.e. proximal in the target) leading to difficulties in achieving good target

coverage in the plans. However, this does not affect the validity of the comparison, as the

primary aim of this work is to evaluate the codes. As long as the same plan is consistently

applied across all three codes, the comparison remains valid.

3.2.7. DOSIMETRIC EVALUATION

To evaluate the accuracy of MCsquare and YODA for simple phantoms, we compared the

integrated depth dose curves and calculated the range shift (∆R80 = R80,code −R80,T OPAS )

defined as the difference in the distal range at 80% of the maximum dose. Additionally,

to verify the multiple Coulomb scattering implementation, transverse profiles at depths

corresponding to the positions of the lung/bone slab as well as at the first and second

Bragg peaks within the heterogeneous phantom were compared. We also conducted 3D

gamma analysis with TOPAS as the reference. To assess the performance of different

YODA split schemes, the gamma passing rates for the homogeneous and heterogeneous

phantoms were evaluated using a fixed dose difference (DD) criterion of 3% and varying

distance to agreement (DTA) values of 0.1 mm (strictest), 0.2 mm, and 0.3 mm, reflecting

achievable spatial resolutions for small animal imaging [37, 38]. A dose cutoff of 10% was

also applied.

For the full irradiation plans, the dose difference maps, gamma index maps, and line

dose profiles were analyzed. Although no consensus guidelines for gamma evaluation in

the preclinical context have been established, a tolerance limit of 3%/0.2mm and 10%
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dose cutoff were applied in this work. We adopt the acceptance criteria of the Groningen

Proton Therapy Center, where dose distributions with gamma passing rates of 95% or

higher are considered acceptable.

3.2.8. RUNTIME EVALUATION

To determine the time gain from using MCsquare and YODA, the runtimes to perform

dose calculation of a single spot (E = 40.33 MeV) incident on homogeneous and het-

erogeneous phantoms were recorded and compared to TOPAS. The dose was calculated

on a scoring grid of 0.1 × 0.1 × 0.1 mm3. For MC-based codes (TOPAS and MCsquare),

dose calculations were run to attain a statistical uncertainty of < 1%. This overall statisti-

cal uncertainty is the average statistical uncertainty of voxels that have densities greater

than 0.2 g/cm3 and dose greater than half of the maximum dose. For YODA, the run-

times of various beam splitting schemes were also evaluated for the heterogeneous case.

All dose computations were performed using the same computational resources with 48

cores and repeated five times using different random starting seeds to obtain the average

runtime.

Note that the runtimes reported in this work reflect only the time required for the

dose calculation and do not account for the time spent on loading CT images, converting

CT HU values to density and elemental compositions, initializing stopping power tables,

and exporting the dose volume. The additional computation time from these processes

varies based on size of the CT and the range of HU values involved and was therefore

excluded in the evaluation.

3.3. RESULTS

3.3.1. PRISTINE BRAGG PEAKS IN HOMOGENEOUS AND HETEROGENEOUS

PHANTOMS

Figure 3.4(a) shows the comparison of the integrated depth dose curves for a single spot

with energies of 22.65 MeV (brain), 30.24 MeV (thorax), and 40.33 MeV (abdomen), as

calculated by TOPAS, MCsquare, and YODA in a water phantom. The proton ranges pre-

dicted by MCsquare and YODA closely match those from TOPAS, differing by no more

than 0.1 mm—less than the dose grid size—rendering these discrepancies negligible.

The lateral profiles for the 40.33 MeV beam at the plateau (Z = 6 mm) and Bragg peak (Z

= 14.6 mm) are shown in figures 3.4(b) and (c), respectively. Good agreement can be ob-

served at the plateau, but slightly higher doses were seen for MCsquare and YODA com-

pared to TOPAS at the Bragg peak. Nevertheless, both MCsquare and YODA achieved
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high gamma passing rates greater than 99.9% when evaluated with the strictest criteria

of 3%/0.1mm (DD/DTA) at all three energies.

Figure 3.5 presents the 2D dose slices for the heterogeneous phantom with lung and

bone inserts for the three scenarios described in section 3.2.6. These cases vary based

on the positioning of the heterogeneity relative to the proton beam. For YODA, three

dose distributions are shown: one without any split scheme, one with the simplest split

scheme (1+6+6+12), and one with the most complex scheme (1+24+24+24+24) used in

this work. Table 3.2 gives the gamma passing rates for MCsquare and YODA (including all

split schemes investigated) using tolerance limits of 3%/0.1 mm, 3%/0.2mm, and 3%/0.3

mm for the dose difference and distance-to-agreement.

Two distinct peaks are expected in the dose distribution: (1) at a shallower depth due

to the fraction of the beam passing through the bone insert and (2) further downstream

due to protons crossing the less dense lung insert. MCsquare demonstrated excellent

agreement with TOPAS, achieving gamma passing rates greater than 99.9% for all three

cases using the strictest DD/DTA criteria of 3%/0.1mm. Note that in this section, gamma

passing rates are reported using these tolerance limits unless otherwise stated.

The accuracy of the YODA dose distribution is highly dependent on the splitting

scheme implemented in the simulation. When a single beam was delivered without en-

forcing beam splitting, YODA only used the density information of the bone and disre-

garded the lung insert. As shown in the third column in figure 3.5, this approach resulted

in only one peak in the dose distribution at the same depth as the shallower peak as

if there is only a bone slab inserted perpendicular to the beam. To better model density

heterogeneities, several split schemes were investigated. The simplest scheme employed

in this work consists of one central beamlet surrounded by three concentric rings (i.e.

1+6+6+12) (see figure 3.1). Using this scheme, the gamma passing rates for cases 1, 2,

and 3 were 83.2%, 82.0%, and 81.0%, respectively. Discrepancies were observed at the

Bragg peaks, with the dose being overestimated at the first peak and underestimated at

the second peak, as illustrated by the IDD in figure 3.6(a). Selecting a very small spatial

spread for the central beamlet and increasing the number of beamlets for the rings adja-

cent to the interface between the two materials corrected this imbalance and resulted in

more accurate dose distributions. For instance, the 1+12+12+24 scheme yielded higher

gamma passing rates of 93.9%, 87.4%, and 90.4% for cases 1, 2, and 3, respectively. Fur-

ther increasing the density of the beamlets in the rings closest to the interface and adding

additional rings continued to improve the gamma passing rates, but the effect is mini-

mal. The split scheme 1+24+24+24+24 was found to yield the best results for YODA with

95.1% (case 1), 88.4% (case 2), and 91.4% (case 3) of the voxels passing the test. Overall,
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(a) Case 1

(b) Case 2

PR = 99.9% PR = 56.9% PR = 83.2% PR = 95.1%

PR = 100% PR = 68.0% PR = 82.0% PR = 88.4%

(c) Case 3 PR = 100% PR = 60.0% PR = 81.0% PR = 91.4%
1 mm

Figure 3.5: Comparison of the TOPAS, MCsquare, and YODA dose distributions in a heterogeneous phan-
tom. (a) Case 1: The heterogeneity is placed at Z = 5.5 mm, with a 40.33 MeV beam incident on the phantom,
positioning the Bragg peak well beyond the heterogeneity. (b) Case 2: The same proton beam is used, but the
heterogeneity is placed at Z = 10.5 mm, bringing the first Bragg peak closer the heterogeneity. (c) Case 3: The
heterogeneity is positioned as in case 1, but with beam energy of 32.5 MeV, effectively replicating case 2 at a
shallower depth in the phantom. YODA doses calculated without and with beam splitting are shown. The worst
(1+6+6+12) and best (1+24+24+24+24) performing split schemes were chosen for the comparison. The black
and white boxes indicate the position of the lung (ρ = 0.26 g/cm3) and bone (ρ = 1.92 g/cm3) slabs, respec-
tively. The arrows indicate the area where most of the discrepancies occurred in YODA. PR refers to the gamma
passing rate calculated for DD/DTA of 3%/0.1mm. DD: dose difference, DTA: distance-to-agreement.
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the lower gamma passing rates observed for cases 2 and 3, where the Bragg peak is close

to the heterogeneity, suggest that the accuracy of the split scheme is also influenced by

the position of the heterogeneity relative to the beam.

Figure 3.6 and 3.7 compare the IDD and lateral profiles for TOPAS, MCsquare, and

YODA, respectively. For case 1, the results are shown for both the simplest (1+6+6+12)

and most effective (1+24+24+24+24) split schemes, while for cases 2 and 3, only the best

scheme is presented. As shown in figure 3.6(a), the 1+6+6+12 scheme overestimates the

protons scattered into the bone insert and underestimates it in the lung insert, resulting

in higher doses at the first peak and lower doses at the second peak. This discrepancy

is mitigated when using split schemes with a greater number of beamlets near the het-

erogeneity boundary, allowing more accurate approximation of local density variations

in the beam path. Selecting a very small size for the central beamlet can further reduce

discrepancies; however, some distortion will still persist due to the beamlet’s finite size.

Analysis of the IDDs revealed that the range shifts at both the first and second Bragg

peaks for all cases are smaller than the dose grid size (0.1 mm) and can thus be con-

sidered negligible. This indicates that the proton range is accurately predicted by both

codes even in the presence of low/high density inhomogeneities. Moreover, this result

demonstrates that the different implementation of the stopping power calculation in

YODA does not compromise the accuracy of proton range predictions. However, further

testing across other material and energy combinations is necessary to validate this claim.

Discrepancies were observed on the lateral profiles particularly for YODA at the Bragg

peak positions as shown in figure 3.7. While TOPAS and MCsquare showed profiles that

are skewed to the left (lung part) or right (bone part) due to the large density change

at the interface between the two materials, YODA exhibited a more centrally symmet-

ric Gaussian shape. This discrepancy is linked to the inherent limitation of the Gaus-

sian approximation in the Fermi-Eyges theory [39, 20] used by YODA to model multiple

Coulomb scattering. In the calculation, the beam retains a Gaussian distribution as it tra-

verses through the material, failing to capture the non-Gaussian effects that occur when

the beam encounters transverse heterogeneities. In principle, choosing a very small spa-

tial spread for the central beamlet helps reduce discrepancies at material interfaces. Our

tests also indicate that increasing the density of the spots near the heterogeneity con-

tributed to improved accuracy.

We recognize that the 3%/0.1mm DD/DTA criteria might be overly stringent for eval-

uation as it is too sensitive to very small shifts and variations between neighboring vox-

els, which may not have significant dosimetric impact. Using a 3%/0.2mm or 3%/0.3mm

DD/DTA gamma index criteria provides a much more practical and realistic assessment
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(a) Case 1: split scheme 1+6+6+12 (b) Case 1: split scheme 1+24+24+24+24

(c) Case 2: split scheme 1+24+24+24+24 (d) Case 3: split scheme 1+24+24+24+24

z = 12.6 mm

z = 16.8 mm

z = 12.6 mm

z = 16.8 mm

z = 16.8 mm
z = 11.9 mm

z = 5.5 mm z = 5.5 mm

z = 10.5 mm

z = 12.6 mm

z = 5.5 mm

z = 7.6 mm

Figure 3.6: Comparison of the integrated depth dose (IDD) curves from TOPAS, MC-
square, and YODA for the heterogeneous phantom: (a) Case 1 with YODA using a
1+6+6+12 split scheme, (b) Case 1 with YODA using a 1+24+24+24+24 split scheme, (c)
Case 2 with YODA using a 1+24+24+24+24 split scheme, and (d) Case 3 with YODA using
a 1+24+24+24+24 split scheme. The three cases vary based on the position of the het-
erogeneity relative to the beam as illustrated in figure 3.5. Detailed description of each
case can be found in section 3.2.6. Gray dashed lines indicate the depths at which lateral
profiles in figure 3.7 were taken. The pink region indicates the position of the lung and
bone heterogeneity.

for animal studies. When evaluated using these criteria, even the simpler split schemes

for YODA can achieve acceptable gamma passing rates. These simpler split schemes fa-

cilitate faster dose calculations as fewer beamlets are involved in the computation.

3.3.2. PROTON IRRADIATION PLANS IN MICE

An overview of the TOPAS, MCsquare, and YODA dose distributions, and the correspond-

ing dose difference and gamma index maps calculated with TOPAS as the reference for

the head, thorax, and abdominal cases (lateral and anterior beams) is given in figures
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Table 3.2: Gamma pass ratios for MCsquare and YODA evaluated across three
different configurations of the heterogeneous phantom as described in section
3.2.6. The results include various split schemes implemented in YODA. DD:
dose difference, DTA: distance-to-agreement, #: total number of beamlets for
each spot.

YODA beam configuration

# Splitting scheme DD (%) DTA (mm)
Passing rate (%)

Case 1 Case 2 Case 3

1 central + 3 concentric rings

25 1+6+6+12
3 0.1 83.2 82.0 81.0
3 0.2 93.4 89.0 90.0
3 0.3 97.1 93.6 95.1

49 1+12+12+24
3 0.1 93.9 87.4 90.4
3 0.2 98.0 93.4 96.1
3 0.3 98.9 95.7 97.7

73 1+24+24+24
3 0.1 94.5 88.0 90.7
3 0.2 98.6 93.7 96.3
3 0.3 99.2 95.8 98.2

1 central + 4 concentric rings

37 1+6+6+12+12
3 0.1 88.3 84.6 85.2
3 0.2 95.6 91.2 93.3
3 0.3 97.6 94.7 96.1

73 1+12+12+24+24
3 0.1 94.6 87.9 91.0
3 0.2 98.5 93.9 96.8
3 0.3 99.2 96.0 98.2

97 1+24+24+24+24
3 0.1 95.1 88.4 91.4
3 0.2 98.9 94.1 97.2
3 0.3 99.4 96.2 98.6

MCsquare

3 0.1 99.9 100 100
3 0.2 100 100 100
3 0.3 100 100 100
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(a) Case 1: split scheme 1+6+6+12

(b) Case 1: split scheme 1+24+24+24+24

(c) Case 2: split scheme 1+24+24+24+24

(d) Case 3: split scheme 1+24+24+24+24

Figure 3.7: Comparison of the lateral profiles from TOPAS, MCsquare, and YODA for
the heterogeneous phantom: (a) Case 1 with YODA using a 1+6+6+12 split scheme, (b)
Case 1 with YODA using a 1+24+24+24+24 split scheme, (c) Case 2 with YODA using a
1+24+24+24+24 split scheme, and (d) Case 3 with YODA using a 1+24+24+24+24 split
scheme. The profiles were extracted at the position of the lung/bone inserts (left), first
(middle) and second (right) Bragg peaks as indicated by the grey lines in the IDDs in fig-
ure 3.6. The three cases vary based on the position of the heterogeneity relative to the
beam as illustrated in figure 3.5. Details for each case are provided in section 3.2.6.
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3.8 to 3.11, respectively. Line dose profiles for each case are illustrated in figure 3.12.

These dose profiles were extracted at positions indicated in the dose distributions in fig-

ures 3.8 to 3.11. The gamma passing rates for both codes considering DD/DTA criteria of

3%/0.2mm are summarized in table 3.3. For YODA, we provide the gamma passing rates

for both the 1+6+6+12 and 1+24+24+24+24 schemes. Unless otherwise stated, YODA re-

sults presented in this section always refer to the dose distributions calculated using the

1+24+24+24+24 split scheme, which achieved the highest gamma passing rates for the

heterogeneous phantom.

Both MCsquare and YODA showed good agreement with TOPAS for the head case,

demonstrating high gamma passing rates of 100% and 99.8%, respectively. Voxels that

failed the gamma analysis for YODA are mostly located at the interface between bone

and soft tissue, where the dose was underestimated as shown in the difference map in

figure 3.8.

YODA performed worst on the thorax case with only 83.3% of the voxels passing the

gamma evaluation. Dose differences between YODA and TOPAS occurred mostly at the

distal portion of the beam after the PTV and air pockets in the lung tissue as shown in

figure 3.9. These discrepancies likely stem from the split scheme not being optimized to

handle a very heterogeneous region like the thorax, wherein many local density changes

exist due to the presence of different types of anatomical structures such as soft tissue,

ribs, lungs, and airways. The dose difference map in figure 3.9 shows that the distor-

tion in the dose distribution introduced by the split scheme caused an overdosage or

underdosage up to 20% of the prescribed dose at the distal edge of the Bragg peak. The

overestimation in the dose is also further illustrated in the representative dose profiles

shown in figure 3.12(b). Similarly, underdosage in the intestine (lumen) located after the

PTV for the abdomen case with a left lateral field is shown in the dose profiles in figure

3.12(c), for which the gamma pass rate is 96.8%. In contrast, MCsquare performed well

and yielded very similar dose distributions with TOPAS for the thorax and abdominal

(lateral field) cases, resulting in passing rates greater than 99.95%.

For the abdomen case with an anterior field, both MCsquare and YODA showed over-

dosage in the intestine located upstream of the PTV as shown in the difference maps in

figure 3.11 and line dose profiles in figure 3.12(d). This discrepancy can be attributed to

the fact that the contribution of electrons is locally deposited in both codes. However,

in low density regions, electrons can have a range larger than the voxel size, resulting in

dose deposition away from the voxel of creation. Despite these differences, the gamma

index comparison of the MCsquare result with TOPAS is still satisfactory, with 97.1% of

the voxels passing the test. On the other hand, the gamma passing rate for YODA is 93.2%
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(d)

(a) (b)

(c)

∆𝑅80 = 0.03 𝑚𝑚
∆𝑅80 = 0.05 𝑚𝑚

∆𝑅80 = 0.00 𝑚𝑚
∆𝑅80 = 0.14 𝑚𝑚

∆𝑅80 = 0.01 𝑚𝑚
∆𝑅80 = 0.04 𝑚𝑚

∆𝑅80 = 0.20 𝑚𝑚
∆𝑅80 = 0.03 𝑚𝑚

Figure 3.12: Representative line dose profiles in the (a) head, (b) thorax, and (c-d) ab-
domen (lateral/anterior beam) to quantify range shifts (∆R80 = R80,code − R80,T OPAS ).
These dose profiles were extracted at positions as indicated by the white lines in figures
3.8 to 3.11.

due to additional discrepancies at the distal end brought about by errors associated with

the beam splitting scheme. Although differences at the distal edge were observed for

YODA for all cases except the head, range shifts were still within acceptable limits, with

less than 0.2 mm variations.

As shown in table 3.3, the use of the more complex 1+24+24+24+24 split scheme in

YODA for full animal plans provided only minimal accuracy gains compared to the sim-

pler 1+6+6+12 scheme, in contrast to the substantial improvements observed with the

heterogeneous phantom. This suggests that in reality where multiple spots are delivered

in close proximity, the added complexity of the 1+24+24+24+24 may be unnecessary. The

simpler 1+6+6+12 scheme proves to be more efficient while still maintaining comparable

plan quality.
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Table 3.3: Gamma passing rates for MCsquare and YODA calculated
using 3%/0.2mm DD/DTA criteria for irradiation plans created in the
head, thorax, and abdomen of a mouse. YODA results for 1+6+6+12
(simplest) and 1+24+24+24+24 (most accurate) split schemes are pre-
sented.

Anatomical region Code Passing rate (%)

Head
MCsquare 100
YODA (1+6+6+12) 99.7
YODA (1+24+24+24+24) 99.8

Thorax
MCsquare 99.95
YODA (1+6+6+12) 82.8
YODA (1+24+24+24+24) 83.3

Abdomen (lateral)
MCsquare 100
YODA (1+6+6+12) 96.5
YODA (1+24+24+24+24) 96.8

Abdomen (anterior)
MCsquare 97.1
YODA (1+6+6+12) 92.0
YODA (1+24+24+24+24) 93.2

3.3.3. RUNTIME COMPARISON

Table 3.4 summarizes the average runtimes to calculate a pencil beam with a statistical

uncertainty of less than 1% for the dose engines investigated in this work. While a full MC

simulation with TOPAS took over 10 minutes to calculate a pencil beam dose in a homo-

geneous medium, MCsquare required 25 seconds, and YODA took less than 1 second to

perform the same calculation. TOPAS also exhibited a substantial increase in the com-

putation time in the presence of heterogeneities unlike MCsquare. For YODA, the run-

time for heterogeneous cases depends on the split scheme used, with a slight increase

in the computation time observed as more elaborate schemes are implemented. The

1+24+24+24+24 split scheme, which has a total of 97 beamlets per spot and produced

the best results for the heterogeneous phantom, took less than 2 seconds to complete.

3.4. DISCUSSION

This work assessed the feasibility of using fast proton dose engines, MCsquare and YODA,

originally developed for patients, to speed up dose calculations in small animals. The

runtime evaluation showed that both codes substantially reduce the computation time

compared to a full Monte Carlo (MC) simulation in TOPAS. With 48 cores running in
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Table 3.4: Average runtimes of TOPAS, MCsquare, and YODA for calculation
of a pencil beam in homogeneous and heterogeneous phantoms. The last
two columns indicate the total number of beamlets and the split scheme
implemented for the heterogeneous case in YODA.

Code
Runtime (s)

Homogeneous Heterogeneous # Scheme

TOPAS 818.8 ± 1.5 1426.0 ± 3.6 - -
MCsquare 25.2 ± 0.4 25.4 ± 0.3 - -
YODA 0.9 ± 0.0 0.9 ± 0.1 25 1+6+6+12

0.9 ± 0.0 37 1+6+6+12+12
1.3 ± 0.3 49 1+12+12+24
1.8 ± 0.2 73 1+12+12+24+24
1.8 ± 0.2 73 1+24+24+24
1.9 ± 0.4 97 1+24+24+24+24

parallel, MCsquare showed reasonably fast execution time of about 25 seconds per spot.

YODA, however, proved even more efficient, completing the same calculation within 2

seconds using the most complicated split scheme implemented in this study, which in-

volves a total of 97 beamlets. The potential for further speed gains through GPU imple-

mentation makes YODA even more promising. These reductions in computation time

will facilitate rapid plan generation and optimization during animal irradiations, greatly

enhancing the overall efficiency of the preclinical workflow.

To evaluate the accuracy, we benchmarked these codes against the general-purpose

MC code TOPAS for a variety of configurations. Test cases on homogeneous and hetero-

geneous phantoms demonstrated that both MCsquare and YODA can accurately predict

the proton range for energies commonly used in small animal irradiations, even with

large density variations in the beam path.

To create irradiation plans in animal geometries, we used OpenTPS [36], which is an

open source proton treatment planning system for humans. During our use of this TPS,

we encountered several limitations. A major issue is the energy threshold that restricted

the spot placement at very shallow depths. This led to no spots placed at the proximal

side of the PTV, which resulted in poor dose coverage as shown in figures 3.8 to 3.11. The

dose objectives for plan optimization were also limited to basic criteria such as maxi-

mum, minimum, and mean dose in a structure. More advanced optimization functions,

such as dose volume histogram (DVH) related objectives, typically found in commercial

TPS were not available. These limitations presented challenges in generating good irra-

diation plans for anatomical regions in animals investigated in this work. However, this
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issue is not considered critical for our purpose. Since our goal is to compare the perfor-

mance of different dose engines, using the same plan for the calculation in each code

ensures the comparison remains valid.

Validation on different anatomical regions in a mouse showed that MCsquare can

generally predict dose distributions with accuracies comparable to TOPAS. MCsquare

yielded gamma passing rates (DD/DTA = 3%/0.2mm) greater than 99.95% for the head,

thorax, and abdomen with a lateral field. The worst comparison was seen in the ab-

domen case with an anterior beam, where differences were observed in low density re-

gions such as the hollow portion of the intestine (consisting of air), for which MCsquare

predicts higher doses. The same behaviour was observed for YODA as shown in figure

3.11. This can be explained by the lack of electron transport, forcing their contribution

to the dose to be locally absorbed [14]. Such an approximation may not always hold true

especially since the voxel size of animal CT images is in the order of 0.1 mm. For example,

the highest proton energy in this plan is 41.2 MeV, which can transfer a maximum energy

of about 91 keV to secondary electrons. This corresponds to a range of ∼190µm in tissue.

Since the lumen of the intestine is modelled as air (ρ = 0.0012 g/cm3), these secondary

electrons would have an even larger range and deposit their dose contribution elsewhere

when explicitly simulated, which was not the case in MCsquare and YODA. Despite this,

MCsquare still achieved a gamma passing rate of 97.1% for this plan. For all investigated

cases, MCsquare met the gamma acceptance criteria and demonstrated sufficiently fast

calculation times, confirming its suitability as a dose calculation platform for irradiation

planning in animals.

On the other hand, the achievable quality of the dose distribution for YODA is highly

dependent on the beam splitting scheme implemented in the calculation. As illustrated

by the YODA dose distribution calculated without beam splitting for a single spot in-

cident on a phantom with lung and bone inserts in figure 3.5, the range and multiple

Coulomb scattering of the proton beam are determined by the material along the central

axis. Therefore, when the width of the beam is relatively large compared to the hetero-

geneities, as is the case in animals where anatomical structures are of the order of 300 to

400 µm [37], the off-axis density variations across the beam will be neglected, resulting

in considerable errors in the dose distribution.

Dividing the beam into smaller beamlets helps mitigate this issue and better account

for lateral heterogeneities. Burlacu et al. [27] performed rigorous tests on a heteroge-

neous phantom with a slab of bone or air moving laterally into the beam. From their ex-

aminations using beam energies and voxel sizes typical in clinical settings (i.e. E = 70 to

230 MeV and voxel size = 1 mm), they found that even a simple split scheme of 1+6+6+12
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for YODA can achieve high gamma passing rates > 95% using a strict criteria of 1%/1mm

(DD/DTA). However, our findings showed that the same split scheme optimized for a

proton beam and resolution typical for small animals performed worse, with only 83.2%

of the voxels passing the gamma analysis using our strictest criteria of 3%/0.1mm (case

1). The results also progressively deteriorate as the position of the Bragg peak gets closer

to the heterogeneity (cases 2 and 3). The worse performance metrics could be due to

finer voxel resolution in animals compared to humans, rendering it more sensitive to

very small shifts and changes in the dose between neighbouring voxels.

We also found that the split schemes are not universally applicable and has to be op-

timized on a case-by-case basis. For example, the 1+6+6+12 scheme obtained a passing

rate of 93.4% (DD/DTA: 3%/0.2 mm) for the heterogeneous phantom, but it achieved

a very high passing rate of 99.7% for the full plan in the head, where more complex

structures are present in the beam path. In contrast, the 1+24+24+24+24 scheme, which

achieved a 98.9% passing rate for the heterogeneous phantom, showed poorer outcomes

for the thorax and abdomen cases. Furthermore, comparisons of the 1+6+6+12 and 1+24+

24+24+24 split schemes in table 3.3 revealed only a slight improvement in the gamma

passing rate for full plan calculations, whereas substantial improvement was observed

for the heterogenous phantom case in table 3.2. These tests on the heterogeneous phan-

tom and on different anatomical sites in a mouse indicate that the effectiveness of the

split scheme depends on what local inhomogeneities are present in the beam path and

where they are located with respect to the beam. It is also important to point out that

the ring radii, spatial spreads, and weights of the beamlets for each split scheme were

specifically optimized for the first heterogeneous phantom case. While the optimized

parameters worked relatively well on the head and abdomen with a lateral beam, their

effectiveness deteriorated on the thorax and abdomen with an anterior field as well as

on the other heterogeneous phantom cases. The accuracy of the YODA results could be

further improved by optimizing the split scheme parameters for each individual case.

To facilitate the use of YODA in practice, it is essential to develop site-specific pro-

tocols or class solutions. Detailed guidelines and recommendations for optimized split

schemes tailored to different anatomical regions and for a range of possible beam con-

figurations must be established. This approach will avoid additional time spent for opti-

mization during the irradiations and minimize the need for user intervention. Given that

animals used in a single experiment are clones of each other, the optimization only needs

to be study-specific rather than animal-specific, simplifying the overall process. With

proper tuning, YODA can be effectively used for real-time dose calculations in animals

especially in anatomical regions that are relatively homogeneous and without critical
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heterogeneities such as the head. While discrepancies were observed in more complex

areas like the thorax and abdomen, these were generally not dosimetrically significant

for the PTV. However, it is important to note that some degree of dose overestimation or

underestimation may occur, particularly in tissues located distally. Given that YODA is

considerably faster than MCsquare, accurately predicts proton range (given that beam

splitting is properly implemented), and only exhibits dose degradation at the distal end,

it may be beneficial to use YODA for plan optimization and reserve MCsquare for the

final dose calculations. Overall, YODA proves to be a valuable tool for quickly evaluat-

ing dose distributions and aiding in treatment planning considerations for animals, pro-

vided that pre-optimized split schemes are established.

While previous works have focused on reducing the contouring time in an effort to

implement a faster preclinical workflow [40, 41], this work aims to address another bot-

tleneck in proton irradiation of small animals: the dose calculation. To accelerate dose

calculations for kV X-ray beams, van Dijk et al. [22] proposed a deep learning model

for denoising low statistics MC dose distributions. The dose calculation then becomes

a two-step process, requiring an MC simulation run with fewer initial particle histories

(N = 106) and subsequently, feeding the resulting noisy dose map and the dose uncer-

tainty map to the deep learning model to predict its equivalent dose distribution with

less statistical uncertainty. The entire process took 6 s for their test case. For protons

in the preclinical context, Vanstalle et al. [24] proposed an analytical method to calcu-

late dose distributions in small animals. While analytical solutions tend to be faster than

tracking simulations, the runtime for their proposed algorithm was not evaluated in their

work. Benchmarking of their method against a full MC simulation was performed only

on a simple water phantom and more rigorous testing on a heterogeneous phantom with

a material interface parallel to the beam as well as calculation of 3D dose distributions

in realistic animal geometries, as evaluated in our work, was not conducted. Almeida et

al. [42] also performed proton dose calculations on a mouse with lung tumour, utiliz-

ing a clinical beam and an adaptive aperture to create small fields. They simulated both

shoot-through beams and single Bragg peaks delivered at different angles, with the dose

calculations performed in TOPAS. While they reported the estimated treatment times,

they did not provide information regarding the duration of the dose calculations.

To our knowledge, this is the first study demonstrating the capabilities of MCsquare

and YODA for accelerating dose calculations for small animal proton irradiations. Al-

though we performed rigorous validation in phantom and animal geometries, further

testing on real micro-CT images of animals and using more complex beam configura-

tions (i.e. multiple fields) should also be conducted. While this work only focused on
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CPU-based proton dose engines, another potential solution to be explored in the future

is GPU-based MC codes such as the dose engine of the preclinical commercial treat-

ment planning system, µ-RayStation. GPU MC approaches can predict dose distribu-

tions faster than CPU-based MC codes [18], which can further boost animal throughput.

3.5. CONCLUSION
This study focused on evaluating the accuracy and time efficiency of the fast CPU-based

Monte Carlo code MCsquare and the deterministic dose engine YODA for real-time pro-

ton dose calculations in small animals. Validation was first performed in water, wherein

excellent agreement with TOPAS was achieved by both codes while significantly reduc-

ing the computing time. In all cases investigated, MCsquare demonstrated the ability to

perform rapid dose calculations, produce reasonably accurate results, and handle more

complex anatomical regions, making it suitable for dose computations in routine pre-

clinical practice. Although YODA is considerably faster than MCsquare, its accuracy re-

lies on the beam splitting scheme needed to properly account for local inhomogeneities.

Evaluations on a heterogeneous phantom and CT-based animal geometries revealed

that the effectiveness of the split schemes depend on the distribution of local inhomo-

geneities and their position relative to the beam. This emphasizes the importance of

pre-tuning split schemes for different anatomical sites and beam configurations to fa-

cilitate YODA’s seamless use in daily practice. Despite these considerations, YODA can

accurately predict the proton range and only exhibits dose differences towards the dis-

tal end. To capitalize on YODA’s speed, we suggest using it for plan optimization while

relying on MCsquare for the final dose calculation to ensure accuracy.
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ABSTRACT

Objective: The integration of proton beamlines with X-ray imaging/irradiation platforms

has opened up possibilities for image-guided Bragg peak irradiations in small animals.

Such irradiations allow selective targeting of normal tissue substructures and tumours.

However, their small size and location pose challenges in designing experiments. This

work presents a simulation framework useful for optimizing beamlines, imaging proto-

cols, and design of animal experiments. The usage of the framework is demonstrated,

mainly focusing on the imaging part.

Approach: The fastCAT toolkit was modified with Monte Carlo (MC)-calculated primary

and scatter data of a small animal imager for the simulation of micro-CT scans. The sim-

ulated CT of a mini-calibration phantom from fastCAT was validated against a full MC

TOPAS CT simulation. A realistic beam model of a preclinical proton facility was ob-

tained from beam transport simulations to create irradiation plans in matRad. Simulated

CT images of a digital mouse phantom were generated using single-energy CT (SECT)

and dual-energy CT (DECT) protocols and their accuracy in proton stopping power ra-

tio (SPR) estimation and their impact on calculated proton dose distributions in a mouse

were evaluated.

Main Results: The CT numbers from fastCAT agree within 11 HU with TOPAS except for

materials at the center of the phantom. Discrepancies for central inserts are caused by

beam hardening issues. The root mean square deviation in the SPR for the best SECT

(90kV/Cu) and DECT (50kV/Al–90kV/Al) protocols are 3.7% and 1.0%, respectively. Dose

distributions calculated for SECT and DECT datasets revealed range shifts < 0.1 mm,

gamma pass rates (3%/0.1mm) greater than 99%, and no substantial dosimetric differ-

ences for all structures. The outcomes suggest that SECT is sufficient for proton treat-

ment planning in animals.

Significance: The framework is a useful tool for the development of an optimized exper-

imental configuration without using animals and beam time.

Keywords: micro-CT simulation, single-energy CT, dual-energy CT, stopping power, pre-

clinical proton dose calculations, Monte Carlo
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4.1. INTRODUCTION

Over the past decade, there has been a rapid increase in the number of proton therapy

facilities around the world [1]. Owing to the characteristic dose fall off after the Bragg

peak, proton therapy can deliver a much more conformal dose to the tumour, thereby

more effectively sparing surrounding healthy tissues. To fully realize the potential and

exploit the benefits of proton therapy, preclinical studies are needed to better under-

stand the biological mechanisms of tumour and normal tissue response and to study

differential effects of X-rays and protons.

Several in vivo studies have already been conducted to investigate the interplay be-

tween radiation induced damage to the heart and lungs [2] as well as inhibition of re-

pair mechanisms by low dose irradiations around the primary high dose areas in the

spinal cord [3]. Previous works have also looked into the relative biological effectiveness

(RBE) by irradiating mice with different parts of the Bragg curve [4, 5, 6]. Other treatment

strategies are also being explored such as using an array of narrow, spatially fractionated

beams—proton minibeam [7, 8] and ultra-high dose rates—FLASH [9, 10, 11] to promote

normal tissue sparing. Targeted irradiations of critical normal tissue structures such as

stem cell-rich ducts in the parotid glands [12] and hippocampus [13] also suggest that

sparing these regions may reduce associated radiation-induced side effects (i.e. xerosto-

mia and neurocognitive dysfunction, respectively).

To get more insight into the radiation response of both normal tissue structures and

tumours, highly accurate irradiations must be performed, which can be challenging due

to motion, location, and size of the targets in small animals. To create opportunities for

these experiments, facilities have started to integrate preclinical X-ray CT imaging and

irradiation platforms with proton beamlines to provide the image guidance needed to

achieve the required accuracy [14, 15, 16, 17]. This opens up possibilities for delivering

spread-out Bragg peak (SOBP) irradiations, which allow a much better conformity of the

dose distributions to the targets. However, designing such experiments is not straight-

forward. To achieve highly conformal dose distributions, millimetre-sized pencil beams

must be delivered. The beam must also be degraded down to energies much lower than a

clinical proton beam (∼30 MeV). These require additional components such as collima-

tors and range shifters to be integrated into the beamline. The material chosen and the

position of these components with respect to the animal affect the quality of the dose

distributions. Furthermore, correct positioning of the Bragg peaks must be ensured and

the actual dose distribution in the animal must be accurately determined.

In this work, we present a simulation framework of the preclinical irradiation work-

flow, which can be used to optimize beam properties, evaluate imaging protocols, and
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characterize dose distributions prior to performing experiments. The framework pro-

vides a quick way to discover sensitivities and weak points of experimental setups so

they can be addressed beforehand. This leads to a more efficient workflow and also en-

hances experiment quality and capacity.

The framework allows generation of realistic X-ray micro-CT images using the fast-

CAT CBCT simulator [18]. We have modified the original code to enable creation of CT

scans consistent with a small animal imager. This was validated against a full Monte

Carlo (MC) X-ray CT simulation in TOPAS [19]. Beam transport simulations in the Geant4-

based beam delivery simulation (BDSIM) toolkit [20] were performed to obtain a realis-

tic proton beam model optimized for small animal irradiations. The proton beam model

was used to generate the beam data library in matRad [21] for treatment planning.

We focus on the imaging issues to demonstrate an application of this framework.

Single-energy CT (SECT) and dual-energy CT (DECT) calibration methods have already

been investigated for preclinical studies but only for X-ray irradiations [22, 23]. Here, we

extend that to protons by evaluating different published SECT and DECT approaches for

estimation of proton stopping power ratios (SPR) and material identification in animal

CTs. The uncertainties associated with the calibration methods are assessed by simulat-

ing proton radiographs to get range error maps. Their impact on proton dose distribu-

tions was also evaluated to establish whether the differences observed between SECT

and DECT were large enough to warrant DECT-based proton treatment planning for an-

imals.

4.2. MATERIALS AND METHODS

4.2.1. MICRO-CBCT MODEL FOR FASTCAT
FastCAT is a cone-beam CT (CBCT) simulation toolkit relying on scatter kernels and de-

tector response functions pre-calculated using Monte Carlo (MC) simulations [18]. The

X-ray source is modelled using SpekPy, which is a python-based program that allows cal-

culation of polychromatic X-ray spectra for a wide range of X-ray tube specifications [24].

For kilovoltage beams, which are typically used for small animal CT acquisition, fastCAT

offers a 450-µm thick Cesium Iodide (CsI) detector. To create CT images, a 3D voxel ge-

ometry of the object is imported in the form of a matrix with integers corresponding to

the material index. For each of these materials, the linear attenuation coefficients (µ) as

a function of energy taken from the NIST XCOM1 database is used as input in the sim-

1NIST XCOM: Photon Cross Sections Database is a web program that can be used to calculate photon cross
sections and attenuation coefficients of elements, compounds, or mixtures. Access at: https://physics.
nist.gov/PhysRefData/Xcom/html/xcom1.html

https://physics.nist.gov/PhysRefData/Xcom/html/xcom1.html
https://physics.nist.gov/PhysRefData/Xcom/html/xcom1.html
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Table 4.1: Parameters used in fastCAT based on the X-RAD
225Cx machine.

Parameter Value

Focal spot 0.4 mm based on IEC 336
Inherent filtration 0.8 mm Be
Anode Tungsten (W)
Anode angle 20◦
Source-to-axis distance (SAD) 303.4 mm
Source-to-detector distance (SDD) 622.9 mm
Number of projections 360

ulation. The CT parameters such as source-to-axis distance (SAD), source-to-detector

distance (SDD), and imaging dose must also be defined. Then, projection images are

created using raytracing, which are subsequently used for CT reconstruction in TIGRE

[25].

In this way, fastCAT is capable of generating realistic CT images in minutes. How-

ever, in its original form it is not suitable for micro-CT simulations since its base data

(i.e. primary and scatter kernels) were modelled after a clinical CBCT machine, and the

phantoms available are in the human scale. Therefore, we performed separate MC simu-

lations in TOPAS to generate base data for micro-CT acquisitions using the X-RAD 225Cx

(Precision X-Ray Inc., Madison, CT) as the reference CT model. Table 4.1 gives the CT pa-

rameters for this small animal imager.

The following subsections detail the changes we have made in fastCAT and the Monte

Carlo validation of the modified version. The physics list and range cuts used in TOPAS

can be found in table S4.1 in the supplementary file.

PRIMARY AND SCATTERED X-RAY MODELLING IN TOPAS

CT images in fastCAT are created by first calculating forward projections using raytrac-

ing in TIGRE for 18 discrete energies (i.e. 10 to 100 keV in increments of 10 keV, 300 to

900 keV in increments of 200 keV, and 1, 2, 4 and 6 MeV). Each projection is turned into

an intensity image by using the primary field and then, the scatter contribution is sub-

sequently added. The final intensity image is obtained by weighting the 18 projection

images by the X-ray spectrum and energy deposition efficiency.

We calculated the primary field and scatter contribution for our micro-CT model

following the simulation procedure described in the paper of O’Connell and Bazalova-

Carter [18] but using the CT parameters given in table 4.1. The primary field was ob-

tained by irradiating the detector without an object. The source was modelled as a cone
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beam with a Gaussian focal spot size with σ = 0.4 mm. The SurfaceTrackCount scorer

in TOPAS was used to count the X-rays incident on a 2D air slab (512 × 512, pixel size =

0.15 mm). A radial profile of the X-ray intensity was taken and the same curve as in the

original fastCAT paper was fitted on the resulting profile. Since the shape of the primary

field does not change much with energy, the simulation was only performed for 90 keV

X-rays and the same profile was used for the other energies.

The phantom-specific scatter kernels were generated for a spherical water phantom

with radius of 15 mm for imaging a mouse. These were calculated for all energies re-

quired by fastCAT. Similar to the primary field, a radial profile exists for each energy. The

scatter contribution is assumed to be independent of the projection angle.

IMAGE NOISE

FastCAT applies Poisson noise to the final intensity image to create a more realistic CT. To

generate CTs at different noise levels (or dose levels), fastCAT scales the raw intensity and

the noise using the ratio of the user-defined total particle fluence and the reference value

(i.e. number of particles for which the base data was calculated for in the MC simulation).

Here, the dose in a spherical water phantom was scored using the DoseToMedium scorer

in TOPAS for a given number of X-rays. This gives a relation that allows to assess image

noise as a function of imaging dose.

PHANTOMS

Two types of phantoms were used in this work: a mouse-sized CT calibration phan-

tom (SmART Scientific Solutions BV, Maastricht, the Netherlands) and the mathemati-

cal MOBY mouse phantom [26]. The mini-calibration phantom, which contains tissue-

equivalent materials of known elemental composition (supplementary table S4.2), was

used for the CT HU calibration. It has a diameter of 30 mm and holds 11 cylindrical

tissue-equivalent inserts (Gammex Inc., WI, USA) with a diameter of 3.5 mm. Figure 4.1

shows the schematic diagram of the phantom, and table 4.2 gives the corresponding ma-

terial properties.

The MOBY digital phantom was used to generate simulated CT images of the head

and thorax of a mouse as shown in figure 4.2. Artificial spherical tumours were created in

the brain and lungs with diameters 2 mm and 3 mm, respectively. The material assign-

ment for each organ is given in table 4.3, and the corresponding elemental composition

can be found in supplementary table S4.3.

Using the known material compositions of the phantoms, a ground truth image was

created that was used for the evaluation of the CT-based simulations. For example, dose

distributions calculated on CT images were validated against the dose computed for an
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Table 4.2: Effective atomic numberZe f f = m

√√√√∑
i wi

Zi
Ai

Z m
i∑

i wi
Zi
Ai

,m = 3.3

 [27], relative

electron density (ρe ), and stopping power ratio
(SPR) relative to water (calculated using the
Bethe Bloch equation for 100 MeV protons) of
the Gammex materials. Values for the lung in-
sert are not given as it is a highly heterogeneous
material.

# Material Ze f f ρe SPR

1 Air 7.71 0.001 0.001
2 LN-450 Lung - - -
3 AP6 Adipose 6.21 0.928 0.947
4 SR2 Brain 6.09 1.047 1.075
5 BR12 Breast 6.93 0.956 0.972
6 Solid Water 7.74 0.992 1.005
7 LV1 Liver 7.74 1.064 1.078
8 IB3 Inner Bone 10.42 1.086 1.082
9 B200 Bone 10.42 1.103 1.099

10 CB2-30% CaCO3 10.90 1.276 1.270
11 CB2-50% CaCO3 12.54 1.469 1.436
12 SB3 Cortical Bone 13.64 1.695 1.631
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Figure 4.1: Schematic diagram of the mini-calibration
phantom. The numbers correspond to materials in table
4.2.

image in which the actual materials are assigned.

VALIDATION OF X-RAY CT IMAGING WITH TOPAS

A full Monte Carlo (MC) CBCT simulation of the mini-calibration phantom, including X-

ray scattering, was performed in TOPAS to validate the micro-CT model in fastCAT. The

same CT geometry was used with the voxelized model of the mini-calibration phantom

as the object and the energy spectrum of 90 kVp X-rays filtered with 2 mm aluminium

taken from SpekPy as the source. Projection images were taken at 1◦ interval over a 360◦

rotation for 9 × 108 X-rays per projection. To compare fastCAT and TOPAS, the mean

Hounsfield Units (HU) of Gammex materials were extracted from a region of interest

(ROI) with a diameter of 2.5 mm centred at each rod averaged over 5 mm thickness at

the centre of the phantom body.

4.2.2. X-RAY CT-BASED CONVERSION TO PROTON STOPPING POWER

Figure 4.3 shows the workflow developed to perform the HU to SPR calibration from

which material and density assignments were derived for the Monte Carlo simulations
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Figure 4.2: (a) Head and (b) thorax of the MOBY phantom. The numbers correspond
to the materials assigned to each organ given in table 4.3. The spherical tumours with
diameters 2 mm (brain) and 3 mm (lung) artificially added in the phantom are indicated
by the yellow arrow.

of proton irradiations. First, simulated CT images of the mini-calibration phantom were

generated with fastCAT using imaging protocols typically used for small animal imaging.

Scans at tube potentials 50 kVp and 90 kVp filtered with 2 mm aluminium were created

as it was determined to be the best preclinical DECT combination in a previous study

[22]. We also looked into using stronger filtration for the high kV beam to reduce the

overlap between the low and high kV spectra for DECT (supplementary figure S4.1). For

this, copper with thickness of 0.32 mm was used, which is a filter also available in the

X-RAD 225Cx machine. The 50 kVp + 2mm Al, 90kVp + 2 mm Al, and 90 kVp + 0.32mm

Cu protocols will be referred to as 50kV/Al, 90kV/Al, and 90kV/Cu, respectively, for the

rest of the paper.

The mean HU values of 10 Gammex materials (i.e. materials 3-12 in table 4.2) given

in supplementary table S4.4 were used to fit parameters for SECT/DECT-to-SPR cover-

sion algorithms. The values were obtained for the same ROI as described in the previous

section. The LN-450 lung rod was excluded because it spanned a large HU range due to

the clearly noticeable air pockets in the CT images.

SINGLE-ENERGY CT (SECT)

Schneider’s stoichiometric calibration method was used to obtain the HU-to-SPR con-

version for SECT [31]. The fit parameters k1 and k2 were derived using least squares fit-

ting on the Gammex tissue substitutes for the three imaging protocols implemented in

this study. The scipy.optimize.least_squares function in python was used for the mini-
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Table 4.3: Material assignment to organs in the head and thorax of the MOBY phantom.
Materials 6-8 in the thorax are not shown in the image slice in figure 4.2(b). The elemen-
tal composition of each material is given in supplementary table S4.3.

#
Head Thorax

Organs Material Assignment Organs Material Assignment

1 Esophagus Aira Airsacs Aira

2
Body, cerebellum, olfactory
bulb, tumour

Soft tissuea Lung Lung-inflatedc

3
Cerebral cortex, brainstem,
striatum, rest of the brain

Brainb Body, tumour Soft tissuea

4 Thyroid Thyroidc Heart Heartb

5 Spinal cord Vertebral column (C4)d Ribs, spine, bones Ribs (2nd, 6th)d

6 Skull Craniumd Liver Liverb

7 Stomach Stomachc

8 Gall bladder Gall bladderb

a Geant4 material database (https://www.fe.infn.it/u/paterno/Geant4_tutorial/slides_further/Geometry/G4_Nist_Materials.pdf),

b ICRP Publication 110 [28], c Woodard and White [29], d White et al. [30]

mization, and the fitting was constrained to positive k-values to avoid physically mean-

ingless parameters. To check our fit procedure, the measured HU values of different

phantom materials given in Schneider et al. [31] were also analysed, resulting in the same

k-values as reported by them.

Once k-values were determined, the CT numbers of reference human tissues given

in Woodard and White [29] and White et al. [30] were calculated. Their corresponding

SPR for 100 MeV protons were calculated using the Bethe-Bloch equation given below

SPR = ρe

ln
(

2me c2β2

I (1−β2)

)
−β2

ln
(

2me c2β2

Iw (1−β2)

)
−β2

(4.1)

where ρe is the relative electron density, me is the electron mass, c is the speed of light,

β= v
c is ratio between the speed of the proton and speed of light (β = 0.428 for 100 MeV

protons), I is the mean excitation energy of the material calculated using the Bragg ad-

ditivity rule, and Iw is the mean excitation energy of water taken as 78 eV [32]. Then, the

calibration curve was created by performing linear fits between the predicted HU and

SPR on the lung, soft tissue, and bone regions. The k-values resulting from the stoichio-

metric fit and the root-mean-square deviation of the predicted CT numbers of Gammex

materials for the three scan protocols are given in table 4.4, and an example of the SECT

calibration curve is shown in figure 4.4.

https://www.fe.infn.it/u/paterno/Geant4_tutorial/slides_further/Geometry/G4_Nist_Materials.pdf
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Ground truth
Mini-calibration/MOBY phantom

SECT scan DECT scan

From fastCAT

HU to SPR
(Schneider 2000)

HU to 𝜌𝑒

(Saito 2012)

HU to 𝑍𝑒𝑓𝑓

(Saito 2017)

𝑍𝑒𝑓𝑓 to 𝐼

(Yang 2012)

SPR calculated using 𝜌𝑒 and 𝐼
(Bethe-Bloch formula)

HU to 𝑍𝑒𝑓𝑓

(Landry 2013)

SPR to material and density segmentation using the MATA table
(Permatasari 2020)

Material and density 
from manufacturer

TOPAS Monte Carlo simulations (proton radiograph / dose calculations)

𝑍𝑒𝑓𝑓 to 𝐼

(Saito 2017)

Figure 4.3: Overview of the simulation framework used in this work. Simulated CT scans
of preclinical phantoms were generated with fastCAT. The CT scans are then converted
to SPR images through SECT and DECT calibration methods. The MATA table is used to
convert SPR datasets to material and density maps, which is the input required for Monte
Carlo simulations. Comparisons can be made with the ground truth image, which is the
phantom with tissue composition used to generate the CT scans.

DUAL-ENERGY CT (DECT)

The 50kV/Al – 90 kV/Al and 50kV/Al – 90 kV/Cu DECT image pairs were used to extract

the relative electron density (ρe ) and effective atomic number (Ze f f ). The Ze f f was sub-

sequently used to derive the mean excitation energy (I ), which, together with ρe , is a

quantity needed for the calculation of the SPR. Saito’s [33] approach was used to derive

the ρe from the weighted subtraction of the low and high kV CT numbers. Two different

methods were employed to extract the Ze f f from the DECT scans. The first is Landry

et al.’s [27] model, which has been implemented in previous small animal DECT stud-

ies for X-ray irradiation [22, 23]. It uses the ratio of the attenuation coefficients at low

and high X-ray energies
(
µ

hi g h
low

)
to obtain the Ze f f image. Similar to the stoichiometric

method, the fit coefficients were obtained using the scipy.optimize.least_squares func-

tion, wherein the initial estimates for the µhi g h
l ow was taken from the NIST XCOM database

for water at the effective energies of the X-ray spectra (i.e. 25.5 keV, 30.8 keV, and 49.7 keV
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Table 4.4: Fit coefficients (k1,k2) derived from sto-
ichiometric calibration and root-mean-square devia-
tion (RMSDHU ) of the predicted CT numbers obtained
for Gammex materials for imaging protocols: 50kV/Al,
90kV/Al, and 90kV/Cu

50kV/Al 90kV/Al 90kV/Cu

k1 4.33 × 10−14 1.28 × 10−19 3.79 × 10−8

k2 2.19 × 10−4 1.23 × 10−4 8.05 × 10−5

RMSDHU 76 53 12

IB3, B200

Brain

Figure 4.4: Stoichiometric calibration curve for 90kV/Cu. The diamonds correspond to
Gammex materials with CT numbers from fastCAT simulation, whereas the circles rep-
resent datapoints for reference human tissues with CT numbers calculated from the cal-
ibration (i.e. using the k1 and k2 parameters).

for 50kV/Al, 90kV/Al, and 90kV/Cu, respectively) and an Ze f f of 7.48. This method was

combined with Yang et al.’s [34] parameterization of ln I as a function of Ze f f . The sec-

ond is Saito and Sagara’s [35] method, which was found to be the superior DECT model

in a recent study [36]. They proposed a simple formulation that relates the Ze f f to the
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Table 4.5: Fit coefficients obtained from the DECT images of the mini-calibration
phantom.

Method Parameter 50kV/Al – 90 kV/Al 50kV/Al – 90 kV/Cu

Saito (ρe )
α 1.68 0.76
a 0.981 0.976
b 0.982 1.003

Landry (Ze f f )

A50kV 1 1
B50kV 3.923 × 10−3 1.921 × 10−18

C50kV 3.641 × 10−4 6.508 × 10−4

A90kV 1.241 1.402
B90kV 2.120 × 10−3 4.586 × 10−21

C90kV 2.440 × 10−4 3.462 × 10−4

Saito and Sagara (Ze f f ) γL 2.92 2.88

Table 4.6: Fit coefficients for the parameterization of
the mean excitation energy (I ).

Method Parameter Soft tissue Bone

Yang
a 0.124 0.100
b 3.377 3.329

Saito and Sagara
c1 0.316 0.075
c0 0.054 0.115

low energy CT numbers and ρe . The I -values were calculated using their parameteri-

zation of ln I
Iw

as a function of Ze f f . For both methods to derive the Ze f f , m = 3.3 was

used [27]. The fitting methods were validated by using the values from Table I, Table 3,

and Table I given in Saito [33], Landry et al. [27], and Saito and Sagara [35], respectively.

The largest deviation for ρe and Ze f f from our calibration are 0.1% and 1.6% from the

original values, respectively.

Table 4.5 gives the fit coefficients for each method derived from the DECT scans used

in this work. The fit results for Yang et al. [34] and Saito and Sagara’s [37] parameteriza-

tion of I are provided in table 4.6. These coefficients were obtained from fitting of the I

and Ze f f of reference human tissues [29, 30], which were calculated using Bragg’s addi-

tivity rule.

SPR TO MATERIAL CONVERSION

To perform Monte Carlo simulations, the elemental composition and mass density of

each voxel in the CT are needed instead of the SPR. The SECT- and DECT-based SPR
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predictions were converted to composition and density using the MATerial Assignment

(MATA) table of Permatasari et al. [38]. The MATA table contains 40 reference human

tissues each of which falls in a predefined SPR interval to facilitate material assignment.

The density is determined using a linear relationship with the SPR. In this way, calibration-

specific methods to generate material and density maps from the SPR dataset are avoided.

SPR ACCURACY

The SPR of Gammex materials predicted from both SECT and DECT calibration were

compared to the theoretical values (SPRt ) calculated using the Bethe-Bloch equation

for 100 MeV protons (table 4.2). For each insert, the mean SPR (SPRmean) was extracted

over a cylindrical ROI (same as previously described) and the deviation was calculated

as follows

∆SPR(%) = SPRmean −SPRt

SPRt
×100. (4.2)

The root mean square deviation (RMSD) as given below

RMSD(%) =
√∑N

i=1(∆SPRi )2

N
(4.3)

was also estimated for each calibration procedure for the N =10 inserts considered in this

work.

To get an idea on how the SPRs obtained with the different calibration methods con-

tribute to range errors, proton radiographs of CTs converted to SPR maps using the

SECT and DECT methods were calculated and compared to the proton radiograph of

the ground truth phantom (i.e. geometry with actual elemental composition assigned).

Only the SECT (90kV/Cu) and DECT (50kV/Al – 90kV/Al) protocols that showed the least

SPR deviation for Gammex materials were used in the comparison. The MOBY thorax

was chosen because it is a highly heterogeneous region with air/soft tissue/bone inter-

faces. The simulated proton radiographs were obtained in TOPAS by irradiating the CT

with a 100 MeV parallel proton beam and scoring the residual kinetic energy of protons

(K Er es ) exiting the volume on a 2D air slab placed directly behind it.

A separate simulation was also performed to obtain the calibration curve relating

the residual kinetic energy to the water equivalent thickness (WET). Following the same

simulation setup, the (K Er es ) was scored for water slabs of increasing thickness in incre-

ments of 1 mm. The average value in a 1 cm region of interest at the centre of the scorer

was used for the WET calibration. The resulting calibration curve is given in supplemen-

tary figure S4.2.
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The final analysis is expressed in terms of the range error, which is quantified as the

pixel-by-pixel difference of the WET map of the calibrated CT from the WET map of the

ground truth phantom (∆W ET =W ETC T −W ETGT ).

4.2.3. DOSE CALCULATIONS

To assess the impact of SECT and DECT calibration methods on the dose distribution in

animals, irradiation plans were created using the open-source matRad treatment plan-

ning system (TPS) [21]. The following sections detail the creation of the matRad beam

model for small animal irradiations used in this work (Beam Modelling), describe the

parameters used to create a pencil beam scanning (PBS) plan for a tumour in the middle

of a mouse brain (Irradiation Plans), and explain the criteria for evaluating dose distri-

butions (Dosimetric Evaluation).

BEAM MODELLING

MatRad requires a database containing the integral depth dose (IDD) curves and lateral

size of the beam as a function of depth for a series of proton energies. A realistic model

of a 66.5 MeV proton beam for pencil beam irradiations at the IMPACT beamline for

small animal radiation biology research at UMCG-PARTREC, which is currently under

construction, was created following these steps:

1. The settings of the beam line magnets were optimized with the ion optics code

TRANSPORT [39], requiring a dispersion free beam waist in both transverse planes

at the centre of the 1 mm diameter, 45 mm length brass collimator used to shape

the beam. The initial transverse emittance in the calculations was obtained from

measurements close to the cyclotron exit.

2. The magnet settings obtained from the TRANSPORT calculation and the initial

emittance were then used as input for Monte Carlo particle tracking simulations

with the Geant4-based BDSIM toolkit [20]. The initial phase space file containing

the phase space coordinates (i.e. XYZ position, XY momentum components, and

kinetic energy) of the individual particles included the transverse - longitudinal

correlations introduced by the extraction system of the cyclotron. In the simula-

tion, the interactions of the particles with the vacuum exit window, the foils of the

ionization chamber, the air traversed by the particles, and the collimator are taken

into account as shown in figure 4.5. The output of the simulation is a phase space

file that contains the phase space coordinates of the particles that have passed the

collimator. The lateral penumbra (20% – 80%) of the beam at the collimator exit
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was 0.33 mm, while its divergence was 16 mrad. This phase space file was used

as the source for a subsequent simulation in TOPAS, wherein the 3D total energy

deposit in water was scored for 1 × 106 primaries. From this 3D distribution, the

quantities needed for the beam model were derived.

3. To generate data for lower energies without performing additional simulations, we

pulled back the Bragg curve of the 66.5 MeV proton beam in increments of 0.2 mm.

This method gives the correct beam properties provided that the range shifter is

right in front of the irradiated object and is water equivalent in terms of multiple

scattering.

5mm 5mm 20mm290mm

Exit Foil
Ionization 
Chamber

Collimator
Range-
shifter

45mm

variable
thick-
ness

Irradiated
Object

Figure 4.5: Schematic diagram of the final part of the IMPACT beamline.

IRRADIATION PLANS

The irradiation plan was created for the MOBY phantom with a 2 mm diameter spherical

tumour in the brain as shown in figure 4.2(a). The planning target volume (PTV) was

created by adding a safety margin of 0.2 mm around the tumour to account for setup

uncertainties [14, 40]. The PBS plan was made following these steps:

1. First, an initial plan was calculated using the pencil beam algorithm (PBA) of ma-

tRad. Since the PBA requires the SPR for the computation of water equivalent thick-

ness, the theoretical SPR (i.e. SPR calculated with the Bethe-Bloch formula using

the elemental composition assigned to the organs) was assigned to the MOBY head

phantom and used as the input in the calculation. This initial PBA plan evaluation

was used to determine the optimal beam arrangement in order to achieve a pre-

scribed dose of 10 Gy in the PTV. A lateral spot spacing of 0.8 mm was implemented

and a spread-out Bragg peak (SOBP) was created by superimposing several Bragg
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peaks spaced 0.8 mm apart. These parameters were determined from an initial

optimization on a target of the same size in water. For the spot fluence optimiza-

tion, squared dose deviation from the prescribed dose was used for the PTV and

no dose constraints were imposed to organs-at-risk such as the brain. The opti-

mization was based on the RBE-weighted dose, which was calculated by applying

a constant relative biological effectiveness (RBE) of 1.1 to the physical dose. The

doses presented onwards always refer to the RBE-weighted dose.

2. Second, the dose distribution of each pencil beam was recomputed in TOPAS. The

phase space file for 66.5 MeV protons obtained in the Beam Modelling section was

used as the source in the simulation. To match the beam energies in the PBA plan,

a range shifter in the form of water slabs was explicitly simulated in TOPAS with

thicknesses equal to the difference between the range of the original 66.5 MeV

beam and the range in water of the proton beam at each energy layer. The dose

was scored in the ground truth MOBY phantom using the DoseToMedium scorer.

The ground truth is the geometry with material compositions given in table 4.3

assigned (i.e. the same materials used to generate the corresponding CTs in fast-

CAT).

3. The initial PBA doses were then replaced by the MC-calculated ones. The spot

weights were reoptimized in matRad based on the new MC pencil beam doses.

Using the optimized plan, the final dose distribution for the ground truth MOBY head

phantom was calculated in TOPAS. The same plan was delivered to the SECT and DECT

images to demonstrate how the calibration methods affect the dose distribution. All dose

distributions were calculated on a 0.1 mm isotropic dose grid (voxel size of the CT).

DOSIMETRIC EVALUATION

To assess the accuracy of the dose distributions, dose volume histograms (DVHs) were

calculated. The criteria for dose coverage is V95 ≥ 98% in the PTV. This requires that at

least 98% of the PTV receives 95% of the prescribed dose, which is 9.5 Gy. Local differ-

ences were also investigated for organs-at-risk (OAR) by looking into the mean (Dmean)

and maximum (Dmax ) doses received by the brain (i.e. whole brain excluding the PTV)

and cranium. The CT-based dose distributions were also compared to the ground truth

by performing 3D global gamma analysis with dose difference (DD) / distance to agree-

ment (DTA) set to 3%/0.1 mm. The range shift (∆R = R80,C T −R80,GT ) defined as the dif-

ference in the distal range at 80% of the maximum dose was also calculated for 366 line

dose profiles over the target area along the beam direction.
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Table 4.7: CT numbers of Gammex inserts from
TOPAS and fastCAT simulations. The last column
lists the difference in Hounsfield units.

Material HU (TOPAS) HU (fastCAT) ∆HU

Adipose -154 -143 11
Brain -93 -66 27
Breast -75 -68 7
Solid Water 40 47 7
Liver 109 115 6
IB3 635 628 7
B200 653 647 6
CB2-30% 1033 1031 2
CB2-50% 1920 1928 8
SB3 2780 2843 64

4.3. RESULTS

4.3.1. SIMULATED CTS FROM FASTCAT

Figure 4.6(a) and (b) shows the simulated CT images of the mini-calibration phantom

generated with fastCAT and with a full CBCT simulation in TOPAS, respectively. The

comparison of the line profiles is given in figures 4.6(c) and (d). Qualitatively, the con-

trast is very similar between the two CT images. This observation is supported by the

good agreement in the mean HU of the Gammex inserts extracted from fastCAT and

TOPAS as shown in table 4.7. The difference in mean HU values between fastCAT and

TOPAS were within 11 HU except for the brain (27 HU) and SB3 cortical bone (63 HU).

The TOPAS simulations resulted in lower HU values for these materials. For SB3 cortical

bone, the cupping artifact is more pronounced in TOPAS leading to a much larger dif-

ference. Notably, these two inserts are located in the middle of the phantom. To check

whether there is a position dependence of the extracted HU values, an additional simu-

lation was performed wherein the brain and SB3 cortical bone were moved to the outer

ring in both the fastCAT and TOPAS simulations (i.e. brain and SB3 cortical bone were

switched with the liver and CB2-50%, respectively). The HU difference reduced to 15 HU

and 24 HU for the brain and SB3 cortical bone, respectively. In contrast, the deviation for

the liver and CB2-50% increased to 15 HU and 26 HU, respectively.
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(a) (b)

(c) (d)
IB3 CB2-30%

brain liver

SB3
CB2-50%

1

2

Figure 4.6: Simulated CT images of the mini-calibration phantom from (a) fastCAT and
(b) TOPAS averaged over ten slices for 90kV/Al. The line profiles indicated by the yellow
lines going through IB3/brain/CB2-30% and liver/SB3/CB2-50% inserts are plotted in
(c) and (d), respectively.

4.3.2. SPR ACCURACY OF GAMMEX MATERIALS

Figure 4.7 shows the deviation of the SECT- and DECT-predicted SPR of tissue-equivalent

materials from the theoretical value (i.e. SPR calculated using the Bethe-Bloch equation).

The corresponding root mean square deviation (RMSD) calculated for each protocol are

given in table 4.8. The brain, IB3 inner bone, and B200 bone inserts exhibited the largest

deviation (>5%) for SECT. The datapoints for these three materials can be seen to be

farther away from the calibration curve (figure 4.4) leading to divergent results. Overall,

the CT scan taken with the 90kV/Cu yielded smaller SPR deviations and the lowest RMSD

among the SECT imaging protocols implemented in this work.

On the other hand, between the two DECT configurations, the 50kV/Al – 90kV/Cu

image pair performed worse than 50kV/Al – 90kV/Al combination as illustrated in fig-
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ure 4.7 and table 4.8 despite having better separation in the low and high energy spec-

tra. The 50kV/Al – 90kV/Al DECT yielded prediction errors within ±2%, while 50kV/Al

– 90kV/Cu DECT had larger deviations up to -5.2% for IB3 inner bone with Saito and

Sagara’s method. Compared to the best SECT case, the 50kV/Al – 90kV/Al DECT also ex-

hibited better results, which is consistent with findings using clinical imaging protocols

[41, 42, 43]. The two DECT approaches (Landry, Saito and Sagara) at 50kV/Al – 90kV/Al

performed similarly with RMSD of 0.9% and 1.0%, respectively. The 90kV/Cu SECT and

50kV/Al – 90kV/Al DECT imaging protocols have then been used to generate SECT and

DECT scans of the animal phantom for dose calculations.

Figure 4.7: Deviation of the SECT- and DECT-based SPR predictions from theoretical val-
ues for Gammex materials. Three imaging protocols were evaluated for SECT: 50kV/Al,
90kV/Al, and 90kV/Cu, whereas two combinations were implemented for DECT: 50kV/Al
– 90kV/Al and 50kV/Al – 90kV/Cu.

4.3.3. EVALUATION OF RANGE ERRORS IN THE MOBY THORAX

Figure 4.8 shows the distribution of the range differences for the MOBY thorax between

the ground truth and the SECT and DECT calibration methods. The range errors are

within ±1 mm with SECT having larger errors and larger width of the distribution than

DECT. The mean ± standard deviations of the range errors are 0.41 ± 0.16 mm, -0.23 ±
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Table 4.8: Root mean square deviation (RMSD) of SPR values of Gammex materi-
als

RMSD (%) RMSD (%)

Protocol SECT Protocol DECT Landry DECT Saito

50kV/Al 5.2 50kV/Al – 90kV/Al 0.9 1.0
90kV/Al 4.5 50kV/Al – 90kV/Cu 2.9 3.1
90kV/Cu 3.7

0.12 mm, and -0.24 ± 0.12 mm for SECT, DECT-Landry, and DECT-Saito, respectively.

SECT calibration systematically gives positive range errors, which indicates that WET

values are overestimated as a direct consequence of higher SPR predictions than the

ground truth. On the contrary, DECT approaches lean towards negative range errors due

to overall underestimation of the SPR.

Figure 4.8: Distribution of the range errors (∆W ET = W ETC T −W ETGT ) for the MOBY
thorax resulting from SECT and DECT calibration.
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4.3.4. IMPACT OF CT CALIBRATION METHODS TO THE DOSE DISTRIBUTION

Figure 4.9(a) presents the proton dose distribution for the treatment plan optimized on

the ground truth MOBY phantom. To gauge the uncertainty introduced by the calibra-

tion methods to the dose calculation, the same plan was delivered to all other cases. The

gamma index maps calculated for each calibration method are shown in figure 4.9(b).

Gamma values greater than 1 appear mostly at the distal edge of the PTV and along

transitions between soft tissue and bone. Nevertheless, gamma analyses of the SECT-,

DECT-Landry-, and DECT-Saito-based dose distributions using 3%/0.1 mm criteria give

passing rates of 99.8%, 99.5% and 99.3%, respectively, which show that there are no ma-

jor dosimetric differences with the ground truth.

Figure 4.10(a) shows a representative dose profile for each case. Both SECT and DECT

methods show an underestimation of the dose in regions with high density gradient (tis-

sue/bone interface) as a consequence of CT image blurring at material transitions. This

difference is also depicted by γ values > 1 for brain or soft tissue voxels close to the cra-

nium as shown in figure 4.9(b). Analysis of 366 dose profiles revealed that SECT system-

atically induces negative range shifts with a median of -0.04 mm, while DECT-Landry

and DECT-Saito result in positive range shifts with median values of 0.05 mm and 0.06

mm, respectively. These observations are consistent with the results in section 4.3.3 in-

dicating that SECT leads to overestimation of the WET, whereas DECT underestimates

it. As shown in figure 4.10(b), the range shifts are below the CT voxel size of 0.1 mm and

can be considered negligible.

The comparison of the dose volume histograms (DVHs) is displayed in figure 4.11,

and the dose metrics are given in table 4.9. From the DVH analysis, it can be deduced that

adequate PTV coverage (i.e. V95 ≥ 98%) was not achieved for any of the dose distributions

based on the calibrated CTs. Only 95.9%, 96.3%, and 96.4% of the PTV received at least 9.5

Gy for dose distributions computed with SECT, DECT-Landry, and DECT-Saito images,

respectively. Voxels that did not meet the dose coverage criteria are mostly towards the

edge of the PTV as shown in figure 4.9(b). Meanwhile, all calibration methods showed no

considerable change in the mean and maximum doses to the surrounding OAR.

4.4. DISCUSSION

This work presents a framework to simulate preclinical proton irradiations. Using this

platform, one can design and optimize preclinical setups and gain insights about how

it affects the dose distribution in an animal prior to experiments. A major part of this

framework is the fastCAT CBCT simulator. It was modified based on the CT geometry of

a small animal CT scanner to allow generation of realistic micro-CBCT images. The va-
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(a) (b)

PTV

9.5 Gy

Figure 4.10: (a) Dose profiles in the beam direction taken at the centre of the PTV indi-
cated by the white line in figure 4.9(a). (b) Range shift (∆R = R80,C T −R80,GT ) distribution
for SECT and DECT calibration methods. Yellow shade indicates the region within one
voxel size of the CT (±0.1 mm).

PTV

Brain

Cranium

Figure 4.11: Dose volume histograms calculated for the PTV (prescribed dose: 10 Gy),
OAR-brain, and cranium. The solid, dash-dotted, dashed, and dotted lines correspond
to the ground truth, SECT, DECT-Landry, DECT-Saito, respectively.

lidity of the fastCAT micro-CBCT scans was demonstrated by the overall good agreement

of the CT numbers with full Monte Carlo (MC) simulations. The large discrepancies ob-

served for the brain and SB3 cortical bone inserts are likely caused by beam hardening

not being properly handled in fastCAT. These two inserts are located at the center of the

phantom, where the beam has the hardest spectrum (i.e. beam with a higher mean en-

ergy due to low energy X-rays being preferentially absorbed). The attenuation coefficient

then becomes lower, which results to lower HU values as demonstrated by TOPAS. The

cupping artifact in the SB3 cortical bone is also much more pronounced in TOPAS than
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Table 4.9: Mean (Dmean) and maximum (Dmax ) doses, and percent volume
that received 95% of the prescribed dose (V95). The last one is only for the
PTV.

Structure
Ground truth SECT DECT-Landry DECT-Saito

Metric

PTV
Dmean (Gy) 10.4 10.3 10.4 10.4
Dmax (Gy) 11.3 11.3 11.5 11.5
V95 (%) 98.8 95.9 96.3 96.4

Brain
Dmean (Gy) 1.6 1.5 1.6 1.6
Dmax (Gy) 10.7 10.5 10.7 10.7

Cranium
Dmean (Gy) 0.2 0.2 0.2 0.2
Dmax (Gy) 7.5 7.8 7.8 7.8

in fastCAT, which further supports this claim.

In comparison to Vaniqui et al.’s [23] measured HU values for the same mini-calibration

phantom at 50kV/Al and 90kV/Al, fastCAT CT numbers are generally higher. The differ-

ence can have a number of explanations. The reconstruction protocol and the region of

interest from which the HU values were extracted may have been different. The thickness

of the CsI detector and the pixel pitch are not the same. Furthermore, the simulations

to create the micro-CBCT fastCAT model were rather simplistic. Collimators and other

CT components were not included in the modelling, which could generate additional

scatter. Also, the angular distribution of the X-ray intensity was assumed to be uniform

while in reality, it is not. A better agreement with experimental values could be obtained

by replacing the detector response functions in fastCAT and performing more detailed

modelling of the micro-CT scanner. Nevertheless, the general trend of the CT numbers

of Gammex materials from fastCAT remains consistent with published values.

The potential use of fastCAT simulated CT scans in the evaluation of SECT- and DECT-

based stopping power ratio (SPR) estimation for proton treatment planning in animals

was also demonstrated in this study. Previous works have already investigated the feasi-

bility of using DECT, and its impact on preclinical X-ray dose distributions [22, 23]. Here,

we extended it by exploring another energy combination with better spectral separation

(50kV/Al – 90kV/Cu), using different DECT approaches to predict proton stopping power

ratios, and comparing the results to the SECT stoichiometric calibration. The best per-

forming SECT and DECT protocols were also evaluated in terms of range errors (from
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MC-simulated proton radiographs) and proton dose calculation accuracy in animal CTs.

The SECT stoichiometric calibration has been reported to yield uncertainties up to

3.5% [44]. For the SECT imaging protocols (i.e. 50kV/Al, 90kV/Al and 90kV/Cu) investi-

gated in this work, the SPR deviation of Gammex materials from theoretical values is in a

similar range except for the brain, IB3, and B200 inserts, where deviations >5% were ob-

tained. These tissue surrogates are seen to lie away from the calibration curve as shown

in figure 4.4. This suggests that these materials have a poor ability in reproducing CT

numbers of biological tissues. Although not as pronounced as in our case, the same three

materials also slightly deviate from the HU-to-ρe calibration curve by Goma et al. [45] for

human size phantoms. Since the SPR is directly proportional to the ρe , we expect a sim-

ilar trend. Overall, the SECT SPR prediction improves as the mean energy of the X-ray

spectra increases, with 90kV/Cu yielding the lowest RMSD. It is important to note that

the Cu filter was not explicitly modelled in the simulations and at such thickness, it will

produce more scattered X-rays, which might be detrimental to the image quality and

may affect the accuracy of the calibration.

For DECT, two different acquisition settings were investigated. First, the 50kV/Al –

90kV/Al combination was selected as it was reported by Schyns et al. [22] to be the op-

timal energy combination for preclinical DECT showing the lowest deviation in the es-

timated ρe and Ze f f of tissue equivalent materials. However, their work only compared

DECT results for different energy combinations filtered by the same material. To im-

prove spectral separation, we implemented a stronger filtration material for the high kV

beam (i.e. 90 kVp filtered with 0.32 mm Cu) in SpekPy for the second DECT image pair

(50kV/Al – 90kV/Cu). The idea is that by reducing the overlap between the X-ray spec-

tra, the attenuation values (or CT numbers) from the high and low kV datasets become

more independent from each other, which should improve material discrimination [46].

However, contrary to expectation, the 50kV/Al – 90kV/Cu performed poorly compared to

50kV/Al – 90kV/Al. To understand these findings, further studies including experimental

measurements are needed.

The 50kV/Al – 90kV/Al DECT pair achieved better results for Gammex materials com-

pared to 90kV/Cu SECT with deviations within ±2%. At this setting, the DECT conversion

algorithms of Landry et al. [27] and Saito and Sagara [35] were comparable although

the latter offers a much simpler implementation. Note that several DECT studies using

clinical imaging protocols have shown higher accuracy in SPR estimation than what we

have achieved [42, 47, 48, 49]. These studies were usually performed with 80kV – 140kV

pair where tin (Sn) filtration was applied for the high tube voltage. This combination

exhibits a large X-ray spectra separation, with the high kV image being dominated by
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Compton effect. Yang et al. [50] and Li et al. [51] have demonstrated that increasing the

energy separation leads to a reduction in the uncertainties associated with SPR estima-

tion. Although it is desirable to use higher energies for DECT, there are limitations for

pre-clinical imaging. For instance, the tube voltage of some micro-CT machines only go

up until 100 kV. Moreover, higher energies will also result to poorer contrast in the image.

To get an idea on how the SPR uncertainties associated to the CT calibration meth-

ods translate into errors in the proton range, we obtained WET maps through proton

radiograph simulations on SECT and DECT images. The mean shift and variation in the

proton range for DECT is smaller in magnitude than SECT, which reflects its superior-

ity in terms of tissue characterization. However, it is important to note that performing

dual energy CT imaging results in additional dose to the animal and the imaging dose

required to obtain acceptable DECT calibration is high ( 30 cGy per CT image) [22].

To assess whether DECT indeed offers a potential gain over SECT in treatment plan-

ning for animals, proton dose calculations in a mouse brain were performed on SECT

and DECT images. The treatment plans were made in matRad to which we have added a

beam data library based on a realistic beam model for small animal irradiations. The pro-

ton beam model was obtained from beam transport simulations of a preclinical proton

beamline in BDSIM. The accuracy of the dose distributions was evaluated by comparing

it with the one calculated based on the ground truth phantom. It is worth highlighting

that this is another advantage of the framework. Since the actual tissue compositions

used to generate the CTs in fastCAT are known, the same materials can be assigned to

the MOBY geometry to create a ground truth image for dose calculations, which is usu-

ally lacking when experimental CTs of animals are used.

Results from proton dose calculations on SECT- and DECT-calibrated CT images

showed very small differences with the ground truth. A slight shift in the dose profiles

can be observed in figure 4.10(a), wherein the SECT profile is more upstream and DECT

ones are deeper than the ground truth. These observations are in line with the proton ra-

diograph results in which SECT was shown to overestimate the SPR, while DECT tend to

underestimate it. However, SECT- and DECT-calibrated scans did not really lead to con-

siderable range errors as the average shift is smaller than the dose grid (0.1 mm). There

was also negligible effect on the global dose distribution as shown by the high gamma

pass ratios (>99% for both SECT and DECT) and on the local mean doses to anatomical

structures (both target and OARs). Overall, the results suggest that SECT is sufficient for

CT characterization of tissues in a micro-CT for animal proton treatment planning and

that the additional dose required for DECT imaging is not warranted.

To our knowledge, this work presented the first dosimetric evaluation of SECT and
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DECT calibration methods in the context of proton irradiation of small animals. It should

however be emphasized that the merit of implementing DECT imaging in proton pre-

clinical practice cannot be evaluated just with a single case study. The investigation was

limited to the head, which can be considered relatively homogeneous with only the brain

and the skull along the beam direction. The framework can also be used to assess other

treatment regions particularly those with more complex geometry and increased hetero-

geneity to test the robustness of the calibration methods.

4.5. CONCLUSION
In this study, we proposed a framework that enables in silico modelling of preclinical

proton irradiations. The framework will be helpful for the development and optimization

of irradiation setups, assessment of the quality of small animal irradiations, and quan-

tification of associated uncertainties in preclinical proton dose delivery. As an example,

we have demonstrated how the framework can be used to assess the impact of SECT and

DECT calibration methods on proton dose distributions in small animals. Calculations

on a mouse brain revealed that treatment planning based on DECT offered no added

benefit to the accuracy of the dose.
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SUPPLEMENTARY FILE

Figure S4.1: X-ray energy spectra extracted from SpekPy for 50 and 90
kVp filtered with 2 mm aluminium (Al) and 90 kVp filtered with 0.32
mm copper (Cu).
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Table S4.1: Physics list and range cuts used for TOPAS simulations

CT simulation

Physics list g4em-standard_opt4

Range cut
electron/positron: 0.1 mm (phantom), 1 mm (everywhere else)
gamma: 1 mm

Proton radiograph / Dose calculation

Physics list
g4em-standard_opt4, g4h-phy_QGSP_BIC_HP, g4h-elastic_HP,
g4ion-binarycascade, g4stopping, g4em-extra, g4decay, g4radioactivedecay

Range cut
electron/positron: 0.1 mm (phantom), 1 mm (everywhere else)
gamma: 1 mm

Table S4.2: Elemental composition of materials assigned to the mini calibration phan-
tom obtained from the manufacturer

# Material ρ H C N O Z > 8

1 Air 0.001 0.0 0.0 75.5 23.2 Ar(1.3)
2 LN-450 Lung 0.428 8.47 59.56 1.97 18.11 Mg(11.21), Si(0.58), Cl(0.10)
3 AP6 Adipose 0.95 9.06 72.29 2.25 16.27 Cl(0.13)
4 SR2 Brain 1.05 10.83 72.54 1.69 14.86 Cl(0.08)
5 BR12 Breast 0.98 8.59 70.10 2.33 17.90 Cl(0.13), Ca(0.95)
6 Solid Water 1.02 8.00 67.29 2.39 19.87 Cl(0.14), Ca(2.31)
7 LV1 Liver 1.10 8.06 67.01 2.47 20.01 Cl(0.14), Ca(2.31)
8 IB3 Inner Bone 1.13 6.67 55.65 1.96 23.52 P(3.23), Cl(0.11), Ca(8.86)
9 B200 Bone 1.15 6.65 55.51 1.98 23.64 P(3.24), Cl(0.11), Ca(8.87)
10 CB2-30% CaCO3 1.33 6.68 53.47 2.12 25.61 Cl(0.11), Ca(12.01)
11 CB2-50% CaCO3 1.56 4.77 41.61 1.52 32.00 Cl(0.08), Ca(20.02)
12 SB3 Cortical Bone 1.82 3.41 31.41 1.84 36.50 Cl(0.04), Ca(26.80)
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Figure S4.2: Calibration curve to convert the residual kinetic energy
(MeV) of protons to water equivalent thickness (WET). The calibra-
tion was obtained for 100 MeV protons in steps of 1-mm water thick-
ness. A 3rd degree polynomial (WET [mm] = 2.96×10−5K E 3

r es −1.16×
10−2K E 2

r es +1.17×10−1K Er es +7.39×101) was fitted to the datapoints
from the simulation.
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Table S4.4: Mean HU ± standard deviation of
Gammex inserts

Material 50kV/Al 90kV/Al 90kV/Cu

Adipose -194 ± 7 -143 ± 7 -117 ± 7
Brain -139 ± 8 -66 ± 8 -17 ± 7
Breast -91 ± 9 -68 ± 8 -60 ± 7
Solid Water 72 ± 8 47 ± 7 23 ± 6
Liver 134 ± 10 115 ± 9 102 ± 7
IB3 935 ± 18 628 ± 13 422 ± 7
B200 954 ± 21 647 ± 15 447 ± 8
CB2-30% 1459 ± 22 1031 ± 15 762 ± 8
CB2-50% 2771 ± 33 1928 ± 23 1455 ± 11
SB3 4114 ± 23 2843 ± 16 2216 ± 12
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5.1. INTRODUCTION

The global incidence of cancer continues to climb, with over half of all patients receiving

radiotherapy as a form of treatment [1, 2]. To boost its effectiveness and reduce normal

tissue toxicity, new treatment approaches in the field of radiotherapy are continuously

being explored including the use of particle beams [3, 4], radioimmunotherapy [5, 6], ra-

diation and drug combination treatments [7, 8], ultra-high dose rate FLASH therapy [9,

10, 11], and spatial fractionation [12, 13, 14]. In conjunction with remaining knowledge

gaps in radiobiology, these developments further underscore the need for comprehen-

sive preclinical studies:

• to characterize normal tissue, tumour, and immunological responses

• to identify early and long-term side effects

• to assess cellular, tissue, and organ-specific radiosensitivities

• to further elucidate DNA damage and repair mechanisms and how they coordinate

differently compared to conventional photon beams

• to identify appropriate targets for combination treatments with radiation and to

gain insights into their added value

• to optimize parameters in order to maximize therapeutic outcomes and support

translation to the clinic.

Recent technological advancements in small animal irradiation platforms—such as

inclusion of high-resolution image-guidance, dynamic translation and collimation sys-

tems, flexibility and increased conformality in dose delivery, and integration with par-

ticle beamlines [15, 16, 17, 18, 19, 20]—along with the increasing availability of more

clinically relevant animal models [20, 21] have created new opportunities to conduct

preclinical experiments with a much higher level of precision and relevance to the clinic.

The insights obtained from these preclinical studies are invaluable for refining and gain-

ing confidence in radiotherapy treatment schemes and can play a pivotal role in shaping

the design of patient studies in the clinic.

However, small animal experiments present a unique challenge. Unlike in the clinic,

where imaging, contouring, and planning can be conducted over a period of several

days, the preclinical workflow typically requires these steps to be carried out consecu-

tively while the animal is in the irradiation position under sedation. To mitigate effects

of the anaesthesia and ensure the animal’s wellbeing, a fast workflow is thus essential.

Therefore, this thesis explores the use of deep learning (DL) for contouring (Chapter 2)
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and fast proton dose engines for dose calculations (Chapter 3) to expedite irradiation

plan generation for small animals.

The small size of animals, coupled with the even tinier size of targets, also imposes

stringent constraints on the dose accuracy, particularly when using particle beams. To

put this into perspective, van de Worp et al. [22] delineated lung tumours in 60 mice

and found that the size ranged from 1.1 mm3 to 60 mm3. This entails that range un-

certainties from particle beams should be in the submillimetre level to avoid the risk of

underdosing the target or overdosing surrounding healthy tissues. Therefore, the sim-

ulation framework of the preclinical workflow (Chapter 4), developed as a part of this

work, has been used to evaluate range uncertainties associated with CT Hounsfield unit

(HU) calibration methods, providing valuable insights into their impact on proton dose

distributions in small animals.

The findings and implications of these works as well as remaining issues and poten-

tial avenues for future research are discussed in the following sections.

5.2. DEEP LEARNING FOR AUTO-CONTOURING IN SMALL ANI-

MALS

While deep learning-based auto-contouring tools are being actively developed for clini-

cal use [23, 24, 25, 26], their application specifically for small animals has only emerged

in recent years [27, 28, 22, 29, 30, 31, 32, 33]. Noteworthy work by Schoppe et al. [28] is

the AIMOS (AI-based Mouse Organ Segmentation) pipeline based on a 2D U-Net, which

demonstrated that deep learning is also a powerful tool in delineating organs-at-risk

(OAR) in mice. At the time of its publication, AIMOS established itself as the state of the

art in the preclinical world. However, there are a few caveats to their work. For instance,

the segmentations of the µ-CBCT images [34] they used in the training exhibit inaccu-

racies in organ contours as illustrated in figure 5.1. Since deep learning models learn to

delineate structures from the training data, the quality of DL-based contours depends

on the accuracy of the reference contours. Errors in the training data will be propagated,

potentially leading to suboptimal predicted contours. Although their results show high

values in similarity measures, this only means that the AIMOS-based contours are com-

parable to the reference contours, not necessarily that they are of high quality. Moreover,

they tested their models exclusively on an independent dataset of the same type as the

training data. Therefore, caution is warranted when using their trained models, as they

might not perform as well on new data with a different distribution, such as CT images of

mice with different strain or age or CT images taken using a different imaging protocol.
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Figure 5.1: Examples of the training data used in developing AIMOS [28, 34]

QUALITY OF MANUAL SEGMENTATIONS

The DL contouring work for mice presented in Chapter 2 improves upon Schoppe et al.’s

[28] work by implementing stricter guidelines for creating the manual segmentations of

the Rosenhain dataset [34]—the same dataset used by Schoppe et al.—to train the deep

learning algorithm. Given that these manual segmentations serve as the ground truth

from which the DL models learn, ensuring high-quality segmentations in the training

gives a certain level of confidence on the reliability of the trained model and on the qual-

ity of the predicted contours. As demonstrated by Lappas et al. [35], clear contouring

protocols also lead to smaller interobserver variability for organs-at-risk in the thorax

and head of rodents. Adhering to clear contouring guidelines also reduces inconsisten-

cies when assessing normal tissue volumes, which is important when radiation-induced

side effects are the relevant endpoints in the experiment. While consensus guidelines for

delineating organs-at-risk in humans are well-established [36, 37], the standardization of

contouring practices is far less common for small animals. Although some institutions

have likely developed their own contouring protocols [35], establishing an internation-

ally agreed-upon guideline would be highly beneficial. Standardization would enhance

the robustness of deep learning models for contouring and potentially facilitate their use

across multiple institutions. However, we recognize that achieving this is not straightfor-

ward and may require concurrent standardization of other practices such as imaging

protocols.

2D VS 3D NEURAL NETWORKS

The deep learning work was further extended by training not only 2D but also 3D neural

networks, all of which are U-Net-based architectures [38]. Utilizing the nnU-Net pipeline
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[39], all available configurations (2d, 3d_fullres, 3d_lowres, and 3d_cascade) were trained

and their performance was compared to the 2D U-Net-based AIMOS [28]. While 2D net-

works are faster—in our case, the 2D models predicted contours in half the time of 3D

networks—they suffer from the loss of craniocaudal information. In contrast, 3D net-

works leverage volumetric information, capturing spatial relationships along the lon-

gitudinal direction, which may be missed when processing individual CT slices in 2D.

For example, the nnU-Net 2d model, in some cases, misclassified voxels in the anaes-

thesia nozzle (located far from the lungs) as lung tissue due to their similarly low HU

values. Moreover, both nnU-Net 2d and AIMOS occasionally misclassified the left as the

right lung and vice versa. These errors did not occur with the 3D models. Despite this,

2D models should not be disregarded outright. For the test set comprising of native CT

scans, which share the same properties as the training data but were not used in the

training, the predicted contours from the 2D networks are quite comparable to those

from the 3D models. Errors due to isolated voxels delineated away from the organ can be

easily removed through connected component analysis, although this method is more

effective for single, whole organs and less suitable for complex structures with numerous

interconnected parts like the skeleton. The outliers also constituted only a small fraction

of the total volume, which can be easily corrected manually. This suggests that while

2D networks may require constant monitoring, which we believe should anyway be the

standard practice for any DL-based contouring software, they remain a viable option.

They typically require less computational power and GPU memory, leading to lower cost

and, more importantly, faster training and inference times. This is particularly advan-

tageous for time-sensitive applications like animal contouring. In this work, contouring

time for OARs in the thorax of a mouse was reduced substantially from 40 minutes with

a human expert to around 20 seconds using the nnU-Net 2d and AIMOS DL models. The

nnU-Net 3d_fullres, which produced the most accurate segmentations, completed the

same task in 40 seconds. The significant reduction in contouring time not only stream-

lines the preclinical workflow for online irradiations but also aligns with the 3R principle

of Refinement for animal experiments, which seeks to reduce animal burden and im-

prove their welfare.

EXTERNAL VALIDATION

In radiobiological studies, tens or even hundreds of animals are often used in a single

study. These animals, being of the same strain, age, and sex, and subjected to identi-

cal diet, activity, and environmental conditions, exhibit minimal anatomical variations

compared to humans. Thus, a deep learning model trained on such a homogeneous
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dataset, provided that high quality contours were used in the training, is expected to

perform well within this specific domain. However, variations in animal models used

in experiments are likely in a multi-user facility. Given the large number of animals to

be imaged, the expertise required, and the time needed for manual delineations, it is

impractical to train a separate model for each experiment. Therefore, auto-contouring

models that are robust across a range of cases are preferable.

To determine how well the 2D and 3D models generalize to new data, despite be-

ing trained exclusively on one type of image (native CT), they were tested against the

contrast-enhanced CT (CECT) dataset of Ronsehain et al. [34], which involved a differ-

ent mouse (varying in strain and age) and were taken using different image acquisition

parameters. The external validation revealed the limitations of the 2D models, which of-

ten struggled with contour predictions, resulting in multiple slices being partially or fully

missed. In contrast, the best 3D model (nnU-Net 3d_fullres) significantly outperformed

nnU-Net 2d and AIMOS, demonstrating greater robustness to out-of-distribution data.

Despite a slight decline in performance with CECT compared to native CTs, the predic-

tions of nnU-Net 3d_fullres on the CECT dataset did not exhibit substantial qualitative

differences to the manual contours.

The results demonstrated that although the 2D models are faster to deploy and worked

reasonably well within the training domain, they lack the robustness of 3D models, which

makes them less reliable to use in reality especially at a multi-user environment. Addi-

tionally, the need for manual corrections can further prolong the contouring process. On

the other hand, 3D models offer better generalization to unseen data but require more

time and resources, which could also be a hindrance in practice. This raises the question

of which approach is more suitable for preclinical applications where time constraints

are a significant factor. The choice largely depends on the situation and expectations

of the users. If computational resources are limited and the training data to which the

model was trained on is representative of the intended target, 2D models would proba-

bly be enough. However, if the workflow can accommodate the extra time and resources

required, 3D models may be the better option. Alternatively, one can train the model on

a dataset encompassing various cases, which can make more generic and robust models

regardless of the approach.

AVAILABILITY OF ANIMAL CTS

While it is desirable to create a diverse training dataset to improve the robustness of deep

learning models, this task is particularly challenging in the preclinical community. Ide-

ally, one should curate a dataset with a broad distribution, which could include images
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of animals with different strains, ages, and sexes as well as with variations in weight,

posture, and orientation or images acquired with different imaging protocols. However,

strict regulations governing the use of animals in experiments make it difficult to im-

age a large number of animals solely for the purpose of building such a comprehensive

dataset. It is also essential to emphasize that creating high-quality manual segmenta-

tions for these images would require significant amounts of time, effort, and expertise of

a biologist. Currently, most DL-based auto-contouring studies on animals do not share

their dataset [22, 29, 27] except those based on publicly available data [28, 30]. In this

thesis, although the training data was also sourced from a public database, the manual

segmentations were recreated, following stricter contouring guidelines to ensure qual-

ity. These segmentations have been made publicly available, and other researchers are

strongly encouraged to do the same. This kind of practice will make it easier to create

large datasets with a wide variety of cases on which deep learning models can be trained.

This, in turn, could improve their robustness and generalizability across different scenar-

ios. A common dataset also promotes proper and fair comparison of DL auto-contouring

models across multiple institutions by eliminating variation in the training data, ensur-

ing that differences lie in the deep learning implementation rather than the data used.

Sharing datasets also lessens the need for individual institutions to repeatedly invest re-

sources towards creating manual annotations from scratch, which is particularly ben-

eficial for smaller institutions with limited manpower and expertise. However, shared

datasets would only be useful for training and validating deep learning models if partic-

ipating institutions adhere to a consensus guideline for contouring, avoiding variations

in interpretation of what should and should not be included in the organ segmentations.

To prevent bias in the training data, information on the CT imaging system, acquisition

protocols, reconstruction and calibration methods must also be provided.

LIMITATIONS AND FUTURE PERSPECTIVES

The public mouse dataset [34] utilized in this work contained two types of data: native

CT and CECT. Our approach was to only use the native CT images in the training and

the CECT data was mainly intended for external validation to assess how well the mod-

els handle images that are significantly different from the training set. Results showed

that the 2D models severely underperformed, while the best 3D model, although pro-

ducing acceptable contours, demonstrated reduced performance on the CECT data as

expected. In the future, improving the performance on the CECT images is possible ei-

ther by training a separate model only on the CECT dataset or merging both datasets to

create a single, larger, and more diverse training set. However, training a separate deep
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learning model for each dataset would result in having multiple auto-contouring models

in the workflow, which could hinder seamless integration and operational efficiency. On

the other hand, when creating diverse datasets, it is essential to ensure balanced repre-

sentation of all image types in the training set to prevent sample bias and achieve more

reliable predictions.

The deep learning work in this thesis was focused exclusively on OARs in the tho-

rax of a mouse. Since the training data consisted solely of CT images from healthy mice,

it would be valuable to investigate whether the DL models also perform well when ap-

plied to mice with lung tumours. Moreover, the auto-contouring efforts can be easily

extended to other body sites although a drop in performance in regions like the ab-

domen is expected due to poorer soft tissue contrast. This lack of contrast also poses

challenges for human experts tasked with creating the manual segmentations. Adminis-

tering contrast agents could be a potential solution to enhance organ visibility. Addition-

ally, the deep learning techniques can be adapted to complementary imaging modalities

typically used for animal experiments like dual-energy CT, magnetic resonance imaging

(MRI), positron emission tomography (PET), and bioluminescence imaging (BLI) to im-

prove tumour delineation and tracking of disease progression in animal models.

Since atlas-based segmentation still takes over 10 minutes to delineate organs in an

animal [40, 41], the results in Chapter 2 of this thesis clearly demonstrate that deep

learning, once properly trained, has the potential to increase efficiency and facilitate on-

line irradiation of animals. Our implementation achieves contouring times of under 1

minute, which could be further accelerated by using more powerful graphics processing

units (GPUs) or by optimizing the architecture and network parameters. However, ad-

ditional work is still needed to fully implement DL auto-contouring in-house, integrate

it seamlessly into existing workflows, and make it accessible in the animal treatment

planning system. Quality assurance procedures also need to be established to detect er-

roneous predictions even after deployment in practice.

Furthermore, we recognize that our evaluation of the DL-based contours is some-

what premature, only relying on geometric comparisons with manual contours. While

these measures reveal differences in the shape of the contours, they do not provide an

insight on how these differences impact the resulting dose distribution or their correla-

tion. To verify the significance of the observed geometric differences, extensive dosimet-

ric validation must be carried out. Additionally, as shown in a recent study on animal

auto-contouring [29], expert evaluation of the contours by rating them on a scale of 0 to

5—where 0 indicates the predicted contour is unacceptable and must be redone from

scratch, and 5 signifies no manual adjustments are needed for the predicted contour—
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could offer further insights into the acceptability of DL-based contours. A blind evalua-

tion can also be conducted, wherein manual and automated contours are presented for

assessment without prior knowledge of their origin. These steps could further promote

confidence in the community to adopt DL auto-contouring tools in preclinical work-

flows.

5.3. PROTON DOSE CALCULATIONS IN SMALL ANIMALS

To ensure the effective delivery of radiation beams with small animal irradiation plat-

forms, it is essential to have tools for creating irradiation plans and calculating dose dis-

tributions in animals. Given that planning occurs shortly before irradiation, these tools

must be efficient and capable of meeting the fast-paced demands of preclinical prac-

tice. Unfortunately, general purpose Monte Carlo (MC) codes, despite offering the most

accurate dose distributions, are far too slow for time-sensitive applications. In MC simu-

lations, individual particles along with any secondary particles they generate (if included

in the simulation) are tracked step-by-step within the geometry. To achieve precise dose

distributions, a large number of particles must be simulated to ensure statistical conver-

gence, which results in significant computational burden. Although considered as the

gold standard for dose calculations [42, 43], the long computation time has rendered MC

simulations impractical for clinical applications [44]. Therefore, commercial treatment

planning systems in the clinic often rely on analytical pencil beam algorithms (PBA) for

their speed [45, 46]. However, these algorithms fall short in accurately modelling the dose

distribution in highly heterogeneous regions. More recently, advancements in computer

technology and increasing interest in rapid, patient-specific approaches, such as on-

line adaptive radiotherapy [47, 48] and robust optimization [49, 50], have spurred the

development of fast proton dose engines [51, 52, 53, 54, 55, 56, 57, 58]. These imple-

mentations often employ simplified physics, deterministic techniques, or deep learning

approaches, along with the computational power of multiple central processing units

(CPUs) or graphics processing units (GPUs), to accelerate dose calculations.

Given that lengthy dose computation times impose a bottleneck in the preclinical

workflow, Chapter 3 explores the feasibility of leveraging these fast dose calculation

platforms to meet the demand for efficient and timely dose calculations in small ani-

mals. Specifically, the fast Monte Carlo code MCsquare [54] and the deterministic algo-

rithm YODA [57, 59] were investigated. While these proton dose calculation platforms

have been previously validated for human use, which typically involve treatment ener-

gies above 70 MeV and CT voxel sizes ≥ 1 mm, most small animal irradiations are con-

ducted with energies below 40 MeV and require much finer voxel sizes around 0.1 mm.
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Therefore, alongside evaluating the efficiency gains provided by these codes, a key con-

tribution of this work is extending their validation to these smaller scales for potential

preclinical applications.

ACCURACY OF THE PREDICTED PROTON RANGE

In Chapter 3, both MCsquare and YODA were benchmarked against the general-purpose

MC code TOPAS [60], evaluating their performance on simple phantoms and more com-

plex mouse phantom geometries [61]. In all simulations, we incorporated a voxel size

of 0.1 mm, which is standard for small animal imaging systems. Validation on homo-

geneous (0 HU) and heterogeneous (i.e. water phantom with lung and bone inserts)

phantoms at energies pertinent to small animal irradiations demonstrated that both

MCsquare and YODA accurately reproduced the proton range observed in TOPAS to

within 0.1 mm, even in the presence of density inhomogeneities in the beam path. The

good agreement in the proton range was achieved by ensuring that the CT HU-to-density

conversion, material conversion, and stopping power tables were consistently matched

across all three codes. For MCsquare, stopping power tables of materials were directly

extracted from TOPAS, though the energy binning was modified to meet the specific

requirements of MCsquare. The YODA stopping power tables were also sourced from

TOPAS, but it employs a slightly different method by requiring elemental stopping pow-

ers instead and calculating the stopping power of compounds through the Bragg addi-

tivity rule. This methodological difference did not influence the proton range in YODA

as TOPAS/Geant4 calculates the stopping power tables in the same way internally by

default. However, it is important to note that such an approach may not always yield

accurate results. With Bragg additivity, the elemental mean excitation energies (I ) are

used in the calculation of the stopping power of a compound, which neglects molecular

binding effects. For instance, while Bragg additivity estimates the I -value of water at 75

eV [62], reported values for water range from 67.2 eV to 82.4 eV, with the current recom-

mendation being 78 eV for proton treatment planning [63]. Previous works have already

shown that these variations in the I -value used in stopping power calculations result in

range differences [64, 65, 66]. As uncertainties in the I -value influence all three codes, an

important next step is to perform actual measurements to verify our calculations.
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DEALING WITH LATERAL HETEROGENEITIES

MCsquare, as a Monte Carlo code that simulates the propagation of individual parti-

cles, is highly effective at modelling dose distributions in heterogeneous regions. On the

other hand, YODA, which relies on the analytical Fermi-Eyges theory to model multi-

ple Coulomb scattering (MCS), inherits the intrinsic limitations suffered by pencil beam

algorithms when dealing with lateral heterogeneities. The simulations on a heteroge-

neous phantom (figure 3.5) containing adjacent lung and bone slabs, with the mate-

rial interface positioned directly at the centre of the beam, illustrate the limitation of

YODA’s MCS implementation. Although the expected outcome is to observe two dis-

tinct Bragg peaks—one associated to protons traversing the lung, which extends deeper,

and another associated to protons passing through the bone, which stops earlier—YODA

produces only a single Bragg peak as it considers only one of the two materials and

disregards any other off-axis heterogeneities in the beam path. To accurately describe

changes in the range and lateral beam spreading caused by heterogeneities, spot decom-

position into narrower beamlets was implemented, a technique commonly employed in

pencil beam algorithms. However, it is important to note that this approach leads to in-

creased calculation times. For example, as shown in table 3.4, a 1+6+6+12 split scheme

with a total of 25 beamlets took 0.9 s, whereas a 1+24+24+24+24 split scheme with a total

of 97 beamlets took 1.9 s.

Unlike other beam splitting methods that position sub-spots on a grid with their ori-

gins offset laterally from the central axis of the original beam [67, 68, 69], the beam split-

ting approach used in this work takes advantage of the radial symmetry of the Gaussian

beam by placing sub-spots on concentric circles around the original beam’s central axis.

Moreover, contrary to the approach of Yang [70] and the commercial TPS RayStation,

where splitting is limited to a number of pre-defined schemes, this method is customiz-

able, allowing for flexible adjustments in the number of concentric rings and the distri-

bution of spots within each ring. Several configurations were tested in Chapter 3, rang-

ing from the simplest 1+6+6+12 scheme to the more intricate 1+24+24+24+24 scheme,

incorporating denser spot distributions and additional rings.

Single spot simulations across three heterogeneous phantom configurations, which

varied in the position of the heterogeneity relative to the beam, revealed that increasing

the density of the spots near the material interface results in more accurate dose distri-

butions. The dosimetric evaluation for the heterogeneous phantom cases 1, 2, and 3 re-

sulted in 3%/0.1mm gamma pass rates of 83.2%, 82.0%, and 81.0%, respectively, for the

1+6+6+12 scheme. These results are inferior to the 95.1%, 88.4%, and 91.4% pass rates

observed for the 1+24+24+24+24 scheme for the same cases. However, when applied to
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full plan calculations, the 1+24+24+24+24 scheme offered only a marginal improvement

in the gamma pass rates compared to the 1+6+6+12 scheme. When multiple spots are

delivered in close proximity, the discrepancies introduced by the split schemes tend to

average out, reducing their impact on the overall dose distribution. This suggests that

the increased complexity of the 1+24+24+24+24 scheme does not provide a substantial

accuracy benefit over simpler schemes and only prolongs the calculation time. For full

plan calculations, which involves tens to hundreds of spots, simpler schemes may be

preferable as they are more efficient, while still achieving comparable dose distributions.

It is also important to point out that we initially optimized the parameters of the

split schemes (i.e. ring radii, spatial spreads, and weights of the beamlets) to achieve the

highest gamma passing rates for case 1, which featured lung and bone inserts located

far upstream from the Bragg peaks. These optimized parameters were then applied to

the other two heterogeneous phantom cases, where the heterogeneities were closer to

the Bragg peaks, as well as to full animal plan calculations. This choice was deliberately

made to assess the robustness of the optimization across varying conditions and hetero-

geneity distributions. The results indicate that while the optimized split schemes for case

1 worked well in relatively homogeneous regions, such as the head and abdomen with a

lateral field, they were less effective in regions with more complex heterogeneities, like

the thorax and the abdomen with an anterior field. Additionally, the optimized schemes

showed reduced performance in cases where the Bragg peak was positioned closer to the

heterogeneity.

To improve results, fine-tuning the split schemes for YODA for each specific experi-

ment may be necessary. However, given the time constraints in animal irradiations, real-

time or on-the-fly optimization is not practical. Instead, follow up optimization stud-

ies involving different animals (e.g. mice, rats, rabbits), anatomical regions, voxel res-

olutions, and beam configurations (e.g. single or multiple fields, co-planar and non-

coplanar beams) are required to establish standardized solutions. By doing so, a com-

prehensive lookup table for split schemes can be created, thereby eliminating the need

for optimization during irradiation planning and minimizing user intervention.

IRRADIATION PLANNING IN SMALL ANIMALS

The open-source treatment planning system OpenTPS [71], originally developed for pro-

ton therapy planning in humans, was adapted for use in animals in Chapter 3. At the

time of writing, some limitations were encountered that hindered the creation of opti-

mized plans for mice. Notably, the software’s restriction on spot placement at shallow

depths posed significant challenges, given the small size of animals and the shallow po-
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sitioning of the target volumes. This highlights the importance of exercising caution in

applying tools intended for human use to animals. Moreover, the dose optimization cri-

teria in OpenTPS were limited to mean, minimum, and maximum doses in structures,

lacking DVH related objectives typically available in commercial TPS. These constraints

contributed to suboptimal planning outcomes in animals. Although the plans we cre-

ated did not achieve optimal dose coverage, the comparison of the dose distributions

calculated from MCsquare, YODA, and TOPAS remains valid since the same plan was

consistently used for each code.

In the future, a dedicated irradiation planning system for small animals, such as µ-

RayStation, would be more suitable. While µ-RayStation is designed for preclinical use,

it has not yet been validated for protons, so thorough validation must be performed.

BEAM MODELLING OF THE IMPACT BEAMLINE

To enable the use of OpenTPS for animal irradiation planning, a realistic beam model of

the preclinical IMPACT beamline at our institute was built from beam transport simu-

lations of a 66.5 MeV proton beam (Chapter 4). To make the beam suitable for animal

irradiations, a range shifter and collimator system was incorporated at the end of the

beamline. The collimator was placed downstream of the range shifter to cut-off scat-

tered particles, with its exit positioned 2 cm from the animal container to minimize the

contribution of air scatter. Although OpenTPS supports modelling of the range shifter,

it does not offer functionality for simulating the collimator. Consequently, to create the

beam data library (BDL), we had to perform separate simulations for each range shifter

thickness. In each configuration, the beam phase space was recorded at the entrance of

the animal container, from which beam parameters such as the spot size, divergence,

energy, and energy spread were derived.

It is important to note that the spot size, divergence and energy spread are modelled

as a Gaussian in OpenTPS. However, as shown in the beam characterization in figure

5.2, these parameters do not closely follow a Gaussian distribution. The spot profiles ex-

hibit sharp penumbra and a flat top due to the collimation, while the divergence shows

large angle tails. The low energy tail in the energy distribution also becomes more promi-

nent with increasing range shifter thickness. Despite these differences, using a Gaussian

approximation of the beam parameters in the BDL is acceptable for this study. Since

the aim is to compare the codes, ensuring a consistent beam definition at the start of

each simulation across all codes preserves the validity of the comparison. However, if

OpenTPS is to be used for irradiation planning in preclinical practice, experimental mea-

surements must be conducted to verify the validity of these approximations and ensure
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that the planned dose accurately reflects the delivered dose.

(a)

(b)

(c)

Figure 5.2: (a) Spot profile, (b) divergence, and (c) energy distribution for the unmod-
ulated (i.e. 66.5 MeV proton beam) (first column) and modulated beam (i.e. 66.5 MeV
proton beam with 24 mm range shifter) (second column) at the entrance of the animal
container.

Moreover, unlike in the clinic, where treatment machines are generally standardized,
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preclinical beamlines can vary widely depending on the facility, experimental setup, and

specific requirements of each study. Therefore, it should be an important consideration

for developers and vendors of animal irradiation planning systems to support the use

of variable collimators, range shifters, ridge filters, and other beamline components to

accommodate these setup variations. Another key consideration is how to incorporate

into the planning system the fact that the beam and beamline components are typically

fixed, with spot scanning achieved by moving the animal, in particular for very small

fields.

DOSE EVALUATION IN ANIMALS

To assess the accuracy of the proton dose calculations, two types of evaluation were per-

formed: (1) range shift and (2) 3D gamma analysis. The range shift analysis reveals how

well the codes predict the proton range, which is crucial given the small targets and tight

margins used in preclinical studies. While a 1-mm range shift might appear minor in

patients, it can lead to substantial underdosing of the target and overdosing of adjacent

healthy tissues in small animals. On the other hand, the gamma analysis is one of the

most commonly used metrics for dose comparison, providing insights into how closely

two dose distributions match and pinpointing where discrepancies lie. While acceptance

criteria for gamma analysis are well established in the clinic, there is lack of consensus

on the appropriate values for dose difference (DD), distance-to-agreement (DTA), and

passing criteria when applied to animal studies. In Chapter 3, various tolerance lim-

its were applied by fixing the DD at 3%, in line with our institute’s dose homogeneity

criteria, and varying the DTA at 0.1,0.2, and 0.3 mm, based on the spatial resolutions

achievable with small animal imaging systems [72, 73]. A DD/DTA criteria of 3%/0.2mm

were ultimately adopted for evaluating full plans, with gamma passing rates greater than

95% considered acceptable. A DTA of 0.1 mm was deemed too strict for the evaluation

as it is highly sensitive to variations between adjacent voxels that may not have signif-

icant dosimetric implications. For context, van Dijk et al. [74] used a DD/DTA criteria

of 3%/0.3mm, based on clinical guidelines of 3%/3mm, whereas Vanstalle et al. [75] ap-

plied a dose difference range of +7% to -5%, based on ICRU 62 recommendations on the

acceptable dose heterogeneity for X-ray radiotherapy [76], and DTA of 0.1 mm, reflecting

the targeting accuracy recommended for mice [77]. In order to facilitate more meaning-

ful comparison, interpretation, and evaluation of the quality of dose distributions, the

preclinical community should establish consensus guidelines for gamma analysis spe-

cific to animal studies. These guidelines would support more informed decision-making

and ensure consistent reporting of outcomes in preclinical research.
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Although not utilized in this study, dose evaluation using dose volume histogram

parameters should also be considered. While the gamma analysis helps assess the voxel-

wise similarity between two dose distributions, it does not adequately reflect how local

dose differences impact relevant anatomical regions. In some cases, even if the gamma

analysis indicates a failure, large dose differences may be permissible in areas outside

critical OARs, provided that the dose remains within prescribed limits to prevent com-

plications. Unfortunately, due to the suboptimal quality of the plans generated in this

study, interpreting DVH parameters proved challenging, leading to their exclusion from

the evaluation.

MCSQUARE VS YODA

While the work presented in Chapter 2 aimed at reducing the contouring time through

deep learning automation, Chapter 3 examines the suitability of fast proton dose en-

gines (MCsquare and YODA) in speeding up dose calculations for animals, targeting

another stage that hampers the efficiency of the preclinical workflow. The results on

both simple phantom geometries and SOBP plans involving various anatomical sites

in a mouse clearly demonstrate the superior performance of MCsquare compared to

YODA in predicting dose distributions. This is not surprising, as MCsquare uses a Monte

Carlo method, whereas YODA employs a semi-analytical approach. MCsquare consis-

tently met the gamma acceptance criteria, achieving pass ratios (3%/0.2mm) above 97%

in all cases. Conversely, while YODA proved effective in relatively homogeneous regions

like the head (99.8%) and abdomen with lateral field (96.8%), it struggled with more het-

erogenous sites like the thorax (83.3%) and abdomen with anterior field (93.2%). For

these worst-case scenarios, the dose discrepancies in YODA were observed predomi-

nantly at the distal end of the dose distribution, which generally had minimal impact on

the dose distribution in the target volume. The observed dose degradation is attributed

to less optimal beam splitting schemes used in these more complex cases and refin-

ing these schemes could enhance YODA’s performance to a level comparable to MC-

square. Additionally, it must be pointed out that both MCsquare and YODA exhibited

higher doses in regions with very low-density materials due to the lack of detailed elec-

tron transport. Therefore, caution is warranted when such low-density regions play a

critical role in the optimization and assessment of the dose.

Although MCsquare demonstrated greater versatility in dose computations, our run-

time comparisons for a single spot showed that it is considerably slower than YODA.

Even when employing a split scheme that divides the spot into 97 sub-spots, YODA com-

pleted the calculations within 2 s, whereas MCsquare took 25 s. Future integration of
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GPU support could also further accelerate YODA’s performance. This highlights YODA’s

speed advantage, making it the more efficient option, particularly for applications that

require numerous rapid calculations, such as plan optimization, where the 3D dose dis-

tribution for each individual spot in the plan must be computed. To benefit from both

MCsquare’s accuracy and YODA’s speed, we recommend using YODA for plan optimiza-

tion and then combining it with MCsquare for the final dose calculations to ensure high

quality dose distributions.

Moving forward, GPU-based MC codes [53, 56] and deep learning-based dose calcu-

lators [55, 74] could also be explored to further expedite dose computations for preclin-

ical applications. However, rather than focusing solely on seeking faster dose engines,

we argue that automating the entire planning process is equally important. For exam-

ple, the clinical TPS RayStation now offers deep learning planning [78], where a 3D dose

distribution is initially predicted by analysing the target and OARs and based on this pre-

diction, a plan is automatically generated without the need for time-consuming iterative

plan optimization. Such automation would greatly reduce the time between imaging and

radiation delivery, further improving the overall efficiency.

5.4. PROTON RANGE UNCERTAINTIES IN SMALL ANIMALS

Proton beams can deliver more conformal dose distributions but suffer from range un-

certainties. Aside from anatomical changes and setup errors, proton range accuracy is

also heavily influenced by the CT calibration in treatment planning. The most com-

monly used method is the single energy CT (SECT) stoichiometric calibration [79, 80],

which has been reported to introduce range uncertainties of up to 3.5% in current clini-

cal practice [81, 82, 83]. Dual energy CT (DECT), however, has shown promise in further

reducing these uncertainties [84, 85, 86, 87]. While previous studies have evaluated SECT

and DECT methods for tissue characterization in kilovoltage X-ray irradiation planning

in animals [88, 89], there have been no reported investigations into their application for

protons in the preclinical context. Given the tighter margins imposed by the small size

of animals and targets within, the work described in Chapter 4 focused on determining

the accuracy benefits of DECT-based proton irradiation planning compared to SECT in

animal studies.

SIMULATION FRAMEWORK

To conduct SECT and DECT evaluations without the use of live animals, a simulation

framework for the preclinical proton irradiation workflow was developed. This includes

a µ-CBCT model, adapted from a preclinical X-ray imager, which was integrated into
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the fastCAT CBCT toolkit initially developed for simulating CBCT scans of humans [90].

The CT numbers from the simulated µ-CBCTs of a preclinical phantom generated by the

model closely matched those obtained from full MC simulation in TOPAS, validating its

accuracy and applicability.

When comparing these CT numbers to those reported in the literature measured for

the same phantom [89], the fastCAT-generated values followed the same trend but were

slightly higher. This is not surprising, given that the simulations we performed to cre-

ate the µ-CBCT model were relatively simplistic and did not incorporate collimators,

filters, and other CT components, which could introduce additional scatter. Moreover,

the detector response functions, reconstruction protocol, and region of interest for HU

value extraction were not identical. Future work could benefit from more detailed sim-

ulations to allow a fair and proper comparison with experimental values. Nevertheless,

these variations are not critical to the objectives of this study, which focus on evaluat-

ing CT calibration methods. As long as the same “CT system” is consistently used, the

conclusions drawn from the assessment of the calibration methods remain valid.

It is also important to note that the use of simulated CT images offers the advantage

of having a ground truth image for comparison. Because the elemental composition of

the tissues assigned to the geometry used to generate the simulated CT scans are known,

these same materials can be used to create the ground truth image. This is in contrast

with experimental CT scans of animals, where the actual tissue composition is unknown.

The lack of ground truth image in experimental studies complicates the comparison of

the dose distribution resulting from SECT and DECT calibrations, as there is no definitive

reference for the evaluation.

A model of the dedicated preclinical IMPACT beamline was also created in the Geant4-

based BDSIM toolkit [91] for Monte Carlo beam transport simulations. This model is

useful for developing and optimizing beam properties and experimental setups tailored

to the specific needs of the study. It provides a platform for identifying potential issues

and weaknesses in experimental setups prior to performing actual experiments, allow-

ing for pre-emptive adjustments. This helps conserve beam time and resources, thereby

enhancing the overall efficiency of the workflow.

For the work in Chapter 4, this beamline model was used to generate the beam data

library for the matRad treatment planning system [92] for dose calculations. For simplic-

ity, a single simulation at full energy (E = 66.5 MeV) was performed to characterize the

beam and the pull-back method was used to derive the beam data for lower energies.

It should be noted that this method is valid only when the range shifter is positioned

directly in front of the imaged object and is water equivalent in terms of multiple scat-
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tering. The same beamline model from this framework was used in Chapter 3 to cre-

ate the beam data library for OpenTPS, but with the range shifter placed upstream of

the collimator. For this setup, the pull back method is not applicable, requiring separate

simulations for each energy to build the proton beam model in the irradiation planning

system. Future work should include experimental validation of the proton beam models

in matRad and OpenTPS developed for preclinical proton irradiations.

SECT VS DECT

Using the simulated µ-CBCTs of a mini-calibration phantom generated by fastCAT, the

accuracies of SECT and DECT stopping power ratio (SPR) predictions for tissue equiva-

lent materials were compared. To improve upon previous work, various imaging proto-

cols were tested, including stronger filtration, to further refine DECT performance. Two

DECT algorithms were also evaluated: Landry et al.’s approach [93], which has been pre-

viously applied in small animal DECT studies for X-ray irradiation [88, 89], and Saito

and Sagara’s method [94], which was recently shown to yield superior DECT results in

the clinical context [84]. Consistent with findings in the literature, our results demon-

strated that DECT can improve tissue characterization, yielding lower root mean square

deviations (RMSD) in the SPR compared to SECT for Gammex materials. For the best

imaging protocols, the RMSD for SECT was 3.7%, while DECT reduced it to 1% across

the ten materials evaluated in this study, with both DECT methods showing comparable

performance. Contrary to expectation, the DECT imaging protocol that utilized stronger

filtration (i.e. greater energy separation) exhibited poorer performance. It is left to future

work to experimentally confirm these findings.

Although this evaluation clearly highlights DECT’s advantage in predicting SPR, it

does not provide insights on its impact on range accuracy. As an initial step, proton ra-

diographs of a mouse phantom [61] were simulated in TOPAS using the SECT and DECT

calibrated CTs, and these were compared to the proton radiograph of the ground truth

image. Range errors were quantified by taking the voxel-wise differences in water equiv-

alent thickness (WET) between the calibrated CTs and the ground truth. In line with ear-

lier findings, DECT demonstrated smaller mean shifts and less variation in WET values

(i.e. proton range) compared to SECT. However, proton dose calculations showed that

both SECT and DECT methods achieved high gamma passing rates (> 99%) and mini-

mal range shifts (< 0.1 mm). These outcomes show that DECT did not offer substantial

accuracy benefit for proton dose calculations in small animals. SECT is adequate for pro-

ton irradiation planning, and the additional dose burden from DECT imaging may not

be justified. However, it should be emphasized that this is a single case study and addi-
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tional work, including evaluations on different anatomical regions, is necessary to fully

evaluate the merit of DECT-based proton irradiation planning in small animals.

5.5. CONCLUDING REMARKS
In conclusion, this thesis explored the application of deep learning for auto-contouring

and fast proton dose engines for dose calculations, with the primary goal of streamlining

irradiation planning for small animal studies. These tools greatly benefit the preclinical

community by enhancing workflow efficiency, increasing experiment capacity, and re-

ducing the overall workload of physicists and biologists. The reduction in planning time

not only boosts animal throughput but also contributes positively to animal welfare. Ad-

ditionally, the research on CT HU calibration methods has provided valuable insights

into the benefits of SECT and DECT calibration for proton irradiation planning in pre-

clinical settings. Ultimately, the work described in this thesis brings us one step closer

to achieving more accurate and efficient image-guided irradiations of small animals for

radiobiological studies.
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