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Abstract
Background: Cardiac Cine Magnetic Resonance Imaging (MRI) provides
dynamic visualization of the heart’s structure and function but is hindered by
slow acquisition, requiring repeated breath-holds that challenge sick patients.
Accelerated imaging can mitigate these issues but potentially reduce spatial and
temporal resolution. Therefore, innovative approaches are essential to ensure
effective performance under high acceleration conditions. Deep learning-based
reconstruction methods show promise in enhancing image quality from highly
undersampled data, accelerating scans while maintaining diagnostic accuracy.
However, they often fail to effectively exploit the spatio-temporal features inher-
ent to cine MRI,which are essential for accurate reconstruction, thereby leaving
room for further improvement.
Purpose: We aim to more effectively exploit the spatio-temporal features inher-
ent in cine MRI sequences by integrating convolutional recurrent operations with
a U-Net architecture, enhancing the reconstruction performance of cine MRI.
Methods: We developed a new deep learning model called CRUNet-MR that
enhances the extraction of spatio-temporal features by combining convolutional
recurrent operations with a U-Net structure. This design ensures continuous
extraction of temporal features while fusing fine-grained spatial details with
high-level semantic information. Furthermore, dilated convolutions are incor-
porated to expand the spatial receptive field, and appropriate combinations of
dilation factors are explored to further enhance overall performance.
Results: Training, validation, and testing were performed on the public
CMRxRecon2023 dataset, using two views and four acceleration factors rang-
ing from 4 to 24 with the given Auto-Calibration Signal (ACS) area. The dataset
consists of 120 subjects for training,60 for validation,and 120 for testing. In gen-
eral, the proposed CRUNet-MR shows statistically significant differences with
benchmark models and consistently outperforms them,particularly showcasing
better reconstruction quality in dynamic regions,highlighting its effective extrac-
tion of spatio-temporal features. Ablation studies further validated the design
choices of CRUNet-MR. The model demonstrated strong reconstruction perfor-
mance, achieving an average SSIM of 0.986 at an acceleration factor of 4 and
0.971 at a factor of 8 across both views. Furthermore, CRUNet-MR was vali-
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dated on a small in-house LUMC dataset, showing its generalization capability
and rapid adaptability through fine-tuning.
Conclusions: The proposed CRUNet-MR model is well-suited for cine MRI
reconstruction, effectively leveraging spatio-temporal features to reconstruct
high-quality images, especially in dynamic cardiac regions. This capability high-
lights its potential to support higher acceleration factors, enabling faster and
more patient-friendly cardiac imaging.

KEYWORDS
cardiac cine MRI reconstruction, convolutional recurrent U-Net, spatio-temporal feature

1 INTRODUCTION

Cardiac magnetic resonance (CMR) imaging stands as
a robust, non-invasive modality for comprehensive eval-
uation of cardiac structure, function, and blood flow.
Within this realm, Cine MRI plays a pivotal role by cap-
turing the dynamic motion of the heart, providing crucial
insights into cardiac physiology and aiding in the diagno-
sis of various cardiovascular conditions.1 However, cine
MRI is still hindered by the lengthy process of acquiring
k-space data over multiple cardiac cycles.This extended
acquisition time necessitates patients remaining still
inside the scanner bore, as even slight movements
can lead to slice misalignment,2 which reduces image
quality and diagnostic accuracy. Patients must also
repeatedly hold their breath during scanning to mini-
mize motion artifacts, which can be both challenging
and uncomfortable.3 The use of high acceleration fac-
tors offers a reduction in the number of breath-holds,
saving time for both patients and clinicians.4 However,
this would reduce temporal and spatial resolution,which
limits its practical applicability.5

Various techniques have been developed to reduce
scan time in MRI, including parallel imaging, which
reconstructs missing data using information from mul-
tiple coils, and compressed sensing, which utilizes
sparsity transforms and iterative algorithms for image
recovery. In all these cases, acceleration is achieved
by acquiring a fraction of the k-space data, and apply-
ing advanced reconstruction techniques to restore the
image quality. Cardiac cine MRI includes an additional
temporal dimension capturing the heart at different
motion states. Therefore, there is a strong spatio-
temporal correlation across the cine sequence due to
the high predictability and similarity between consec-
utive cardiac frames. These temporal dynamics and
inter-frame dependencies can be exploited by recon-
struction methods to enhance the overall performance
of cine MRI, requiring more sophisticated approaches
than those used in conventional MRI. Some traditional
works6–8 have explored the spatio-temporal correla-
tions for reconstructing undersampled cardiac cine MRI
data. They combine the concepts of parallel imaging
and compressed sensing to exploit the spatio-temporal

correlation in cine MRI, applying temporal averaging
operation based on the overall similarity of the whole
cine sequence. Additionally, some low-rank methods9,10

are proposed to minimize the sparsity of high-frequency
components and the rank of the low-rank structure
of the temporal data. Although some progress has
been made in cine MRI reconstruction by these meth-
ods, there are still some limitations, particularly when it
comes to pushing the boundaries of higher scan accel-
eration.

In recent years, deep learning has emerged as
a promising approach for MRI reconstruction, gain-
ing more attention in cardiac cine MRI reconstruc-
tion as well. Deep learning methods aim to further
enhance reconstruction performance by effectively han-
dling complex artifacts and enabling higher acceleration
factors. Compared to traditional regularization terms
in the reconstruction pipeline, which rely on explicit
assumptions, deep learning methods can replace and
improve upon them through learning from the data,
allowing the physics-based data consistency step to
better align with the acquired measurements. More-
over, these models adapt to diverse data, recovering
key features while preserving image quality even in the
presence of significant noise and artifacts. Initially, early
models for cine MRI reconstruction employed basic
convolutional neural networks (CNNs) with 3D11,12 or
(2+1)D convolutional11 layers to extract spatio-temporal
features in an unrolled design. However, these con-
volution operations primarily focus on local temporal
and spatial features, which limits the model’s abil-
ity to capture critical global information across the
entire cine sequence. Moreover, some deep learning
methods applied these convolutional operations in the
frequency domain instead of the image domain. For
instance, CineNet13 employs a lightweight CNN-based
U-Net14 in the temporal Fourier domain by applying
the Fourier transform along the temporal dimension to
extract global temporal features, followed by a conjugate
gradient (CG) method as a data consistency module.
However, the simplicity of the applied U-Net model
and the use of the temporal Fourier domain as input
may limit its ability to effectively exploit spatio-temporal
information.
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As a pioneering deep learning model for cardiac cine
MRI reconstruction, CRNN-MRI15 was the first method
to introduce convolutional recurrent operations across
frames and iterations. By extracting spatio-temporal
features throughout the sequence and providing valu-
able information for subsequent iterations, it achieves
strong performance and demonstrates its potential in
this field. Despite its effectiveness, CRNN-MRI has
some limitations that hinder its performance. The model
restricts continuous temporal feature exploration in the
cine sequence by applying recurrent operations only
once at the start of each cascade block, rather than
throughout the entire network.Fully exploiting the spatio-
temporal features of cine MRI is essential, in particular,
for accurately reconstructing the dynamic regions of
the heart. Furthermore, the shallow depth of the net-
work and the small convolutional kernel size limit the
spatial receptive field, potentially impacting its abil-
ity to capture high-level spatial information. Although
subsequent works16,17 build upon the same convolu-
tional recurrent operations by either extracting additional
domain-specific information through multiple convolu-
tional recurrent branches or recovering k-space data
before inputting it into the CRNN-MRI model, the funda-
mental limitations of the CRNN-MRI architecture remain
unresolved. Then, a recent model, PromptMR18 intro-
duced a novel strategy for leveraging spatio-temporal
correlations in cine MRI sequences. It takes five con-
secutive frames as input to reconstruct the central frame,
which inherently limits the temporal context by excluding
more distant frames. To capture spatio-temporal corre-
lations from a global perspective,PromptMR merges the
temporal and channel dimensions and applies channel
attention to the resulting representation.Additionally, the
use of learnable prompts in the decoder enhances the
model’s adaptability to varying image contrasts. Despite
its strong performance in cardiac cine MRI reconstruc-
tion, PromptMR does not exploit potentially informative
distant frames, which could provide valuable context
for reconstruction.Furthermore, reconstructing only one
frame at a time prolongs the overall processing time.

Despite advancements in existing methods, effec-
tively leveraging spatio-temporal features for improved
reconstruction remains a challenge and requires fur-
ther investigation. Although the attention mechanism
from transformer19 offers powerful global feature extrac-
tion, its high resource demands limit integration into
unrolled architectures for full cine sequence process-
ing. In contrast, convolutional recurrent operations are
both effective for capturing spatio-temporal features and
well-suited for use within unrolled designs, which was
also supported by the CRNN-MRI paper.15 The convo-
lutional component effectively extracts spatial features
from each frame, while the recurrent component facili-
tates information propagation across frames, naturally
diminishing the influence of distant frames. Conse-
quently, convolutional recurrent operations are capable

of extracting both local and global spatio-temporal fea-
tures effectively. In this work, we present CRUNet-MR,
an unrolled network that effectively integrates the con-
volutional recurrent operations within a U-Net structure
in each cascade block. The U-Net structure is known
for its ability to merge fine-grained spatial details with
high-level semantic information through its skip connec-
tions, making it a widely adopted and proven design
for reconstruction tasks. Therefore, CRUNet-MR aims
to maintain continuous extraction of spatio-temporal
features within the sequence while effectively inte-
grating multi-level features, ultimately enhancing cine
MRI reconstruction performance by better exploiting the
spatio-temporal features inherent in the cine sequence.
The key contributions of CRUNet-MR are as follows:

1. CRUNet-MR effectively combines convolutional
recurrent operations with the U-Net structure. By
splitting a bidirectional convolutional recurrent unit
into two convolutional recurrent units with oppo-
site directions and integrating them into the U-Net
structure, it enables continuous extraction of spatio-
temporal features within the sequence and efficient
information propagation across cascade blocks.

2. Extensive ablation studies examine the introduced
model components, loss terms, and different dilation
factor combinations, demonstrating the contribution
of each designed element.

3. By comparing against benchmark models on the
CMRxRecon2023 dataset and analyzing the recon-
struction performance of the dynamic region of
the heart, CRUNet-MR demonstrates strong per-
formance across various acceleration factors and
views, effectively enhancing spatio-temporal feature
exploitation within the cine sequence.

2 METHODS

2.1 Problem formulation

In general, cine MRI reconstruction is fundamentally an
image-formation problem governed by the MRI forward
model and acquisition physics. Given a complex-valued
cine MRI image series x ∈ ℂT×Dh×Dw from multi-coil
undersampled k-space data y, where T denotes the
number of time frames, and Dh and Dw represent the
height and width of each frame, respectively, the goal of
cine MRI reconstruction can be formulated as follows:

argmin
x

‖y − Ax‖2
2 + 𝜆(x), (1)

where A represents the linear forward operator, consist-
ing of the coil sensitivity map S, the 2D Fourier transform
 , and the undersampling mask M. The term  denotes
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the regularization, with 𝜆 as a hyper-parameter con-
trolling its strength. For deep learning methods, 

represents a trainable neural network. Following the
ADMM20 optimization algorithm, an intermediate vari-
able z is introduced. When constraining z to be equal
to x, the above problem is reformulated as

argmin
x,z

‖y − Ax‖2
2 + 𝜇‖x − z‖2

2 + 𝜆(z). (2)

In an unrolled network, the above formula can be solved
iteratively using the following procedure:

zi = argmin
z

𝜆(z) + 𝜇‖xi − z‖2
2, (3)

xi+1 = argmin
x

‖y − Ax‖2
2 + 𝜇‖x − zi‖2

2. (4)

Here, xi is processed by the ith cascade block, repre-
sented by a neural network  i

𝜃
, to produce zi , which

is subsequently used to generate the input for the
next cascade block, xi+1. Equation (4) can be inter-
preted as a data consistency (DC) operation within the
reconstruction pipeline. This operation preserves the
sampled k-space values, ensuring the reconstructed
output remains consistent with the original undersam-
pled k-space data. The details of the DC operation are
outlined as follows:

xi+1 = DC(zi , y, 𝜆0,Ω) = A†ΛAzi +
𝜆0

1 + 𝜆0
A†y, (5)

Λkk =
⎧
⎪
⎨
⎪
⎩

1 if k ∉ Ω
1

1+𝜆0
if k ∈ Ω , (6)

where A† denotes the Hermitian operation of A, 𝜆0 is a
regularization parameter, Ω represents the index set of
the acquired k-space data,andΛ is a diagonal matrix. Its
diagonal values are 1 for indices outside the acquired
k-space area, and 1

1+𝜆0
for indices within the acquired

area. As 𝜆0 approaches infinity, this indicates maintain-
ing the original sampled k-space area while interpolating
the zero-filled regions using the neural network output.

In the CRUNet-MR reconstruction pipeline, the model
is formulated as a learned proximal solver for the inverse
problem described in Equation (1).Within each cascade
block, the regularization operator  is implemented as
a learned prior via the CRUNet module. The network
alternates between (i) a learned denoising or proxi-
mal step in the image domain and (ii) a physics-based
data consistency step that projects the reconstruc-
tion back into k-space to enforce agreement with the
acquired measurements. Moreover, the model is trained
on complex-valued data, incorporating both k-space and
image-domain loss terms to jointly preserve quantitative
fidelity and perceptual quality.

2.2 Convolutional recurrent units

As mentioned earlier, the CRNN-MRI model employs
two kinds of convolutional recurrent operations that
learn representations across both the temporal dimen-
sion of the cine sequence and cascade blocks: Bidirec-
tional convolutional recurrent units evolving over time
and iterations (BCRNN-TI) and convolutional recurrent
units evolving over iterations (CRNN-I). In this context,
“iteration” refers to each cascade block, highlighting the
iterative nature of the unrolled model. In the CRUNet-
MR model, we solely incorporate the convolutional
recurrent operation evolving over time and iterations to
ensure the efficient extraction of spatio-temporal fea-
tures.

For the BCRNN-TI block, its overall working principle
can be depicted as follows:

Fi
l = BCRNN-TI𝜃(Fi

l−1, Fi−1
l , Hi

l,0). (7)

In the lth layer of ith cascade block, the BCRNN-TI block
receives three inputs: (1) the initial hidden state Hi

l,0, ini-
tialized as a zero matrix; (2) the output feature map from
the previous layer of the same block Fi

l−1; and (3) the
output feature map from the same layer of the previ-
ous cascade block Fi−1

l . In this context, Fi
l−1 and Fi−1

l
offer some prior information from different perspectives.
Meanwhile, the hidden state Hi

l,0 plays a crucial role in
connecting the frames of sequence by preserving con-
textual information for each input element. Then more
details about its internal working process are illustrated
as follows:

Hi
l,t = ⃖⃗Hi

l,t + ⃖⃖Hi
l,t , (8)

⃖⃗Hi
l,t = 𝜎(Wl ∗ Hi

l−1,t + Wt ∗ ⃖⃗Hi
l,t−1 + Wi ∗ Hi−1

l,t + ⃖⃗Bl),
(9)

⃖⃖Hi
l,t = 𝜎(Wl ∗ Hi

l−1,t + Wt ∗ ⃖⃖Hi
l,t+1 + Wi ∗ Hi−1

l,t + ⃖⃖Bl),
(10)

Fi
l,t = concat(Hi

l,1, Hi
l,2,… , Hi

l,n−1, Hi
l,n). (11)

For the hidden state at the lth layer, the tth frame, and
the ith cascade block, Hi

l,t is the summation of ⃖⃗Hi
l,t and

⃖⃖Hi
l,t. The right arrow denotes the forward propagation

of hidden states, where information flows from the pre-
vious frame to the current frame, while the left arrow
represents backward propagation.Then,each of them is
computed as the sum of the convolutional results of the
hidden state from previous layer Hi

l−1,t, the hidden state

of the next frame ⃖⃖Hi
l,t+1 (or the previous frame ⃖⃗Hi

l,t−1),
and the hidden state from the previous cascade block
Hi−1

l,t , followed by applying an activation function. Here,
∗ denotes the convolution operation, 𝜎 represents the
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F IGURE 1 An overview of the CRUNet-MR model structure: Inside each CRUNet block, green dashed lines represent information
propagation at the first level across cascade blocks, blue dashed lines indicate information flow at the second level, and red dashed lines
highlight information propagation through the bottleneck block across the cascade blocks.

activation function, which is rectified linear unit (ReLU),
n denotes the total number of frames, W is the weight
of the convolution kernel, and B is the bias. Finally, the
output hidden state of each frame are concatenated
to form the output feature map of the sequence, Fi

l ,
which subsequently serves as the input to the next layer
within the current cascade block and also passed to the
corresponding layer in the subsequent cascade block.

2.3 CRUNet-MR

Building on convolutional recurrent principles to bet-
ter leverage the strong spatio-temporal correlations in
cine sequences, we developed a novel unrolled network
model named CRUNet-MR. The overall architecture,
shown in Figure 1, consists of five CRUNet blocks.
Each block combines convolutional recurrent units with
a two-level U-Net structure.

For the cine MRI reconstruction task, given multi-coil
undersampled k-space data, y ∈ ℂT×DC×DH×DW , where
DC is the number of coils, we initially apply an Inverse
Fast Fourier Transform (IFFT) to obtain the image. Sub-
sequently, a coil combination operation is performed,
where each coil image is multiplied by its correspond-
ing conjugated coil sensitivity map and summed along
the coil dimension. This yields a combined single-coil
image x0 ∈ ℝT×DH×DW×2, which is double-channeled for
real and imaginary parts. Then, the overall process with
the CRUNet-MR model unfolds as follows:

x5 = CRUNet-MR𝜃(H0, F0, x0, y, S, M), (12)

where H0 is the set of initial hidden states, F0
denotes the set of feature maps from 0th iteration,

both H0 and F0 are initialized as zero matrices, S
represents the coil sensitivity map, and M is the
undersampling mask. Taking x0 as an initial input
for CRUNet-MR, the final output is x5 ∈ ℝT×DH×DW×2.
Additionally, y, S, and M contribute to the hard data
consistency term of each cascade block, as defined
by Equations (5) and (6). This term ensures that
the information from the sampled k-space region is
accurately preserved throughout the reconstruction pro-
cess. Furthermore, to enhance the stability of model
training, we applied z-score normalization at the begin-
ning of each CRUNet block and un-normalization
at the end, ensuring the input is normalized before
processing and returned to its original value range
afterward.

To ensure consistent extraction of spatio-temporal
features within the cine sequence, the BCRNN-TI oper-
ation is a suitable choice, as it employs recurrent
operations across both the temporal dimension of the
cine sequence and the cascade blocks. However, inte-
grating the BCRNN-TI operation directly into the U-Net
structure would highly increase resource consumption,
making it hard to implement without sufficient GPU
memory. To avoid this, inside each CRUNet block, we
decomposed each BCRNN-TI unit into two separate
CRNN-TI units with opposite propagation directions.
One propagates information from front to back within
the sequence, while the other operates in the reverse
direction. These units are strategically positioned within
the encoder and decoder at the same hierarchical level,
effectively balancing computational efficiency with con-
tinuous spatio-temporal feature extraction capabilities.
Furthermore, additional Conv(2+1)D layers are incor-
porated to enhance the extraction of spatio-temporal
features from neighboring frames. In this context, a
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Conv2D layer is first applied to extract spatial features
within each frame, followed by a Conv1D layer that
facilitates interactions between adjacent frames, effec-
tively capturing temporal dependencies.Considering the
cyclical characteristics of cine MRI, where a strong cor-
relation exists between the beginning and end of the
cine sequence, we also incorporated temporal circu-
lar padding21 into all Conv(2+1)D layers. This involves
wrapping the last frame before the first frame and plac-
ing the first frame after the last frame, enhancing the
extraction of spatio-temporal features at the both ends
of the cine sequence.

Overall, the internal details of CRUNet block can
be split into four parts in total. In the first part, two
Conv2D layers at the beginning and end are used
to adjust the number of channels and extract spatial
features. The second part incorporates two CRNN-TI
blocks, operating in forward and backward directions,
complemented by a Conv2D side branch to retain fine
spatial details. Then, the outputs from the two CRNN-TI
blocks are merged via skip connections. This integra-
tion functions as an enhanced BCRNN-TI operation,
improving spatio-temporal feature extraction by com-
bining multi-level features. The resulting feature map
is then shared by both CRNN-TI blocks in the sub-
sequent cascade block, making them function as a
cohesive unit. Furthermore, corresponding Conv(2+1)D
layers are applied for downsampling and upsampling in
this part. The third part, representing the second level
of the CRUNet, follows a similar design to the first level
but excludes downsampling and upsampling operations,
avoiding spatial information loss. The final part serves
as the bottleneck, consisting of a BCRNN-TI block aug-
mented with a Conv2D side branch,and concluding with
a Conv(2+1)D layer.

Moreover, expanding the model’s spatial receptive
field should enhance the exploitation of spatial features.
To investigate this impact, multiple dilation factors are
incorporated into the convolutional operations within the
CRUNet. The convolutional operations in the first two
parts remain unchanged to maintain the extraction of
detailed spatial features. After that, dilation factors are
progressively increased by setting to 2 at the third part
and 4 at the bottleneck.This adjustment primarily affects
the convolution kernels within the CRNN-TI blocks and
the Conv2D component of the Conv(2+1)D layers,while
the side branch retains standard convolutions to keep
extracting some local details.

2.4 Loss function

Considering that both the k-space domain and image
domain are related to the performance of cine MRI
reconstruction, we compose the loss function  by the
k-space domain kspace as well as the image domain
img.

 = kspace + img. (13)

We employ the mean squared error (MSE) loss to
compute kspace:

kspace = 𝜆1‖yrec − ygnd‖2
2, (14)

where yrec denotes the reconstructed k-space of car-
diac cine MRI, obtained by applying a Fast Fourier
Transform (FFT) to the reconstructed image, while Kgnd
represents the ground truth, which means fully-sampled
k-space. Both are double-channeled, with one channel
representing the real part and the other representing the
imaginary part.To prioritize image domain performance,
we set 𝜆1 to 0.25.

Then,img is the weighted sum of an L1 loss term, an
MSE loss term and an SSIM loss term:

img = 𝜆2‖Irec − Ignd‖1 + 𝜆3‖Irec − Ignd‖2
2

+ 𝜆4(1 − SSIM(Irec, Ignd)). (15)

In this context, Irec refers to the reconstructed image
series and Ignd represents the original ground-truth
image sequence, both of them are also double-
channeled. Here, both L1 loss and MSE loss focus on
pixel-level accuracy, each with distinct advantages for
the reconstruction.We set 𝜆2 = 𝜆3 = 0.5 to balance their
contributions. Specifically, we compute the SSIM loss
separately for the real and imaginary parts of the dual-
channel output,and then take their average to obtain the
final SSIM loss.𝜆4 is set to 1 to emphasize the structural
information of reconstructed images.

3 EXPERIMENTS AND RESULTS

3.1 Dataset

3.1.1 CMRxRecon2023 dataset

We used the CMRxRecon202322 dataset for evaluat-
ing model’s performance, which was acquired with a 3T
MRI scanner (MAGNETOM Vida,Siemens Healthineers,
Germany) from 300 healthy volunteers (160 females
and 140 males; mean age: 26 ± 5 years) between June
2022 and March 2023. Cardiac cine acquisitions were
performed using a TrueFISP readout and a retrospective
ECG-gated segmented approach,with k-space sampled
over multiple cardiac cycles along the phase-encoding
direction. The cine images included short-axis (SAX),
two-chamber (2CH), three-chamber (3CH), and four-
chamber (4CH) long-axis (LAX) views. For SAX view,
5–14 slices were typically collected, whereas only a
single slice was acquired for the other views. Each
cardiac cycle was divided into 12–25 phases with a
temporal resolution ∼50 ms according to the heart
rate. Typical scan parameters are: spatial resolution
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of 1.5×1.5 mm2, slice thickness of 8.0 mm, repeti-
tion time (TR) of 3.6 ms, echo time (TE) of 1.6 ms,
and field-of -view (FOV) of 340 × 300 mm2 (LAX) or
340 × 340 mm2 (SAX). Signal acquisition was per-
formed during breath-holds (2 for LAX, 11 for SAX),
automatically optimized based on acquisition size, heart
rate, and slices, with a maximum duration of 12 s. Pro-
cessing steps included coil compression to 10 virtual
coils, the filling of partial Fourier data using the POCS
algorithm,23 applying GRAPPA24 to under-sampled k-
space (R = 3) to acquire full k-space data, and
exclusion of poor-quality images based on expert visual
assessment.

The dataset features acceleration factors of 4, 8,
and 10, implemented with uniform Cartesian sampling
outside the Auto-Calibration Signal (ACS) area (cov-
ering the central 24 lines). The undersampling mask
remains consistent across all frames. Notably, the ACS
area reduces effective acceleration to about 3 for
R = 4 and 5 for R = 8 and R = 10. Given the sim-
ilar factual acceleration for R = 8 and R = 10 and
the purpose of further exploring the model’s poten-
tial at higher acceleration, an additional factor of 24
was introduced, using the same sampling strategy with
a gap of 24 outside the ACS area, resulting in an
effective acceleration of approximately 8. The dataset
contains 12 frames per case and is available in both
single-coil and multi-coil formats. However, this work
focuses solely on multi-coil data, reflecting the typi-
cal clinical acquisition method. Additionally, the dataset
includes 120 subjects for training, 60 for validation,
and 120 for testing, with this split preserved throughout
training.

3.1.2 LUMC in-house dataset

We additionally collected an LUMC in-house dataset to
evaluate the CRUNet-MR model. The dataset consists
of 46 patients acquired on a 3T MRI scanner (Inge-
nia, Philips, Best, The Netherlands) with an acceleration
factor of 4. The study has been approved for research
purposes by the institutional review board. For each
subject,14 short-axis (SAX) slices were acquired.A bal-
anced turbo field echo (B-TFE) sequence was used for
cardiac cine acquisition. The scan parameters are as
follows: slice thickness of 8.0 mm; repetition time (TR)
of 3.14 ms; echo time (TE) of 1.57 ms; in-plane spa-
tial resolution of 1 × 1 mm2; FOV of 378 × 706 mm2;
flip angle of 45◦. The scans were acquired over 15
breath-holds, each lasting approximately 6 s. To note,
the LUMC data employed the same k-space sampling
pattern across all frames without an ACS region. Dur-
ing fine-tuning of the CRUNet-MR model, 36 subjects
were used for training and the remaining 10 subjects for
testing.

3.2 Implementation details

To comprehensively evaluate CRUNet-MR,we used four
metrics: Peak Signal-to-Noise Ratio (PSNR), Structural
Similarity (SSIM), Deep Image Structure and Texture
Similarity (DISTS)25, and the Haar Wavelet-based Per-
ceptual Similarity Index (HaarPSI).26 PSNR and SSIM
standard for reconstruction tasks, while DISTS and
HaarPSI assess perceptual performance, better corre-
lating with radiological assessments27 and potentially
reflecting clinical relevance. Statistical significance for
pairwise method comparisons under each metric was
assessed using the Wilcoxon signed-rank test (p =
0.05), with Bonferroni correction applied to control for
multiple method comparisons. Adjusted p-value thresh-
olds were set based on the number of comparisons:
p = 0.0083 for Table 1, p = 0.0167 for Tables 3 and 4,
and p = 0.025 for Tables 5 and 6.

Before training, we normalized the multi-coil k-space
data by transforming it into the image domain using an
Inverse Fast Fourier Transform (IFFT). We then scaled
each data sample by dividing it by its maximum absolute
value. Finally, the normalized image data was trans-
formed back to the original k-space format using a Fast
Fourier Transform (FFT).

We compared CRUNet-MR with two traditional
reconstruction methods and four related deep-learning-
based benchmark models, including GRAPPA,24

L+S,10 CineNet,13 CRNN-MRI,15 3D UNet-MR, and
PromptMR.18 All methods were implemented in PyTorch
1.11.0 and trained on an NVIDIA RTX A6000 GPU (48
GB memory), while inference speed was evaluated on
an NVIDIA Quadro RTX 6000 GPU (24 GB memory).
Deep learning models used a cascade number of 5,
with consistent hyper-parameters across all experi-
ments, except for PromptMR. Considering PromptMR
is designed to handle both cine data and T1/T2 map-
ping data and our focus is solely on cine data, we
retrained it using only cine data. As mentioned ear-
lier, PromptMR reconstructs one frame at a time
using 5 frames as input, resulting in 12 times more
update iterations per epoch compared to methods
that reconstruct the entire sequence at once. Given
this difference, the cosine scheduler in our settings is
not well-suited for PromptMR’s training. Therefore, we
retained PromptMR’s original configuration to ensure
its superior performance. The total number of train-
ing epochs is set to 12, with the learning rate fixed
2 × 10−4 for the first 11 epochs and 2 × 10−5 for the
last epoch. The AdamW optimizer was used with a
weight decay of 0.01. Then, for the hyper-parameter
settings of other deep learning methods, we used
AdamW as the optimizer with an initial learning rate of
3 × 10−4 and a weight decay of 0.01. The batch size
is set to 1. To achieve dynamic learning rate adjust-
ments and enhance training efficiency, we applied a
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TABLE 1 Comparison of CRUNet-MR with benchmarks on the CMRxRecon2023 test set.

View R Models PSNR ↑ SSIM ↑ DISTS ↑ HaarPSI ↑

Multi-Coil LAX 4× GRAPPA 42.78 ± 2.37† 0.962 ± 0.016† 0.933 ± 0.013† 0.955 ± 0.017†

L+S 34.83 ± 3.73† 0.893 ± 0.065† 0.875 ± 0.038† 0.758 ± 0.115†

CineNet 38.26 ± 2.87† 0.951 ± 0.024† 0.904 ± 0.022† 0.865 ± 0.057†

3D UNet-MR 43.89 ± 2.73† 0.981 ± 0.010† 0.950 ± 0.015† 0.950 ± 0.030†

CRNN-MRI 44.17 ± 2.77† 0.983 ± 0.009† 0.954 ± 0.014† 0.953 ± 0.029†

PromptMR 41.54 ± 4.72† 0.982 ± 0.017† 0.953 ± 0.015† 0.945 ± 0.054†

CRUNet-MR 45.74 ± 2.96 0.986 ± 0.009 0.962 ± 0.014 0.966 ± 0.028

8× GRAPPA 32.93 ± 2.08† 0.870 ± 0.029† 0.851 ± 0.014† 0.725 ± 0.056†

L+S 29.38 ± 2.80† 0.806 ± 0.068† 0.812 ± 0.030† 0.575 ± 0.096†

CineNet 33.33 ± 2.63† 0.906 ± 0.038† 0.851 ± 0.019† 0.731 ± 0.079†

3D UNet-MR 38.16 ± 2.25† 0.957 ± 0.016† 0.907 ± 0.014† 0.865 ± 0.044†

CRNN-MRI 39.33 ± 2.42† 0.965 ± 0.013† 0.916 ± 0.013† 0.893 ± 0.044†

PromptMR 38.92 ± 3.78† 0.970 ± 0.021† 0.924 ± 0.015† 0.903 ± 0.063†

CRUNet-MR 40.97 ± 2.83 0.971 ± 0.014 0.929 ± 0.015 0.918 ± 0.052

10× GRAPPA 32.12 ± 2.37† 0.867 ± 0.037† 0.848 ± 0.017† 0.701 ± 0.075†

L+S 28.98 ± 2.81† 0.798 ± 0.070† 0.806 ± 0.031† 0.567 ± 0.102†

CineNet 32.60 ± 2.55† 0.898 ± 0.039† 0.842 ± 0.020† 0.709 ± 0.079†

3D UNet-MR 37.20 ± 2.15† 0.953 ± 0.015† 0.899 ± 0.013† 0.847 ± 0.047†

CRNN-MRI 38.28 ± 2.23† 0.959 ± 0.014† 0.907 ± 0.013† 0.874 ± 0.047†

PromptMR 38.19 ± 3.63† 0.967 ± 0.021† 0.916 ± 0.015† 0.891 ± 0.068†

CRUNet-MR 39.84 ± 2.84 0.966 ± 0.016 0.920 ± 0.015 0.903 ± 0.058

24× GRAPPA 29.53 ± 2.67† 0.847 ± 0.042† 0.822 ± 0.020† 0.609 ± 0.087†

L+S 27.62 ± 2.62† 0.789 ± 0.067† 0.792 ± 0.028† 0.514 ± 0.092†

CineNet 31.02 ± 2.33† 0.884 ± 0.035† 0.821 ± 0.019† 0.652 ± 0.080†

3D UNet-MR 33.39 ± 1.98† 0.924 ± 0.021† 0.857 ± 0.014† 0.742 ± 0.057†

CRNN-MRI 34.20 ± 2.00† 0.932 ± 0.019† 0.867 ± 0.013† 0.773 ± 0.055†

PromptMR 34.80 ± 2.67† 0.948 ± 0.023† 0.886 ± 0.014† 0.814 ± 0.069

CRUNet-MR 35.51 ± 2.32 0.943 ± 0.020 0.888 ± 0.014 0.818 ± 0.063

Multi-Coil SAX 4× GRAPPA 42.40 ± 2.27† 0.958 ± 0.015† 0.927 ± 0.012† 0.953 ± 0.018†

L+S 35.65 ± 3.81† 0.906 ± 0.058† 0.878 ± 0.039† 0.779 ± 0.113†

CineNet 39.69 ± 3.09† 0.959 ± 0.023† 0.912 ± 0.024† 0.882 ± 0.056†

3D UNet-MR 44.02 ± 2.90† 0.982 ± 0.010† 0.951 ± 0.016† 0.947 ± 0.032†

CRNN-MRI 44.48 ± 2.95† 0.983 ± 0.009† 0.954 ± 0.014† 0.952 ± 0.030†

PromptMR 40.64 ± 5.05† 0.981 ± 0.020† 0.953 ± 0.018† 0.937 ± 0.062†

CRUNet-MR 46.17 ± 3.10 0.987 ± 0.008 0.964 ± 0.013 0.967 ± 0.025

8× GRAPPA 34.18 ± 1.96† 0.885 ± 0.028† 0.852 ± 0.016† 0.756 ± 0.051†

L+S 30.53 ± 2.72† 0.829 ± 0.062† 0.817 ± 0.032† 0.607 ± 0.094†

CineNet 34.90 ± 2.83† 0.920 ± 0.037† 0.860 ± 0.022† 0.760 ± 0.078†

3D UNet-MR 39.80 ± 2.42† 0.964 ± 0.013† 0.916 ± 0.012† 0.891 ± 0.043†

CRNN-MRI 39.97 ± 2.49† 0.965 ± 0.014† 0.916 ± 0.013† 0.892 ± 0.045†

PromptMR 38.97 ± 4.27† 0.972 ± 0.022† 0.924 ± 0.017† 0.904 ± 0.067†

CRUNet-MR 41.75 ± 2.86 0.973 ± 0.013 0.932 ± 0.013 0.923 ± 0.045

(Continues)
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TABLE 1 (Continued)

View R Models PSNR ↑ SSIM ↑ DISTS ↑ HaarPSI ↑

10× GRAPPA 32.71 ± 2.01† 0.872 ± 0.030† 0.840 ± 0.016† 0.708 ± 0.046†

L+S 29.56 ± 2.58† 0.814 ± 0.062† 0.807 ± 0.031† 0.572 ± 0.087†

CineNet 34.05 ± 2.91† 0.912 ± 0.041† 0.851 ± 0.022† 0.734 ± 0.081†

3D UNet-MR 38.55 ± 2.40† 0.957 ± 0.015† 0.905 ± 0.012† 0.864 ± 0.048†

CRNN-MRI 38.85 ± 2.46† 0.959 ± 0.015† 0.906 ± 0.013† 0.870 ± 0.048†

PromptMR 38.32 ± 4.04† 0.968 ± 0.022† 0.914 ± 0.016† 0.889 ± 0.069†

CRUNet-MR 40.64 ± 2.90 0.968 ± 0.015 0.923 ± 0.013 0.906 ± 0.052

24× GRAPPA 30.48 ± 2.29† 0.862 ± 0.036† 0.825 ± 0.019† 0.622 ± 0.066†

L+S 28.40 ± 2.35† 0.807 ± 0.060† 0.797 ± 0.030† 0.527 ± 0.080†

CineNet 32.08 ± 2.42† 0.897 ± 0.038† 0.829 ± 0.019† 0.667 ± 0.074†

3D UNet-MR 34.79 ± 1.93† 0.932 ± 0.019† 0.870 ± 0.012† 0.766 ± 0.049†

CRNN-MRI 35.03 ± 2.00† 0.933 ± 0.019† 0.870 ± 0.013† 0.773 ± 0.050†

PromptMR 35.38 ± 2.95† 0.950 ± 0.024† 0.887 ± 0.015† 0.815 ± 0.066†

CRUNet-MR 36.46 ± 2.14 0.945 ± 0.018 0.892 ± 0.012 0.819 ± 0.052

Note: Best results in bold. †: p < 0.0083 (Bonferroni correction with Wilcoxon signed-rank test, pairwise comparison against CRUNet-MR).
Abbreviations: DISTS, deep image structure and texture similarity; HaarPSI, Haar wavelet-based perceptual similarity index; PSNR, peak signal-to-noise ratio; SSIM,
structural similarity.

cosine-annealing scheduler with 10 warm-up epochs
and a minimal learning rate of 1 × 10−4. We set the
total training epochs to 144 for matching the number of
update iterations with the PromptMR model, ensuring
that all models converge effectively. Code is available at
https://github.com/dong845/CRUNet-MR/tree/main.

In the fine-tuning experiment of CRUNet-MR on the
LUMC in-house dataset,we used an NVIDIA RTX A6000
GPU (48 GB memory). Training was performed for 32
epochs with a batch size of 1.We employed the AdamW
optimizer with an initial learning rate of 1 × 10−4 and a
weight decay of 0.01. A cosine-annealing learning rate
scheduler was applied with 5 warm-up epochs and a
minimum learning rate of 5 × 10−5. Notably, due to the
considerably larger image size of the in-house dataset
compared to public datasets, current available GPU
memory could not accommodate training with all frames
simultaneously.Therefore,we adopted the strategy from
PromptMR,where five consecutive frames were used as
input to reconstruct the middle frame.

3.3 Quantitative and qualitative
comparison with baselines

To comprehensively evaluate CRUNet-MR, we com-
pared it with two traditional methods and four deep
learning models, including well-established baseline
models in the field as well as the state-of -the-art model
from the CMRxRecon2023 dataset: (1) GRAPPA:24

GRAPPA uses fully sampled auto-calibration signal
(ACS) region to learn convolutional weights, which
are then applied to synthesize missing k-space data

from multi-coil signals; (2) L+S:10 L+S (Low-rank plus
Sparse) models the image sequence as the sum of
a low-rank component, capturing temporally correlated
background information, and a sparse component, rep-
resenting dynamic or transient features; (3) CineNet:13

CineNet employs a lightweight CNN-based U-Net to
reduce undersampling artifacts and noise in sparse
domains by applying a Fourier Transform along the tem-
poral dimension of the image, reshaping it into the xt
and yt domains for targeted processing; (4) CRNN-
MRI:15 CRNN-MRI adopts a straightforward streamlined
structure, integrating convolutional recurrent operations
across the temporal dimension of the sequence and
cascade blocks, aiming to leverage spatio-temporal fea-
tures throughout the entire sequence; (5) 3D UNet-MR:
3D UNet-MR is a modified unrolled U-Net model derived
from CRUNet-MR by replacing all CRNN-TI blocks with
Conv3D blocks while retaining the overall structure.This
can also serve as a baseline to evaluate the contri-
bution of convolutional recurrent units to performance;
(6) PromptMR:18 PromptMR achieves the best perfor-
mance on the CMRxRecon2023 dataset, reconstructing
the center frame from five input frames. It applies
channel attention across combined temporal-channel
dimensions for global spatio-temporal modeling, and
introduces a learnable prompt to adapt to both cine and
T1/T2 mapping data while enriching spatial information.
LAX, long axis; SAX, short axis.

Table 1 presents the overall performance of the
methods across two views and four acceleration fac-
tors using the testing set from the CMRxRecon2023
dataset, comprising 211 slices of LAX and 879 slices of
SAX in total. Overall, deep learning models significantly
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10 of 18 LYU ET AL.

F IGURE 2 Visualization of models’ results on LAX and SAX views of the CMRxRecon2023 test data at R = 4. ”GT” stands for the ground
truth, and ”UND” denotes the corresponding undersampled image. LAX, long axis; SAX, short axis.

outperformed the two traditional methods. GRAPPA
performed reasonably well at an acceleration factor
of 4 due to the presence of ACS lines, but showed
substantial performance degradation at higher factors.
L+S struggled across all acceleration factors, likely due
to the use of a fixed sampling mask across frames,
which limits its ability to exploit temporal information.
Among deep learning models, CineNet exhibited sub-
optimal reconstruction capabilities across both views,
and 3D UNet-MR underperformed compared to CRNN-
MRI. Likewise, CRUNet-MR demonstrated a substantial
improvement over its base model, CRNN-MRI. Although
PromptMR showed much better overall performance
than the other benchmark models, CRUNet-MR still
demonstrated superior performance at lower acceler-
ation factors (R = 4 and R = 8), while outperforming
PromptMR at higher acceleration factors (R = 10 and
R = 24) in certain metrics, showing better overall
performance.

Figures 2 and 3 present the visualizations of recon-
structed results and corresponding error maps for two
test samples from different views at acceleration fac-
tors of 4 and 8, respectively, offering further insights
into the models’ performance. To note, we cropped the
top and bottom quarters of each frame to remove the

black part and focus on showing the detailed heart
region. The bottom section under each image displays
the result along the central line across the temporal
dimension, while the SSIM value in the top-right cor-
ner reflects the model’s performance over the entire
cropped cine sequence. From these figures, it is clear
that both two traditional methods and CineNet strug-
gled with aliasing artifacts, although CineNet was less
affected. CRNN-MRI and 3D UNet-MR achieved bet-
ter reconstruction quality, but they still failed to capture
fine details in intricate regions. For instance, in LAX
views at acceleration factors of 4 and 8, some bound-
aries inside the cardiac region become heavily blurred
and even vanish as the acceleration factor increases.
In contrast, both PromptMR and CRUNet-MR effectively
recovered most structural cardiac details and highly
reduced artifacts, despite PromptMR showing a lower
SSIM value. To note, the error maps of PromptMR in
the cardiac region revealed poorer performance com-
pared to CRUNet-MR, highlighting its weaker pixel-level
accuracy. Additionally, some detailed cardiac features
reconstructed by PromptMR appeared less sharp,which
is indicated by blue arrows in Figure 3, emphasizing
CRUNet-MR’s better ability to reconstruct the dynamic
cardiac region.
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LYU ET AL. 11 of 18

F IGURE 3 Visualization of models’ results on LAX and SAX views of the CMRxRecon2023 test data at R = 8, with blue arrows highlighting
areas for comparison.

3.4 Dynamic region analysis

In cardiac cine MRI, the highly dynamic region, charac-
terized by rapid motion and complex patterns, exposes
the greatest challenge for reconstruction. Accurate per-
formance in this region reflects a model’s ability to
exploit spatio-temporal features. Due to the substantial
displacement in the dynamic region,pixel values change
drastically across the sequence, leading to a high stan-
dard deviation along temporal dimension. To this end,
we computed the standard deviation of ground-truth
intensities along the temporal axis and set the 90th per-
centile as a threshold to automatically identify the highly
dynamic region in the cine sequence. As illustrated in
Figure 4, this approach effectively shows that dynamic
region primarily corresponds to the heart region due
to its motion, demonstrating that the chosen threshold
reliably isolates dynamic areas in cardiac cine MRI.

By defining the dynamic region in this manner, the
entire cine sequence can be divided into two seg-
ments: the dynamic region and the remaining area with
small motion, which we refer to as the “static region”
in contrast to the dynamic region. PSNR and SSIM
were selected as the primary evaluation metrics for
this dynamic analysis, as DISTS and HaarPSI are not
suitable for point sets. We then calculated the PSNR

and SSIM values of each region separately to more
comprehensively assess the models’ effectiveness in
exploiting spatio-temporal features. Figure 5 provides
an overview of the models’ performance across these
two regions. Overall, CRUNet-MR achieved the highest
PSNR values across both views and regions and the
highest SSIM in the dynamic region. However, in the
static region, CRUNet-MR exhibited lower SSIM com-
pared to PromptMR, except at an acceleration factor
of 4.

3.5 Analysis of parameter count and
inference time

While the above tables and figures provide compre-
hensive quantitative and qualitative evaluations about
reconstruction performance, it is also important to
assess additional aspects of models, including param-
eter count and average inference time for each slice
sequence including all phases, as they are critical fac-
tors in practical reconstruction applications. Accordingly,
we calculated the parameter count for each deep learn-
ing method and measured their inference time on the
CMRxRecon2023 test set under identical hardware con-
ditions. Given the size differences between LAX and
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12 of 18 LYU ET AL.

F IGURE 4 The dynamic region across the cardiac cine sequence, as represented by the generated mask.

F IGURE 5 Dynamic analysis of the models on the CMRxRecon2023 test data, with the upper part representing LAX results and the bottom
part showing SAX results. LAX, long axis; SAX, short axis.
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LYU ET AL. 13 of 18

TABLE 2 Quantitative analysis of parameter count and per-slice
inference time for each deep learning model across the two views of
the CMRxRecon2023 test data.

Models
Parameter
count (MB) ↓

LAX inference
time
(seconds) ↓

SAX inference
time
(seconds) ↓

CineNet 0.65 0.06 0.08

3D UNet-MR 4.00 0.07 0.44

CRNN-MRI 1.49 0.74 1.03

PromptMR 30.50 3.50 4.73

CRUNet-MR 4.79 1.45 2.00

Note: Best results are highlighted in bold. Abbreviations: LAX, long axis; SAX,
short axis.

SAX views, inference times are reported separately
for each. Although all models were tested across four
acceleration factors, the variation in inference time was
negligible, so we report the average inference time for
each view. The results for all deep learning models are
summarized in Table 2.

In general,CineNet is the most lightweight deep learn-
ing method,whereas PromptMR has the largest number
of parameters due to its use of a channel attention
mechanism and deeper U-Net structure. CRUNet-MR
has more parameters than both 3D UNet-MR and
CRNN-MRI, because it combines a U-Net architecture
with convolutional recurrent operations. In terms of infer-
ence time, all methods remain within an acceptable
range. CineNet is the fastest, consistent with its small
parameter count,while PromptMR is the slowest since it
reconstructs frames sequentially. CRUNet-MR is slower
than both CRNN-MRI and 3D UNet-MR, and despite
CRNN-MRI having fewer parameters than 3D UNet-MR,
its recurrent operations introduce additional latency due
to inter-frame information propagation.

3.6 Ablation study

3.6.1 Model components

In this section, we conducted ablation studies to eval-
uate the impact of some key components within the
model design. The study examines three key compo-
nents: skip connections (removing all side branches
adjacent to the CRNN-TI blocks), temporal padding
in Conv(2+1)D layers (disabling temporal padding),
and CRNN-TI blocks (eliminating recurrent operations
spanning cascade blocks, focusing solely on recurrent
operations within the cine sequence). All experiments
were conducted using the same hyperparameter set-
tings as mentioned before, based on the LAX view
dataset with an acceleration factor of 8. The results are
shown in the Table 3. In general, the limited data vol-
ume of the LAX view dataset prevents the impacts of
some components from being clearly distinct. Among

TABLE 3 Ablation study of model components on LAX view of
the CMRxRecon2023 test data at R = 8.

Skip
connection

Temporal
padding CRNN-TI PSNR ↑ SSIM ↑

✓ ✓ ✗ 40.35 ± 2.80† 0.967 ± 0.015†

✗ ✓ ✓ 40.81 ± 2.76† 0.970 ± 0.014†

✓ ✗ ✓ 40.90 ± 2.80 0.970 ± 0.014†

✓ ✓ ✓ 40.97 ± 2.83 0.971 ± 0.014

Note:Best results are in bold.†:p < 0.0167 (Bonferroni correction with Wilcoxon
signed-rank test, pairwise comparison against CRUNet-MR with all model
components).
Abbreviations: PSNR, peak signal-to-noise ratio; SSIM, structural similarity.

TABLE 4 Ablation study of loss function terms on LAX view of
the CMRxRecon2023 test data at R = 8.

K-space
MSE loss

Image
L1/MSE
loss

Image SSIM
loss PSNR ↑ SSIM ↑

✓ ✓ ✗ 36.98 ± 3.39† 0.959 ± 0.017†

✗ ✓ ✓ 40.87 ± 2.83 0.970 ± 0.014

✓ ✗ ✓ 40.83 ± 2.85† 0.970 ± 0.014†

✓ ✓ ✓ 40.97 ± 2.83 0.971 ± 0.014

Note:Best results are in bold.†:p < 0.0167 (Bonferroni correction with Wilcoxon
signed-rank test, pairwise comparison against CRUNet-MR with all loss terms).
Abbreviations: PSNR, peak signal-to-noise ratio; SSIM, structural similarity.

these three components, the CRNN-TI operation had
the largest impact, as it was the primary compo-
nent for extracting spatio-temporal features across the
sequence. Removing information propagation over the
cascade blocks led to a notable loss of critical features
from earlier blocks, leading to a sharp decline in perfor-
mance. The other two components had smaller but still
positive effects, underscoring the potential benefits of
incorporating these operations.

3.6.2 Loss function terms

During training, the loss function plays a crucial role
in guiding model optimization. As described earlier, our
loss function consists of three components: an MSE
loss in the k-space domain, a combined L1/MSE loss
in the image domain, and an SSIM loss in the image
domain. To assess the contribution of each component
and determine their necessity in training CRUNet-MR,
we conducted a corresponding ablation study by sys-
tematically removing each term from the overall loss
function and evaluating the resulting reconstruction per-
formance. The overall performance is summarized in
Table 4 and Figure 6.

The results clearly show that the SSIM loss in the
image domain is crucial for cine MRI reconstruction,
as its removal lead to a substantial drop in perfor-
mance and visibly blurred fine structures. In contrast,
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14 of 18 LYU ET AL.

F IGURE 6 Visualization of the CRUNet-MR model outputs without each loss term on the LAX view of the CMRxRecon2023 test data at
R = 8, with blue arrows highlighting the differences and the SSIM value in the top-right corner indicating performance over the cropped cine
sequence. LAX, long axis; SSIM, structural similarity.

the MSE loss in the k-space domain and the combined
L1/MSE loss in the image domain have a smaller impact:
slightly reduces quantitative scores while yielding visu-
ally similar reconstructions.Notably,omitting the k-space
loss does not cause statistically significant changes in
the metrics, suggesting it could be excluded without
materially affecting performance. However, as shown in
Figure 6, incorporating the k-space loss alongside the
combined L1/MSE loss still enhances subtle details and
sharpens features, as indicated by the blue arrow.

3.6.3 Dilation factors

As previously mentioned, we aimed to investigate the
relationship between the model’s receptive field and
reconstruction performance by introducing multiple dila-
tion factors in the U-Net structure. Therefore, we con-
ducted a related ablation study by incorporating various
dilation factor combinations into CRUNet-MR.

Each CRUNet block adopted a two-level U-Net struc-
ture with a bottleneck, where we assigned specific
dilation factor to each level. We experimented with three
dilation factor combinations: (1, 1, 1), (1, 2, 4), and (1, 3,
5). Here, the first one served as a baseline using stan-
dard convolutions without dilation. As shown in Table 5,
the (1, 2, 4) configuration yielded the best overall perfor-
mance for acceleration factors of 4, 8, and 10, although

it slightly underperformed (1, 1, 1) in the LAX view at
factors 8 and 10 on certain metrics, likely due to the
smaller number of training samples in that view, which
also reduced the clarity of statistical significance. For
an acceleration factor of 24, the (1, 3, 5) combination
proved most effective,slightly outperforming (1,2,4) and
substantially surpassing (1, 1, 1).

3.7 Evaluation of CRUNet-MR on the
LUMC data

Although CRUNet-MR achieves promising results on
the CMRxRecon2023 dataset, further evaluation on
an in-house dataset remains essential. Unlike the
CMRxRecon2023 dataset, the sampling mask of the
LUMC in-house data lacks an ACS region in the cen-
ter and instead employs strictly uniform sampling lines,
which poses a challenge for inference using the cur-
rent pre-trained model. Therefore, to thoroughly assess
the generalization capability of the pre-trained CRUNet-
MR model,we designed a three-step evaluation process:
(1) the pre-trained model was first applied directly to
the LUMC data; (2) a new sampling mask consistent
with the CMRxRecon2023 dataset, including a 24-line
ACS region, was then generated, and the pre-trained
model was reapplied to evaluate its generalization to
data acquired from a different vendor; and (3) to further
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LYU ET AL. 15 of 18

TABLE 5 CRUNet-MR results with different dilation factors on LAX and SAX views of the CMRxRecon2023 test data.

View R Dilations PSNR ↑ SSIM ↑ DISTS ↑ HaarPSI ↑

Multi-Coil LAX 4× (1, 1, 1) 45.52 ± 2.84† 0.986 ± 0.008† 0.961 ± 0.013† 0.965 ± 0.026†

(1, 3, 5) 45.72 ± 3.04 0.986 ± 0.009 0.962 ± 0.015 0.965 ± 0.029

(1, 2, 4) 45.74 ± 2.96 0.986 ± 0.009 0.962 ± 0.014 0.966 ± 0.028

8× (1, 1, 1) 40.96 ± 2.70 0.971 ± 0.013 0.928 ± 0.014† 0.921 ± 0.047

(1, 3, 5) 40.95 ± 2.90 0.970 ± 0.015† 0.928 ± 0.016† 0.917 ± 0.054

(1, 2, 4) 40.97 ± 2.83 0.971 ± 0.014 0.929 ± 0.015 0.918 ± 0.052

10× (1, 1, 1) 39.85 ± 2.68 0.967 ± 0.015† 0.920 ± 0.013† 0.906 ± 0.054

(1, 3, 5) 39.73 ± 2.90† 0.965 ± 0.016† 0.919 ± 0.016† 0.901 ± 0.060†

(1, 2, 4) 39.84 ± 2.84 0.966 ± 0.016 0.920 ± 0.015 0.903 ± 0.058

24× (1, 1, 1) 35.02 ± 2.05† 0.938 ± 0.018† 0.882 ± 0.012† 0.801 ± 0.053†

(1, 3, 5) 35.51 ± 2.42 0.943 ± 0.021† 0.888 ± 0.016 0.820 ± 0.068†

(1, 2, 4) 35.51 ± 2.32 0.943 ± 0.020 0.888 ± 0.014 0.818 ± 0.063

Multi-Coil SAX 4× (1, 1, 1) 45.93 ± 3.05† 0.987 ± 0.008† 0.963 ± 0.013† 0.966 ± 0.025†

(1, 3, 5) 46.07 ± 3.17† 0.987 ± 0.008† 0.964 ± 0.013 0.966 ± 0.026†

(1, 2, 4) 46.17 ± 3.10 0.987 ± 0.008 0.964 ± 0.013 0.967 ± 0.025

8× (1, 1, 1) 41.61 ± 2.77† 0.972 ± 0.013† 0.930 ± 0.013† 0.922 ± 0.044†

(1, 3, 5) 41.65 ± 2.95† 0.972 ± 0.013† 0.932 ± 0.014 0.921 ± 0.048†

(1, 2, 4) 41.75 ± 2.86 0.973 ± 0.013 0.932 ± 0.013 0.923 ± 0.045

10× (1, 1, 1) 40.59 ± 2.79† 0.967 ± 0.014† 0.921 ± 0.013† 0.906 ± 0.050†

(1, 3, 5) 40.57 ± 2.97† 0.967 ± 0.015† 0.922 ± 0.014† 0.904 ± 0.055†

(1, 2, 4) 40.64 ± 2.90 0.968 ± 0.015 0.923 ± 0.013 0.906 ± 0.052

24× (1, 1, 1) 36.01 ± 2.05† 0.941 ± 0.019† 0.886 ± 0.012† 0.804 ± 0.049†

(1, 3, 5) 36.49 ± 2.24† 0.945 ± 0.019† 0.892 ± 0.012† 0.822 ± 0.056†

(1, 2, 4) 36.46 ± 2.14 0.945 ± 0.018 0.892 ± 0.012 0.819 ± 0.052

Note: Best results are in bold. †: p < 0.025 (Bonferroni correction with Wilcoxon signed-rank test, pairwise comparison against CRUNet-MR with dilation factor
combination of (1, 2, 4)).
Abbreviations:DISTS,deep image structure and texture similarity;HaarPSI,Haar wavelet-based perceptual similarity index;LAX, long axis;PSNR,peak signal-to-noise
ratio; SAX; short axis; SSIM, structural similarity.

TABLE 6 Quantitative evaluation of CRUNet-MR on the LUMC
data.

Steps PSNR ↑ SSIM ↑

Pre-trained CRUNet-MR
with original mask

22.50 ± 3.06† 0.537 ± 0.066†

Pre-trained CRUNet-MR
with consistent mask

31.54 ± 3.25† 0.849 ± 0.054†

Fine-tuned CRUNet-MR
with original mask

34.10 ± 3.23 0.953 ± 0.027

Note: Best results are in bold. †: p < 0.025 (Bonferroni correction with Wilcoxon
signed-rank test, pairwise comparison against fine-tuned CRUNet-MR).
Abbreviations: PSNR, peak signal-to-noise ratio; SSIM, structural similarity.

adapt CRUNet-MR to the LUMC dataset, we fine-tuned
the model with a limited number of training epochs,
allowing it to rapidly achieve satisfactory performance
on the in-house data.

Then, Table 6 presents the quantitative results of
the above three steps on the test set from the fine-
tuning part, while Figure 7 shows qualitative results

for a representative test example. These results clearly
show that CRUNet-MR struggles to reconstruct images
when confronted with a mismatched sampling mask,
which caused the undersampled input images to appear
noticeably different. In contrast, with a consistent sam-
pling mask, the pre-trained model achieves much
better reconstructions and demonstrates good gen-
eralization to data from a different vendor, although
some minor artifacts persist. Moreover, further fine-
tuning on the LUMC dataset enables CRUNet-MR
to adapt rapidly and deliver robust reconstruction
performance.

4 DISCUSSION AND CONCLUSION

In summary, we integrated a deep learning approach
into the traditional physics-based reconstruction formu-
lation for cardiac cine MRI to enhance reconstruction
performance through the strong spatio-temporal repre-
sentation capabilities of deep learning. By incorporating
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16 of 18 LYU ET AL.

F IGURE 7 Qualitative evaluation of the generalization ability of CRUNet-MR on the LUMC data. The first row shows results using the
pre-trained model on the original LUMC data. The second row presents results with a consistent sampling mask, while the last row illustrates
reconstructions obtained from the fine-tuned CRUNet-MR. Here, ”GT” denotes the ground truth, ”UND” refers to the undersampled visualization
obtained using the corresponding mask, and ”REC” represents the reconstructed result.

the proposed deep learning model as a learned regular-
izer, the method effectively exploits its expressive capac-
ity to capture spatio-temporal dynamics, enabling more
accurate reconstruction at higher acceleration factors,
particularly in challenging dynamic cardiac regions.

In the overall comparison among models from Table 1,
our proposed CRUNet-MR outperforms other models
across multiple views and acceleration factors, with
statistically significant differences in all evaluation met-
rics. CineNet performed the worst, likely due to its
simple U-Net design and the use of Fourier repre-
sentations of spatio-temporal domains (xt and yt) as
inputs of U-Nets. This design limits its ability to capture
spatial features within frames, hindering the learning
of spatio-temporal correlations essential for accurate
reconstruction. Despite its simple streamline structure,
CRNN-MRI still outperforms 3D UNet-MR, highlighting
the effectiveness of convolutional recurrent opera-
tions in extracting spatio-temporal features compared
to traditional 3D convolutional operations. Similarly, the
enhanced performance of CRUNet-MR over 3D UNet-
MR further underscores this advantage. By comparing
CRUNet-MR with both CRNN-MRI and 3D UNet-MR,
the benefits of integrating convolutional recurrent oper-
ations with a U-Net structure are further validated.
Although PromptMR shows lower overall performance

compared to CRUNet-MR, the performance gap nar-
rows as the acceleration factor increases. As previously
mentioned,a core aspect of PromptMR’s working princi-
ple lies in merging the temporal and channel dimensions
and applying a channel attention mechanism to this
combined dimension. This design enables the model
to effectively extract global spatio-temporal features,
which becomes increasingly important as accelera-
tion factors increase, as more local details are lost
due to the removal of high-frequency components in
the k-space domain. However, it is undeniable that
PromptMR discards a substantial amount of informa-
tion from remote frames, which can provide valuable
features for the reconstruction. Unlike PromptMR, our
proposed CRUNet-MR processes the entire sequence
and uses recurrent operations to link all frames, prop-
agating information across them. The U-Net structure
ensures effective fusion of spatial features, facilitat-
ing the exploitation of spatial information. Furthermore,
the use of Conv(2+1)D layers, increased dilation fac-
tors, and temporal padding collectively enhance the
model’s ability to extract spatio-temporal features from
the cine sequence. These capabilities enable CRUNet-
MR to achieve superior performance across various
acceleration factors and views without relying on a
large number of cascade blocks, particularly at lower
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LYU ET AL. 17 of 18

acceleration factors (e.g., 4 and 8), where finer details
are better preserved.

A dynamic analysis was employed to evaluate the
models’ utilization of spatio-temporal features by mea-
suring their performance in the challenging dynamic
regions, providing a clearer perspective. From Figure 5,
CRUNet-MR demonstrates best performance in recon-
structing dynamic regions, highlighting its effective use
of spatio-temporal features. By achieving the highest
PSNR values across both views and regions, CRUNet-
MR confirms its superior pixel-level accuracy. In contrast,
PromptMR relies on a neural network to estimate
the coil sensitivity map, which might introduce poten-
tial inaccuracies that negatively impact pixel values,
thereby lowering its PSNR performance.Then,CRUNet-
MR demonstrates highest SSIM values in the dynamic
region, while lower SSIM values in the static region
compared to PromptMR, except at an acceleration fac-
tor of 4. For the reconstruction of dynamic cardiac
region, the heart’s motion induces substantial pixel
intensity variations, disrupting the spatial correlation
between pixels, yet it follows a temporal predictable
pattern, allowing the model to infer the structural infor-
mation of the dynamic area by learning this pattern
through temporal features. In contrast, the relatively
constant pixel intensity values over time rely on sta-
ble spatial relationships between neighboring pixels for
accurate reconstruction of static region. Additionally,
the redundancy between frames in this region allows
the extraction of temporal features to further enhance
performance.With a limited number of frames, the recur-
rent operation of CRUNet-MR effectively extracts global
temporal features from the entire sequence, allowing
it to capture the overall motion pattern of the heart
and enhance the reconstruction of dynamic region.
Although CRUNet-MR’s reliance on convolution oper-
ations results in a relatively smaller receptive field
than PromptMR, potentially limiting its ability to capture
global spatial information, the use of dilation factors
helps expand the receptive field, mitigating this limi-
tation by enhancing spatial feature extraction. Overall,
CRUNet-MR still demonstrates greater effectiveness in
leveraging spatio-temporal features compared to the
other methods.

Evaluation of CRUNet-MR on the LUMC in-house
data highlights the limited generalization capability of
deep learning-based reconstruction methods across dif-
ferent sampling masks. When the sampling mask is
altered, thereby changing the distribution of the model
input, CRUNet-MR struggled to achieve satisfactory
reconstruction. In contrast, when the input distribution is
preserved, the model can generalize to data acquired
from different vendors, albeit with a slight performance
degradation. Fine-tuning CRUNet-MR on a small LUMC
dataset,however,enabled strong performance on the in-
house data. Based on the CMRxRecon2024 challenge
paper,28 a straightforward solution to achieve robust

reconstruction across varying sampling masks, is to
incorporate training data from different sampling masks,
allowing deep learning methods such as CRUNet-MR to
reconstruct effectively in multiple scenarios.

While CRUNet-MR has made big progress in utiliz-
ing spatio-temporal features, there still remains room
for improvement and exploration. First, in the CMRxRe-
con2023 and the LUMC dataset, a fixed sampling mask
is applied across all frames.Adopting dynamic sampling
masks could capture more diverse k-space information
and make CRUNet-MR better exploit spatio-temporal
features, potentially achieving better reconstruction per-
formance. Secondly, effectively capturing global spatio-
temporal features is crucial, as highlighted by the above
results and analysis. Although PromptMR performs well
by applying attention across five frames, extending
this approach to an entire sequence is highly more
challenging. The simplicity of channel attention lim-
its its ability to capture complex patterns with more
frames, while potential artifact interference from remote
frames may further degrade performance. Additionally,
this extension would substantially increase GPU mem-
ory requirements. In contrast, convolutional recurrent
operations establish strong frame-to-frame connections
and effectively leverage spatio-temporal features for
reconstructing dynamic regions, enabling the simulta-
neous processing of more frames and making them
well-suited for cine MRI reconstruction. However, their
intrinsic limitations, particularly when handling longer
sequences, can restrict their capacity to effectively
model global spatio-temporal dependencies. Moreover,
convolutional recurrent operations also demand sub-
stantial GPU memory,as each frame requires a separate
convolution operation, thereby constraining the channel
number and network depth of the U-Net structure com-
pared to PromptMR. Consequently, enhancing the effi-
ciency of spatio-temporal feature extraction to enable
more complex model architectures, along with improv-
ing the CRUNet-MR framework’s ability to capture
global spatio-temporal features, represents a promising
direction for future research.

In this work, we proposed CRUNet-MR, a model
optimized for spatio-temporal feature extraction in 2D
cardiac cine reconstruction. By integrating a split bidi-
rectional convolutional recurrent unit into a U-Net struc-
ture, CRUNet-MR effectively leverages spatio-temporal
features across the entire sequence. Benchmark com-
parisons and dynamic analysis validate its enhanced
spatio-temporal information utilization. Additionally, the
investigation of dilation factors highlights the impor-
tance of expanding receptive field, especially for high
acceleration factors. Although CRUNet-MR exhibits lim-
ited generalization across different sampling masks, it
maintains robust performance across data from differ-
ent vendors and can rapidly adapt through fine-tuning.
Overall, we believe that the design of CRUNet-MR
is well-suited for cine MRI reconstruction, offering
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the potential to push acceleration limits and support
practical clinical applications.
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